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Abstract. We analyze the handshake protocol of TLS 1.3 draft-ietf-tls-tls13-10 (published
October 2015). This continues and extends our previous analysis (CCS 2015, Cryptology ePrint Archive
2015) of former TLS 1.3 drafts (draft-ietf-tls-tls13-05 and draft-ietf-tls-tls13-dh-based).
Here we show that the full (EC)DHE Diffie–Hellman-based handshake of draft-10 is also secure in the
multi-stage key exchange framework of Fischlin and Günther which captures classical Bellare–Rogaway
key secrecy for key exchange protocols that derive multiple keys.

We also note that a recent protocol change—the introduction of a NewSessionTicket message for
resumption, encrypted under the application traffic key—impairs the protocol modularity and hence our
compositional guarantees that ideally would allow an independent analysis of the record protocol. We
additionally analyze the pre-shared key modes (with and without ephemeral Diffie–Hellman key), and fit
them into the composability framework, addressing composability with the input resumption secret from
a previous handshake and of the output session keys.

1 Introduction
The Transport Layer Security (TLS) working group of the Internet Engineering Task Force (IETF) is
currently on its way to standardizing the next TLS 1.3 version, as a result of years of discussion, improvement,
and in response to detected weaknesses and design problems in previous TLS versions.

1.1 Our Prior Results

Earlier in 2015 [DFGS15a], we cryptographically analyzed two intermediate drafts of TLS 1.3, draft-ietf-
tls-tls13-05 (which we shorten to draft-05, [Res15a]) and draft-ietf-tls-tls13-dh-based (short:
draft-dh, [Res15c]). (As this paper is targeted to the expert TLS audience of the TRON (“TLSv1.3 - Ready
or Not?”) workshop1, we skip repeating a detailed introduction and “dive right in”. The full version of our
earlier work is available on the IACR Cryptology ePrint Archive [DFGS15b].) In that work, we extended
the game-based multi-stage key exchange model by Fischlin and Günther [FG14] (itself following the
paradigm of the Bellare–Rogaway model [BR94]), where a key exchange derives not only one but multiple
keys, to handle unauthenticated sessions, different authentication modes in parallel, and key exchanges

1https://www.internetsociety.org/events/ndss-symposium-2016/tron-workshop-call-papers
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from pre-shared symmetric keys. We showed that the primary full Diffie–Hellman-based handshake as well
as the resumption handshake achieved key secrecy in the multi-stage setting: for TLS 1.3, this means key
secrecy of the handshake traffic key, the application traffic key, as well as the resumption and exporter
master secrets. We note that our prior work did not analyze the 0-RTT handshake mode of TLS 1.3, since
it was not fully specified at the time of writing of our earlier work.

As a second component of our preliminary work, we furthermore augmented the composition frameworks
by Brzuska et al. [BFWW11] and Fischlin and Günther [FG14] to encompass protocols (like TLS 1.3) in
which unauthenticated, unilaterally authenticated, and mutually authenticated sessions run concurrently.
This generic composition result enables the independent analysis of the record protocol security, ensuring
that, in particular, the final keys established in the full handshake (i.e., the application traffic key, the
resumption master secret, and the exporter master secret) can safely be used in any symmetric-key protocol.

We refer to [DFGS15b] for the full details of the multi-stage key exchange model and the composition
result which we again use for our analysis of draft-10.

1.2 This Paper’s Results

This work combines the contributions from our earlier analysis of TLS 1.3 handshake candidates draft-05
and draft-dh with an updated analysis that captures the modifications in the TLS 1.3 draft draft-ietf-
tls-tls13-10 [Res15b] (which we shorten to draft-10), published in October 2015.

On a high level, we are able to confirm that the (multi-stage) key secrecy guarantees provided by
the earlier analyzed handshake candidates carry over to draft-10, mainly because draft-10 adopts the
draft-dh handshake variant (which we analyzed) and refines its key schedule (largely following the OPTLS
protocol design invented and analyzed by Krawczyk and Wee [KW15, KW16]), while maintaining the main
handshake structure and strong key separation of the previous drafts. More specifically, we ascertain that
the full (EC)DHE handshake still satisfies the notion of multi-stage key secrecy, providing in particular
forward secrecy for all of the derived keys. Unfortunately, the modular analysis is compromised—in
particular composition for the application transport key is not possible in its generic form due to the
introduction of a new message called NewSessionTicket in draft-10.

Furthermore, we analyze the pre-shared key handshake modes (PSK and PSK-DHE) of draft-10,
which replaced the former resumption handshake in draft-05. Both protocols start with the previously
established keys to derive the new keys, but the PSK-DHE version adds another Diffie-Hellman step on top.
We are able to show that the PSK handshake still achieves key secrecy guarantees without forward secrecy
as in the previously analyzed draft-05. For the PSK-DHE handshake, we confirm that the combination of
pre-shared and ephemeral Diffie–Hellman keys indeed additionally achieves the desired forward secrecy.
This in particular also renders the application traffic key established in the PSK-DHE handshake amenable
to our composition result, allowing an independent security analysis of its use in the record protocol.

We next discuss our results in more detail.

Security of the draft-10 full (EC)DHE handshake. In this work, we show that the full (EC)DHE
handshake of draft-10 is a secure multi-stage key exchange protocol where different stages and simultaneous
runs of the protocols can be unauthenticated, unilaterally authenticated, or mutually authenticated. On a
high level, this means that the handshake establishes record layer as well as resumption and exporter keys
that look random to an adversary. This holds even for sessions that run concurrently and if the adversary
controls the network, is able to corrupt the long-term secret keys of other parties, and allowed to reveal
keys established in other sessions, thus providing quite strong security guarantees for practice. Moreover,
using the multi-stage model allows us to show that even leakage of record layer or exporter keys in the
same handshake session do not compromise each other’s security.
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Notably, we are able to prove the standard notion of key secrecy (or key indistinguishability) for the
handshake as key-exchange protocol, while analyses of previous required (a) a more complex security model
that treats the handshake and record layer together [JKSS12] or (b) a cunning approach to release the
record layer key early [BFK+14]. Our security proof relies on mostly standard cryptographic assumptions
such as unforgeability of the deployed signature scheme, collision resistance of the hash function, and
pseudorandomness of the HKDF key derivation function. In addition, we employ the pseudorandom
oracle-Diffie–Hellman (PRF-ODH) assumption which has been introduced and used for analyses of the
previous TLS version 1.2 [JKSS12, KPW13]. Note that an earlier version of this paper contained an
incorrect proof which instead of the PRF-ODH assumption employed only on the DDH assumption (and
PRF security). This version corrects this proof; see Appendix A.3 and Appendix C.3 for the technical
details.

Security of the draft-10 PSK and PSK-DHE handshakes. We also analyze the pre-shared key
handshake modes of draft-10, PSK and PSK-DHE, and show that they as well are secure multi-stage
(preshared-secret) key exchange protocols (relying on the unforgeability of the HMAC message authentication
code instead of signature unforgeability for authentication). The two pre-shared key modes differ in that
the plain PSK handshake does not achieve forward secrecy while the PSK-DHE handshake, mixing
fresh ephemeral Diffie–Hellman keys into the key derivation, does indeed establish forward-secret keys
as envisioned. For the latter analysis, we extend the multi-stage preshared-secret key exchange model
formalized in our previous work [DFGS15a] to capture forward secrecy in the setting of pre-shared keys.

Composition with the record layer and the role of NewSessionTicket. When it comes to the
overall security of TLS 1.3, we follow a compositional approach. More specifically, we show that any final
key (or in other words: any key not used in the handshake itself) established in a multi-stage key exchange
that enjoys, primarily, forward secrecy and key independence (a certain technical form of computational
key separation), can safely be used in any subsequent symmetric-key protocol. Via this generic composition
result we can deduce such guarantees for the resumption and exporter master secret of the full handshake as
well as the application traffic key and the exporter master secret of the pre-shared key modes of draft-10.
This means that, in particular, the usage of the resumption master secret of the full handshake as an input
to later PSK/PSK-DHE handshake runs is safe. Likewise, it allows an independent analysis of the record
layer using the application traffic key established in the forward-secret PSK-DHE mode (which was not
possible in the non-forward secret session resumption mode of draft-05 analyzed in our previous work).

Regrettably, this modular approach of analyzing the handshake protocol and the protocol using an
established key independently cannot be applied to the use of the application traffic key derived in the
full handshake. The reason for this is that the application traffic key is (potentially) already used in the
full handshake to encrypt a NewSessionTicket message which is used for session resumption. Though
envisioned by the designers as a “post-handshake message,” sending NewSessionTicket thus implies that
the application traffic key is effectively used within the handshake protocol, which revives an old obstacle
for modeling the handshake’s security known from the formal security analyses of the previous TLS version
1.2 (e.g., [MSW08]). There, usage of the derived session key to encrypt the handshake’s Finished messages
rendered classical key secrecy notions (in the style of Bellare and Rogaway [BR94]) unachievable, leading
to a monolithic analysis of the handshake and record layer together [JKSS12].

While (multi-stage) key secrecy itself is not affected by the NewSessionTicket message in draft-10,
the generic compositional guarantees for the application traffic key fall prey to this change. (As noted above,
composition involving all other final keys—the resumption and exporter master secrets, as well as all output
keys in the PSK-DHE handshake—is not affected.) Essentially, the NewSessionTicket violates a strict
logical separation between the handshake and the record protocol for the full handshake’s application traffic
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key, which is reflected in our model as a loss of modularity by rendering generic compositional guarantees
unachievable for that key. Our compositional technique not being applicable anymore prevents a modular,
independent security analysis of the record protocol along these compositional lines and might necessitate
a more complex, entangled analysis of the combined handshake and record protocol as for previous TLS
versions (e.g., [JKSS12]). We therefore highly recommend to reestablish a logical and cryptographic
separation between the handshake establishing keys and the usage of keys in the record protocol, and
discuss several options to achieve this in Section 3.

Limitations. Naturally, our analysis is limited to the specification in draft-ietf-tls-tls13-10 [Res15b]:
our work hence serves as a cryptographic insight into the draft design, but cannot be a definitive analysis
of the final TLS 1.3 protocol.

In this work we raise our results for the full and pre-shared key handshakes to the latest draft-10
specification, but do not capture the fourth handshake mode which allows for a zero round-trip time
(0-RTT) key exchange.

1.3 Related Work

We refer to our earlier paper [DFGS15a] for a detailed history of research on the TLS protocol and only
list new work that has appeared since then.

Krawczyk and Wee [KW15, KW16] present the OPTLS protocol that constitutes the clean conceptual
foundation of the TLS 1.3 handshake, its full, 0-RTT and pre-shared key modes, as well as its key
schedule which enabled our standard-model security results in the first place. Jager et al. [JSS15] describe
a cross-ciphersuite-family, cross-protocol-version, and cross-protocol attack on TLS 1.3 and Google’s
QUIC protocol [Ros13] which leverages Bleichenbacher-style weaknesses in implementations of RSA-based
PKCS#1 v1.5 encryption of, e.g., previous TLS versions to forge RSA signatures in TLS 1.3 and QUIC.2
Bhargavan et al. [BBF+16] discuss downgrade resilience as a formal security notion for key exchange
protocols and, in particular, analyze downgrade protection in TLS 1.3 draft-10 as well as proposed fallback
mechanisms in the follow-up version draft-ietf-tls-tls13-11.

2 The TLS 1.3 draft-10 Full Handshake Protocol
The TLS 1.3 full handshake protocol is divided into two phases: the negotiation phase, where parties
negotiate ciphersuites and key-exchange parameters, generate unauthenticated shared key material, and
establish handshake traffic keys; and the authentication phase, where parties authenticate the handshake
transcript according to the authentication properties negotiated earlier and output authenticated application
traffic keys, independent from the previous handshake traffic keys.

Figure 1 shows the message flow and relevant cryptographic computations as well as the key schedule
for the full handshake in draft-10. The handshake messages are as follows:
• ClientHello (CH)/ServerHello (SH) contain the supported versions and ciphersuites for negotiation
purposes, as well as random nonces rc resp. rs. Both CH and SH can also include various extension
fields.
• ClientKeyShare (CKS)/ServerKeyShare (SKS) are extensions sent within the ClientHello resp.

ServerHello messages which contain the ephemeral Diffie–Hellman shares X = gx resp. Y = gy for
one or more (in case of the client) groups.

2The Jager et al. attack does not contradict our provable security analysis since our formalism analyses solely TLS 1.3, and
fallback mechanisms are outside of our scope.
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Client Server

ClientHello: rc←$ {0, 1}256

+ ClientKeyShare: X ← gx

ServerHello: rs←$ {0, 1}256

+ ServerKeyShare: Y ← gy

H1 ← H(CH‖SH) (incl. CKS & SKS)
ES← Y x ES← Xy

xES← HKDF.Extract(0,ES)
tkhs ← HKDF.Expand(xES, label1‖H1) stage 1

{EncryptedExtensions}
{ServerConfiguration∗}

{ServerCertificate∗}: pkS
{CertificateRequest∗}

H2 ← H(CH‖ . . . ‖CR∗)
{ServerCertificateVerify∗}:

SCV← Sign(skS , H2)
SS← Y x SS← Xy

xSS← HKDF.Extract(0,SS)
H3 ← H(CH‖ . . . ‖SCV∗)

FS← HKDF.Expand(xSS, label2‖H3)
{ServerFinished}:

SF← HMAC(FS, label3‖H3)
check Verify(pkS , H2, SCV) = 1
check SF = HMAC(FS, label3‖H3)
{ClientCertificate∗}: pkC

H4 ← H(CH‖ . . . ‖CCRT∗)
{ClientCertificateVerify∗}:
CCV← Sign(skC , H4)

Hsess ← H(CH‖ . . . ‖CCV∗)
{ClientFinished}:
CF← HMAC(FS, label4‖Hsess)

check Verify(pkC , H4, CCV) = 1
check CF = HMAC(FS, label4‖Hsess)

mES← HKDF.Expand(xES, label5‖H3)
mSS← HKDF.Expand(xSS, label6‖H3)

MS← HKDF.Extract(mSS,mES)
tkapp ← HKDF.Expand(MS, label7‖Hsess) stage 2

[NewSessionTicketM]: psk_id

RMS← HKDF.Expand(MS, label8‖Hsess) stage 3
EMS← HKDF.Expand(MS, label9‖Hsess) stage 4

record layer (application data), using AEAD with key tkapp

ES SS

Ext

xSS

0Ext

xES

0

Exp

mSS

H3Exp

mES

H3

Ext

MS

Exp

FS

H3

Exptkhs

H1

Exptkapp

Hsess

ExpEMS

Hsess

Exp RMS

Hsess

(resum
ption)

Figure 1: The full (EC)DHE handshake protocol in TLS 1.3 draft-10 (left) and its key schedule (right).
XXX: Y denotes TLS message XXX containing Y . {XXX} resp. [XXX] indicate a message XXX encrypted using AEAD encryption
with handshake traffic key tkhs resp. application traffic key tkapp. + XXX indicates a message that is sent as an extension
within the previous message. XXX∗ indicates a message that is only sent in unilateral or mutual authentication modes. XXXM

indicates a message that is only sent when later resumption shall be allowed.
In the key schedule, Ext and Exp are short for HKDF.Extract resp. HKDF.Expand. Dotted-line input to Ext is the (extractor)
salt, dotted-line input to Exp is the (context) information input; label inputs (which are distinct for each Exp application) are
omitted.

Both parties can now compute the ephemeral secret ES as the Diffie–Hellman shared value gxy. Key
derivation is then done using HKDF in the extract-then-expand paradigm [Kra10], computing first an
extracted value xES from which the handshake traffic key tkhs is expanded; both are unauthenticated at
this point.

We adopt here the standard notation for the two HKDF functions: HKDF.Extract(XTS,SKM) on input
an (non-secret and potentially fixed) extractor salt XTS and some source key material SKM outputs a
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pseudorandom key PRK. HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK (from the
Extract step) and some (potentially empty) context information CTXinfo outputs key material KM.3

All subsequent messages are encrypted using tkhs:
• EncryptedExtensions (EE) contains more extensions.
• ServerConfiguration (SC) contains a server configuration (cryptographically an additional semi-

static Diffie–Hellman share) which allows a client to later run an abbreviated (0-RTT) handshake.
• ServerCertificate (SCRT)/ClientCertificate (CCRT) contain the public-key certificate of the

respective party.
• CertificateRequest (CR) indicates the server requests that the client authenticates using a certificate.
• ServerCertificateVerify (SCV)/ClientCertificateVerify (CCV) contain a digital signature over

the handshake hash (the hash of all handshake messages sent and received at that point in the protocol
run).
• ClientFinished (CF)/ServerFinished (SF) contain a message authentication code (an HMAC value)
computed over the session hash keyed with the finished secret FS. The finished secret in turn is
derived from the extracted version xSS of the static secret SS. While the static secret takes different
values in other handshake variants, it equals the ephemeral secret (SS = ES) in the full (EC)DHE
handshake.

Both parties can now compute the master secret MS (as an extraction of expanded ephemeral and static
secrets). From the master secret, the application traffic key tkapp as well as the resumption master
secret RMS for use in future session resumptions and the exporter master secret EMS allowing the potential
derivation of further keying material are computed through HKDF expansion steps which include the final
handshake hash value, which is called the session hash Hsess.

Finally, an additional message can optionally be sent encrypted using tkapp:
• NewSessionTicket (NST) contains an identifier (a “ticket”) for the derived resumption master secret

that the client can use the purpose of later session resumption.

3 Comments on the TLS 1.3 draft-10
Several of the comments from our previous work on the design choices in draft-dh apply to draft-10 as
well. draft-10 continues to achieve its main cryptographic goals, including (session-)key independence and
privacy of (the key used for) encrypted handshake messages. We previously noted that proofs were made
easier by the choice to sign the session hash (the hash of the full transcript), and this continues to apply.

Our main new comment regarding draft-10 focuses on the new NewSessionTicket message and how
it affects key separation and, hence, composability.

3.1 Issues with the NewSessionTicket Message

As seen in Figure 1, the full draft-10 handshake includes a NewSessionTicket message that is encrypted
under the application traffic key tkapp and which the server may optionally send at the end of the handshake
to issue a pre-shared key identifier which can be used with the resumption master secret for session
resumption in a subsequent pre-shared key handshake.

As mentioned in the introduction, the usage of tkapp to encrypt the NewSessionTicket (NST) message
within the handshake is similar to how TLS 1.2 and prior versions use the established session key to
encrypt the Finished messages which precludes classical Bellare–Rogaway key secrecy. This brings back a
conceptual problem similar to the one that analyses of previous TLS versions faced: using the established

3For simplicity, we omit the original third parameter L in Expand determining its output length and always assume that
L = λ for our security parameter λ.
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key already in the handshake negatively affects key secrecy in the sense of Bellare and Rogaway, or at least
composability. An adversary who is given either the real session key or a random key can test whether they
are consistent with the Finished messages (in the case of TLS 1.2) or the encryption of NST (in the case of
draft-10). While at first glance one might attempt to treat this as a special first message in the record
protocol, this breaks a strict separation between the handshake and record protocols. Moreover, NST is
conceptually “part of” the handshake as it establishes the identifier for the resumption master secret.

Our multi-stage key exchange model captures this problem, albeit in a slightly different style. In our
model, when a session’s key is established, the adversary is prompted to decide whether this session should
be tested or not. If it is to be a test session, the session key is set to be either real or random, either choice
made with equal probability. This value is given to the adversary, and then the protocol continues, using
this specific value through the rest of the protocol. In this sense, the subsequent use of the session key (as
in the case of the NewSessionTicket message here) will remain consistent with the value the adversary
receives in our multi-stage scenario. Hence, we do not immediately run into the problem faced above.
However, if the test value is actually used within the protocol, the corresponding session key becomes no
longer composable, preventing an independent analysis of its usage in a subsequent symmetric-key protocol,
e.g., the encryption of application data.

Admittedly, as for the key usage in the finished message of TLS 1.2, there is no immediate attack
vector arising from this approach. It rather constitutes a violation of the modularity of handshake and
record protocols in the protocol design (which are supposed to be linked solely via the keys output by
the handshake). This violation consequently translates to a break of modularity (i.e., composition) in our
model. While it is possible to achieve multi-stage key secrecy (BR-style) by considering NewSessionTicket
as message in the third stage establishing RMS (i.e., being sent after stage-2 key tkapp was established),
there is no hope to achieve generically secure composition due to the composed protocol (the record
layer employing tkapp) now already being used within the handshake. This in particular impedes a clean,
independent analysis of the record protocol, as such a result cannot be immediately combined with our full
handshake security result for the application traffic key tkapp. Instead, the draft-10 design for this case
would have to be analyzed using a monolithic approach such as ACCE [JKSS12].

3.2 Alternatives for the NewSessionTicket Message

We consider several options to salvage the compositional guarantees for the application traffic key tkapp (and
preserving those of the resumption and exporter master secret RMS and EMS). We refrain from advocating
a particular option, as balancing the engineering constraints may be best left to the TLS working group.

1. Send NewSessionTicket earlier in the handshake (i.e., within the server’s first flight),
encrypted under tkhs.
This approach precludes certain usage scenarios for the NewSessionTicket message. In particular,
the message cannot depend on the final (server’s) session state anymore, which rules out tickets that
encode this state or the resumption master secret RMS as a self-encrypted and self-authenticated
value [Res15b, Section 6.3.11], [SZET08, Section 4].

2. Send NewSessionTicket as the final message, but encrypt it under tkhs.
Not being contained in the session hashes signed by the server, nor confirmed in its Finished message,
the NewSessionTicket message in this case would not be explicitly authenticated (as tkhs is an
unauthenticated key). However, as the CertificateVerify signatures comprise tkhs and serve as a
retrospective authentication, NewSessionTicket can be considered implicitly authenticated at the
end of the handshake. Moreover, NewSessionTicket is only a pointer to the established resumption
master secret RMS, which itself carries the full authentication of the handshake.

3. Send NewSessionTicket as the final message, but encrypt it under a separately derived
key tknst.
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To achieve the same authentication properties as with sending the NewSessionTicket message
encrypted under tkapp, the cryptographically cleanest approach would be to derive an independent
traffic key tknst for that purpose as tknst ← HKDF.Expand(MS, label′‖Hsess), similar to the derivation
of tkapp, RMS, and EMS, but using a unique label label′ = “NewSessionTicket key expansion”.
Note that, while NewSessionTicket is now encrypted under the different, intermediate key tknst, it
does not constitute an additional flight of the server for which the client would have to wait. Indeed,
after sending its Finished message, the client can immediately switch to tkapp for sending data, i.e.,
activate the client_write_key and client_write_IV components of tkapp (cf. [Res15b, Section 7.2]).
For receiving data, the client first switches to (server_write_key and server_write_IV of) tknst4 in
order to process a potential NewSessionTicket message. After processing this message (or if no
NewSessionTicket is sent), the client switches to tkapp also for receiving data. We remark that this
kind of asynchronous activation of write and read keys is not a new concept, but is already in use in
previous TLS versions for the (unilateral) key switches that follow a ChangeCipherSpec message.

We note that the follow-up TLS 1.3 draft-ietf-tls-tls13-11 specifies additional “post-handshake
messages”, for example for post-handshake (client) authentication. Our third comment above could be
extended to envision a separate, cryptographically independent “control channel” for sending these and
potentially other post-handshake, non-application data messages.

4 Security of the TLS 1.3 draft-10 Full Handshake
Security of the TLS 1.3 draft-10 full (EC)DHE handshake [Res15b] follows closely along the same lines of
argument as for the analysis of the draft-dh handshake candidate in our earlier work [DFGS15a, Section 5].
The underlying security model is basically a multi-stage extension [FG14] of the classical Bellare-Rogaway
model [BR94]. It captures the classical key secrecy idea of Bellare and Rogaway in the notion of Multi-Stage
security, essentially requiring that derived session keys must be indistinguishable from random strings for
an adversary as long as it did not reveal them via, e.g., corrupting one of the parties deriving the key. A
second, technical notion, denoted Match security, ensures that the way partnering (two parties’ sessions
engaging in “the same” key exchange run) is defined via session identifiers for a protocol is sound. The
extension to multiple stages includes the distinction between key-dependent and key-independent protocols
where the latter refers to protocols in which revealing session keys of some stage does not affect the security
of subsequent keys. Another change is the introduction of contributive identifiers which capture executions
in which a party has provided all its contribution to the shared key but may not have yet accepted itself,
such as the server in the TLS 1.3 full (EC)DHE handshake waiting for the client’s final confirmation.
Other significant differences are that the protocol may be run in different authentication modes for the
various stages, and that forward security may now hold from a certain stage on. We refer to the previous
analysis [DFGS15a, DFGS15b] for the comprehensive formal definition of the multi-stage key exchange
model.

The necessary changes in the proof for Match security when going from draft-ietf-tls-tls13-05
and draft-ietf-tls-tls13-dh-based to draft-10, as well as in the first two of three proof cases for
Multi-Stage security, indeed only reflect some minor changes to the messages being exchanged (in particular,
signaling of server configurations for 0-RTT handshakes and the server’s signature over the transcript are
now split into the two messages ServerConfiguration and ServerCertificateVerify). For the third,
main proof case of Multi-Stage security, our adapted version involves two still minor, but more notable
changes: First, the full (EC)DHE handshake in draft-10 does not include a semi-static Diffie–Hellman
share in the static secret SS anymore, obviating the need for an EUF-CMA signature forgery reduction in this
proof case. Second, the extra intermediate expanded ephemeral and static secrets mES and mSS derived

4Note that client_write_key and client_write_IV of tknst are never used.
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(from xES resp. xSS) introduce another reduction step to the PRF security of HKDF.Extract. Furthermore,
this version corrects the previously incorrect proof by employing the PRF-ODH assumption (where before
only the DDH assumption (and PRF security) was used). We provide the technical specification of our
model in Appendix A.1 and the adapted, full security analysis in Appendix A.2 for Match security and A.3
for Multi-Stage security.

Theorem 4.1 (Match security of draft-10-full). The draft-10 full handshake is Match-secure: for any
efficient adversary A we have

AdvMatch
draft-10-full,A ≤ n2

s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the bit-length of
the nonces.

Theorem 4.2 (Multi-Stage security of draft-10-full). The draft-10 full handshake is Multi-Stage-
secure in a key-independent and stage-1-forward-secret manner with concurrent authentication prop-
erties AUTH = {(unauth, unauth, unauth, unauth), (unauth, unilateral, unilateral, unilateral), (unauth,mutual,
mutual,mutual)} (i.e., no authentication, stage-2 unilateral authentication, and stage-2 mutual authen-
tication). Formally, for any efficient adversary A against the Multi-Stage security there exist efficient
algorithms B1, . . . , B9 such that

AdvMulti-Stage,D
draft-10-full,A ≤ 4ns·

(
AdvCOLL

H,B1 + nu · AdvEUF-CMA
Sig,B2 + AdvCOLL

H,B3 + nu · AdvEUF-CMA
Sig,B4

+ AdvCOLL
H,B5 + ns ·

(
AdvPRF-ODH

HKDF.Extract,G,B6 + AdvPRF-sec
HKDF.Expand,B7

+ AdvPRF-sec
HKDF.Extract,B8 + AdvPRF-sec

HKDF.Expand,B9

))
,

where ns is the maximum number of sessions and nu is the maximum number of users.

5 Security of the TLS 1.3 draft-10 Pre-shared Key Handshakes
The TLS 1.3 pre-shared key (PSK) handshake modes are a relatively new addition, having merged session
resumption functionalities with earlier pre-shared key handshake variants. There currently exist two PSK
handshake variants: one solely based on pre-shared keys (PSK) and one that combines pre-shared keys
with an (EC)DHE key exchange (PSK-(EC)DHE); both are shown in Figure 2. Like in the draft-10
full handshake, the PSK handshake modes are divided into a negotiation and authentication phase. The
negotiation phase now offers negotiation of a pre-shared key identifier where the client offers a set of
pre-shared key identities previously established with the server (either in an out-of-band manner or as the
resumption master secret derived in an earlier full handshake). In contrast to previously analyzed draft-05
session resumption, the PSK-(EC)DHE handshake variant moreover offers the ability for a client and server
sharing a pre-shared key to also negotiate forward-secret keys by including ephemeral (EC)DHE shares as in
the full handshake. Key derivation is done as in the full handshake (cf. Figure 1), where, for PSK-(EC)DHE,
the static secret SS is the pre-shared secret and the ephemeral secret ES is computed via the unauthenticated
key shares. The PSK handshake does not have ClientKeyShare/ServerKeyShare messages, so it sets
both ES and SS to the pre-shared secret. Unlike the draft-10 full handshake, authentication is not done
through signatures. Instead, both parties implicitly authenticate each other via the key derivation over
the pre-shared secret, using the MAC tag contained in the ClientFinished/ServerFinished messages
(similarly to draft-05 session resumption).
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Client Server

ClientHello: rc←$ {0, 1}256

[+ ClientKeyShare: X ← gx]†
+ ClientPreSharedKey: psk_id1, . . .

ServerHello: rs←$ {0, 1}256

[+ ServerKeyShare: Y ← gy]†
+ ServerPreSharedKey: psk_id

H1 ← H(CH‖ . . . ‖SPSK)
[ES← Y x]† [ES← Xy]†

[ES← PSK[psk_id]]�
xES← HKDF.Extract(0,ES)

tkhs ← HKDF.Expand(xES, label1‖H1) stage 1

{EncryptedExtensions}
xSS← HKDF.Extract(0,PSK[psk_id])

H3 ← H(CH‖ · · · ‖EE)
FS← HKDF.Expand(xSS, label2‖H3)

{ServerFinished}:
SF← HMAC(FS, label3‖H3)

check SF = HMAC(FS, label3‖H3)
H5 ← H(CH‖ . . . ‖SF)

{ClientFinished}:
CF← HMAC(FS, label4‖H5)

check CF = HMAC(FS, label4‖H5)
mES← HKDF.Expand(xES, label5‖H3)
mSS← HKDF.Expand(xSS, label6‖H3)

MS← HKDF.Extract(mSS,mES)
tkapp ← HKDF.Expand(MS, label7‖H5) stage 2
EMS← HKDF.Expand(MS, label9‖H5) stage 3

record layer (application data), using AEAD with key tkapp

Figure 2: The PSK and PSK-(EC)DHE handshake protocol in TLS 1.3 draft-ietf-tls-tls13-10. See caption of Figure 1
for notation. Messages/computations only in PSK-(EC)DHE are marked with [. . . ]†. Messages/computations only in PSK
(without (EC)DHE) are marked with [. . . ]�. The key schedule is identical to that of Figure 1, except that no RMS is derived.

We analyze the security of the PSK and PSK-(EC)DHE handshake modes using the Multi-Stage
Preshared-Secret Key Exchange model established in our earlier analysis [DFGS15a], which we reproduce
in Appendix B. Minor differences exist between the MS-PSKE model introduced in the previous work. The
new model includes forward secrecy notions and also differs slightly in how the challenger maintains the list
of pre-shared key identifiers and pre-shared secrets. The security of the draft-10 PSK and PSK-(EC)DHE
handshake modes share structural similarities with the security analysis of the draft-10 full handshake
above, as well as the original analysis of the draft-05 session resumption. There are changes in the proof
of Match security to account for the (EC)DHE shares being included in the session identifier, as well
as the ClientPreSharedKey and ServerPreSharedKey messages. The Multi-Stage security proof is also
modified to account for the (EC)DHE shares as well as a different key schedule. We provide the technical
specification of our model and the full security analysis in Appendix C.

5.1 Security of PSK-(EC)DHE

The changes between our previous analysis of session resumption and draft-10-PSK(EC)DHE in Match
security are small, limited to modifications necessary to reflect the additional (EC)DHE shares included in
the handshake. For Multi-Stage security, the proof however is markedly different, primarily to deal with
the addition of forward secrecy. The previous analysis did not have to be concerned with Corrupt, as the
tested session could not be targeted with such queries, and neither could any session sharing the same pss
value. The first case must now contend with the scenario where multiple sessions share pre-shared secrets
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which can be compromised post-acceptance and still expect key secrecy and authentication properties.
This introduces the need for extra care in the security analysis in order to replace the affected pre-shared
secret across multiple protocol participants in a consistent fashion, leading to an accordingly increased
number of proof steps. The other major changes in an additional reduction step to HKDF’s security as
a pseudorandom function in line with the changes to the key schedule. We provide the theorems and
probability statements below, and the adapted full proof of security in Appendix C.2 for Match security
and Appendix C.3 for Multi-Stage security.

Theorem 5.1 (Match security of draft-10-PSK(EC)DHE). The draft-10-PSK(EC)DHE handshake is Match-
secure: for any efficient adversary A we have

AdvMatch
draft-10-PSK(EC)DHE,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the bit-length of
the nonces.

Theorem 5.2 (Multi-Stage security of draft-10-PSK(EC)DHE). The draft-10-PSK(EC)DHE handshake is
Multi-Stage-secure in a key-independent and stage-1-forward-secret manner with stage-2 mutual authentica-
tion. Formally, for any efficient adversary A against the Multi-Stage security there exist efficient algorithms
B1, . . . , B9 such that

AdvMulti-Stage,D
draft-10-PSK(EC)DHE,A ≤ 3ns·

(
AdvCOLL

H,B1 + ns · np ·
(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3 + AdvEUF-CMA

HMAC,B4

)
+ AdvCOLL

H,B5 + ns ·
(
AdvPRF-ODH

HKDF.Extract,G,B6 + AdvPRF-sec
HKDF.Expand,B7

+ AdvPRF-sec
HKDF.Extract,B8 + AdvPRF-sec

HKDF.Expand,B9

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared secrets.

5.2 Security of PSK

The security of the PSK handshake follows closely from the security analysis of session resumption in our
previous work. The only noticeable change is an additional PRF step in the key schedule. Match security
follows nearly verbatim as for draft-10-PSK(EC)DHE. For Multi-Stage security, we reproduce the full proof
in Appendix C.4.

Theorem 5.3 (Match security of draft-10-PSK). The draft-10-PSK handshake is Match-secure: for any
efficient adversary A we have

AdvMatch
draft-10-PSK,A ≤ n2

s · 2−|nonce|,

where ns is the maximum number of sessions and |nonce| = 256 is the bit-length of the nonces.

Theorem 5.4 (Multi-Stage security of draft-10-PSK). The draft-10-PSK handshake is Multi-Stage-secure
in a key-independent and non-forward-secret manner with stage-1 mutual authentication. Formally, for any
efficient adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B5 such that

AdvMulti-Stage,D
draft-10-PSK,A ≤ 3ns ·

(
AdvCOLL

H,B1 + np ·
(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4 + AdvPRF-sec

HKDF.Expand,B5

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared secrets.
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full (EC)DHE handshake

tkhs record protocol

tkapp record protocol*

RMS resumption handshake (PSK)

resumption handshake (PSK-(EC)DHE)
tkhs record protocol

tkapp record protocol

EMS generic usage

EMS generic usage

Figure 3: Illustration of the composition result applications in our analysis of the TLS 1.3 draft-10 full and pre-shared key
handshakes. Derived keys are connected to the handshake by solid lines, their usage in protocols is indicated by an arrow.
Dashed boxes indicate an application of the composition result to the usage of a specific derived (final) key in the subsequent
symmetric-key record or resumption handshake protocol.
* Note that, due to the introduced NewSessionTicket message (cf. Section 3), the application traffic key tkapp is used within
in the full handshake, rendering it non-final and hence unamenable to our generic composition result.

6 Composition for the Full and PSK Handshakes
In our earlier TLS 1.3 analysis [DFGS15a] we were unable to provide compositional guarantees for the
resumption handshake due to its lack of forward secrecy. With our completed multi-stage preshared-secret
key exchange model (cf. Appendix B) we can now confirm that our generic composition result extends
to the pre-shared key setting for established keys that enjoy forward secrecy, in particular covering the
application traffic key and exporter master secret derived in the draft-10 PSK-(EC)DHE handshake mode.
The corresponding proof carries over without change to this setting. Figure 3 illustrates the compositional
guarantees we establish for the keys derived in the full and pre-shared key handshakes of draft-10.

The corresponding proof carries over without change to this setting, which is why we merely state the
augmented composition theorem.

Theorem 6.1 (Multi-stage composition). Let KE be a key-independent stage-j-forward-secret Multi-Stage-
secure multi-stage (classical or preshared-secret) key exchange protocol with concurrent authentication
properties AUTH and key distribution D that allows for efficient multi-stage session matching. Let Π
be a secure symmetric-key protocol w.r.t. some game GΠ with a key generation algorithm that outputs
keys with distribution D. Then the composition KEi; Π for final stages i ≥ j is secure w.r.t. the composed
security game GKEi;Π. Formally, for any efficient adversary A against GKEi;Π there exist efficient algorithms
B1,B2,B3 such that

AdvGKEi;Π
KEi;Π,A ≤ AdvMatch

KE,B1 + ns · AdvMulti-Stage,D
KE,B2

+ AdvGΠ
Π,B3

,

where ns is the maximum number of sessions in the key exchange game.

7 Conclusion
The current version, draft-ietf-tls-tls13-10, in principle shows the same cryptographic strength as
the previously analyzed versions, draft-05 and draft-dh. Remarkably and in contrast to previous TLS
versions, the analyses establish regular key-exchange security for the stand-alone handshake. Furthermore,
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our analysis provides compositional guarantees for the full (EC)DHE handshake protocol and the PSK-DHE
protocol. This means that any security proof of the record layer of TLS 1.3 can be straightforwardly merged
to conclude overall security of the combinations of these steps.

On the downside, the new NewSessionTicket message introduces similar complications as the Finished
message in TLS 1.2. Such a mixture of protocol message (i.e., messages protected through the application
key) and handshake message impedes a clean analysis, in particular an independent security analysis of the
record protocol using the full handshake’s application traffic key through our composition result. We have
discussed some alternatives to the current deployment of the NewSessionTicket message, mainly from
a cryptographic point of view, in Section 3.2. We hope that our results in this regard stimulate further
discussions about this issue.
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A Security Analysis of the TLS 1.3 draft-10 Full Handshake

A.1 Technical Specification for draft-10-full in the Multi-Stage Key Exchange Model

First, we define the session identifiers for the two stages deriving the handshake traffic key tkhs and the
application traffic key tkapp to be the unencrypted messages sent and received excluding the finished
messages:

sid1 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare) and
sid2 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare,

EncryptedExtensions, ServerConfiguration∗, ServerCertificate∗, CertificateRequest∗,

ServerCertificateVerify∗, ClientCertificate∗, ClientCertificateVerify∗).

Here, starred (∗) components are not present in all authentication modes.
We capture the further derived resumption master secret RMS and exporter master secret EMS in

stages 3 and 4 and define the session identifier to be sid3 = (sid2, “RMS”) and sid4 = (sid2, “EMS”) which
are uniquely determined by the second-stage identifier sid2.

We recap that defining session identifiers over the unencrypted messages is again necessary to obtain
key-independent Multi-Stage security. Otherwise, we would need to either resort to key dependence, or
guarantee that an adversary is not able to re-encrypt a sent message into a different ciphertext even if it
knows the handshake traffic key tkhs used (due to a Reveal query)—a property generally not to be expected
from a (potentially randomized) encryption scheme.

Concerning the contributive identifiers, we let the client (resp. server) on sending (resp. receiving)
the ClientHello and ClientKeyShare messages set cid1 = (CH, CKS) and subsequently, on receiving (resp.
sending) the ServerHello and ServerKeyShare messages, extend it to cid1 = (CH, CKS, SH, SKS). The other
contributive identifiers are set to cidi = sidi for stages i ∈ {2, 3, 4} by each party on sending its respective
Finished message.

As a technical remark, note that the full (EC)DHE handshake of draft-10 does not involve semi-static
keys (from ServerConfiguration messages). We hence do not have to treat temporary keys in the notation
of our model and can thus ignore NewTempKey queries in the following analysis.

A.2 Proof of draft-10-full Match Security

We need to show the six properties of Match security (cf. [DFGS15a, Definition 4.1]).
1. Sessions with the same session identifier for some stage hold the same session key.

For the first stage this follows as the session identifier contains the parties’ Diffie–Hellman contributions
gx and gy, which uniquely identify the Diffie–Hellman key, as well as all data entering the key derivation
step. Hence, equal session identifiers imply that both parties compute the same ephemeral secret
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and the same session key on the first stage. For the second, third, and fourth stage note that the
identifier sid2 (and hence also sid3 and sid4) contains the full sid1, implying that the parties have also
computed the same ephemeral secret. Since the key derivation for the stages 2–4 is only based on this
secret value (and the identical static secret SS = ES) and data from sid2, it follows that the session
keys must be equal, too.

2. Sessions with the same session identifier for some stage agree on the authenticity of the stage.
Observe that, for the first stage, the only admissible authenticity by design of TLS 1.3 is auth1 = unauth
on which, hence, all sessions will agree. For the other stages, the exchanged messages (except for
the finished messages) contained in the session identifier sid2 (and hence also sid3 and sid4) uniquely
determines the authenticity property for these stages. More precisely, according to the proto-
col specification, both sessions will agree on sid2 = (ClientHello, ClientKeyShare, ServerHello,
ServerKeyShare, EncryptedExtensions) if and only if both have auth2 = unauth. If sid2 additionally
contains ServerConfiguration∗ (optional), ServerCertificate, and ServerCertificateVerify,
they agree on auth2 = unilateral. If it moreover contains CertificateRequest, ClientCertificate,
and ClientCertificateVerify, the sessions agree on mutual authentication. Moreover, auth2 =
auth3 = auth4 always holds hence same identifiers also imply agreement on authenticity.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds since, for each stage, the contributive identifier value is final and equals the session identifier
once the session identifier is set.

4. Sessions are partnered with the intended partner.
First of all observe that this case only applies to unilaterally or mutually authenticated stages, hence
the stages 2–4 only. In TLS 1.3, the client obtains the server’s identity within the ServerCertificate
message and vice versa the server obtains the client’s identity (in case of mutual authentication) within
the ClientCertificate message. Moreover, honest clients and servers will not send a certificate
attesting an identity different from their own. Hence, as both messages are contained in the session
identifiers of stages 2–4 (in the respective authentication mode), agreement on sid2 (and hence the
same for sid3, sid4) implies agreement on the respective partner’s identity.

5. Session identifiers are distinct for different stages.
This holds trivially as sid2 contains strictly more messages than sid1 and sid3 as well as sid4 contain
unique labels.

6. At most two sessions have the same session identifier at any stage.
Observe that the group element for the Diffie–Hellman key, as well as a random nonce, of both
the initiator and the responder enter the session identifiers. Therefore, in order to have a threefold
collision among session identifiers of honest parties, the third session would need to pick the same
group element and nonce as one of the other two sessions. The probability that there exists such a
collision can hence be bounded from above by n2

s · 1/q · 2−|nonce| where ns is the maximum number of
sessions, q is the group order, and |nonce| = 256 the nonces’ bit-length.

A.3 Proof of draft-10-full Multi-Stage Security

First of all we consider the case that the adversary A makes a single Test query only. This reduces its
advantage, based on a hybrid argument (cf. [DFGS15b, Appendix A]), by a factor at most 1/4ns as there
are four stages in each of the ns sessions. We from now on can speak about the session label tested at
stage i, which we know in advance.

Our security analysis separately considers the three (disjoint) cases that
A. the adversary tests a client session without honest contributive partner in the first stage (i.e.,

label.role = initiator for the test session label and there exists no label′ 6= label with label.cid1 =
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label′.cid1),
B. the adversary tests a server session without honest contributive partner in the first stage (i.e.,

label.role = responder and there exists no label′ 6= label with label.cid1 = label′.cid1), and
C. the tested session has an honest contributive partner in stage 1 (i.e., there exists label′ with label.cid1 =

label′.cid1).
This allows us to split the adversary’s advantage along these three cases:

AdvMulti-Stage,D
draft-10-full,A ≤ 4ns·

(
Adv1-Multi-Stage,client without partner

draft-10-full,A

+ Adv1-Multi-Stage,server without partner
draft-10-full,A

+ Adv1-Multi-Stage,test with partner
draft-10-full,A

)
.

Case A. Test Client without Partner

We first consider the case that the tested session is a client (initiator) session without honest contributive
partner in the first stage. Since in the moment a client session can first be tested (i.e., on acceptance of
the first key) cid1 equals sid1, we know that label also has no session partner in stage 1 (i.e., there is no
other label′ with label.sid1 = label′.sid1). Having an honest partner in the second (or later) stage implies
having also one in the first stage (as all messages in sid1 are also contained in cid2 = sid2, cid3 = sid3,
and cid4 = sid4), hence the tested session must actually be without honest partner in all stages. Observe
that, by the model conditions and sid1 being set on the client side at the point where K1 is accepted, the
adversary cannot win in this case if the tested key is unauthenticated, hence we can assume that the key is
responder-authenticated (i.e., label.authi ∈ {unilateral,mutual}). This allows us to focus on Test queries in
the stages 2–4 according to the authentication properties AUTH provided.

We proceed in the following sequence of games. Starting from the original Multi-Stage game, we bound
the advantage difference of adversary A between any two games by complexity-theoretic assumptions until
we reach a game where the advantage of A is at most 0.

Game A.0. This initial game equals the Multi-Stage game with a single Test query where the adversary
is, by our assumption, restricted to test a client (initiator) session without honest contributive partner in
the first stage. Therefore,

AdvGA.0
draft-10-full,A = Adv1-Multi-Stage,client without partner

draft-10-full,A .

Game A.1. In this game, we let the challenger abort the game if any two honest sessions compute the
same hash value for different inputs in any evaluation of the hash function H.
Let abortH denote the event that the challenger aborts in this case. We can bound the probability Pr[abortH]
by the advantage AdvCOLL

H,B1 of an adversary B1 against the collision resistance of the hash function H. To
this extent, B1 acts as the challenger in Game A.1, using its description of H to compute hash values, and
running adversary A as a subroutine. If the event abortH occurs, B1 outputs the two distinct input values
to H resulting in the same hash value as a collision.

Note that B1 perfectly emulates the attack of A according to GA.0 up to the point till a hash collision
occurs. As B1 wins if abortH is triggered, we have that Pr[abortH] ≤ AdvCOLL

H,B1 and thus

AdvGA.0
draft-10-full,A ≤ AdvGA.1

draft-10-full,A + AdvCOLL
H,B1 .
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Game A.2. In this game, we let the challenger abort if the tested client session receives, within the
ServerCertificateVerify message, a valid signature under the public key pkU of some user U ∈ U such
that the hash value has not been signed by any of the honest sessions.
Let abortSig denote the event that the challenger aborts in this case. We bound the probability Pr[abortSig]
of its occurrence by the advantage of an adversary B2 against the EUF-CMA security of the signature
scheme Sig, denoted AdvEUF-CMA

Sig,B2 . In the reduction, B2 first guesses a user U ∈ U which it associates with
the challenge public key pk∗ in the EUF-CMA game, then generates all long-term key pairs for the other
users U ′ ∈ U \ {U} and runs the Multi-Stage game GA.1 for A, including potentially an abort due to hash
collisions. For any signature to generate for user U in honest sessions for a hash value, B2 calls its signing
oracle about the hash value. When abortSig is triggered, B2 outputs the signature the tested client received
together with the hash value as a forgery.5

Since every honest session has a different session identifier than the tested client in the first stage (as
the latter has no partnered session in this stage), no honest party will seek to sign the transcript value,
expected by the tested client. Moreover, by the modification in Game A.1, there is no collision between any
two honest evaluations of the hash function, so in particular there is none for the hash value computed by
the tested client, implying that the hash value in question has not been signed by an honest party before.
If B2 correctly guessed the user under whose public key the obtained signature verifies, that signature
output by B2 is a valid forgery in the sense that its message was never queried to the EUF-CMA oracle
before. Hence, B2 wins if abortSig occurs and it has guessed the correct user amongst the set of (at most)
nu users and we have that Pr[abortSig] ≤ nu · AdvEUF-CMA

Sig,B2 and thus

AdvGA.1
draft-10-full,A ≤ AdvGA.2

draft-10-full,A + nu · AdvEUF-CMA
Sig,B2 .

Finally, if Game A.2 does not abort, we are assured that an honest session outputs the signature
obtained by the tested client session within the ServerCertificateVerify message. The signature is
computed over H(CH, CKS, SH, SKS, EE, SC∗, SCRT, CR∗), i.e., in particular contains all messages in sid1. Hence,
the tested client and the (distinct) honest session outputting the signature agree on sid1, so also on cid1,
and are hence (contributively) partnered in the first stage.

The adversary A therefore cannot test a client (initiator) session without honest first-stage partner in
Game A.2, resulting in the test bit btest being unknown to A and hence

AdvGA.2
draft-10-full,A ≤ 0.

Case B. Test Server without Partner

We next consider the case that a server (responder) session is tested without honest contributive partner in
stage 1. Again, this also implies that there is no honest partner in any of the other stages and, moreover,
that also no other session shares the contributive identifiers for stages 2–4 as they include the full first-stage
session identifier and thus also cid1. By definition, the adversary in this case cannot win if the tested key is
not mutually authenticated, hence we can assume it is, i.e., label.authi = mutual.

We proceed in the following sequence of games, similar to the first case, but now geared towards the
(authenticating) client’s signature over the protocol handshake.

Game B.0. This initial game equals the Multi-Stage game with a single Test query where the adversary
this time is restricted to test a responder session without honest contributive partner in the first stage.
Clearly again,

AdvGB.0
draft-10-full,A ≤ Adv1-Multi-Stage,server without partner

draft-10-full,A .

5Note that, although the ServerCertificateVerify message containing the signature is sent encrypted, the honest tested
client is simulated by B2 and hence B2 can in particular decrypt this message.
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Game B.1. As in the first case, this game aborts if any two honest sessions compute the same hash value
for different inputs in any evaluation of H. Again, we can bound the probability Pr[abortH] that this event
occurs by the advantage of an adversary B3 against the hash function’s collision resistance, constructed as
in the first case, and obtain

AdvGB.0
draft-10-full,A = AdvGB.1

draft-10-full,A + AdvCOLL
H,B3 .

Game B.2. This game, similar to first case, behaves as the previous one but aborts if the tested server
session receives (this time within the ClientCertificateVerify message) a valid signature under some
public key pkU without an honest session outputting this signature. Analogously, we can bound the
probability of this event, Pr[abortSig], by the EUF-CMA security of the signature scheme. The reduction B4
again encodes its challenge public key as a random user’s key (and generates all other key pairs itself) and,
in case of the abortSig event occurs, outputs that very signature which the tested server session obtained in
the ClientCertificateVerify message as its forgery.
As the client’s signature contains all transcript messages up to ClientCertificate, it particularly fixes
the first-stage session identifier sid1, meaning that there cannot be a client session signing exactly the
transcript value the tested server session is expecting since, otherwise, this would imply (contributive)
partnering in stage 1. Furthermore, by Game B.1, no session will sign a value colliding under H with the
tested server’s transcript. Hence, if B4 correctly guesses the received signature’s public key, it outputs a
valid forgery and wins if abortSig is triggered and thus

AdvGB.1
draft-10-full,A ≤ AdvGB.2

draft-10-full,A + nu · AdvEUF-CMA
Sig,B4 .

Finally, Game B.2 ensures that an honest client session output the ClientCertificateVerify signature
received by the tested server session which, in particular, makes these two sessions agree on sid1, thus also
on cid1, and hence contributively partnered in the first stage. The adversary A therefore cannot test a
server (initiator) session without honest contributive first-stage partner in Game B.2 anymore, which allows
us to conclude that

AdvGB.2
draft-10-full,A ≤ 0.

Case C. Test with Partner

In the third case, the tested session (client or server) has an honest contributive partner in the first stage,
i.e., we know there exists another label′ such that label.cid1 = label′.cid1. This allows Test queries to be
potentially issued in any of the four stages.

Game C.0. We start with an initial game equal to the Multi-Stage game with a single Test query, but
restricting the adversary to only test a session having an honest contributive partner in the first stage in
order to have

AdvGC.0
draft-10-full,A = Adv1-Multi-Stage,test with partner

draft-10-full,A .

Game C.1. Our first modification is to let the challenger abort the game if any two honest sessions
compute the same hash value for different inputs in any evaluation of the hash function H.
We can bound the probability of the game to be aborted by the advantage AdvCOLL

H,B5 of an adversary B5
against the collision resistance of the hash function H. Here, B5 simply acts as the challenger in Game C.1
and outputs the two distinct input values to H resulting in the same hash value as a collision. It hence
holds that

AdvGC.0
draft-10-full,A = AdvGC.1

draft-10-full,A + AdvCOLL
H,B5 .
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Game C.2. Next, we guess a session label′ 6= label (among the at most ns sessions in the game) and
abort the game in case this session is not an honest contributive partner (in stage 1) of the tested session,
i.e., we abort if label.cid1 6= label′.cid1. Note that we can assume that A always issues a Test query, as this
cannot decrease the adversary’s advantage. The guessing strategy then reduces the adversary’s advantage
by a factor of at most 1/ns.

AdvGC.1
draft-10-full,A ≤ ns · AdvGC.2

draft-10-full,A.

From now on, we can speak of the session label′ (contributively) partnered with the tested session label in
stage 1 and know label′ in advance.

Game C.3. At this point, having the (honest) contributions to the tested session fixed, we can encode a
Diffie–Hellman challenge in the shares gx and gy at the tested session. If a client session is tested, we know
that the partnered session label′ guessed in Game C.2 holds the same shares. However, if a server session is
tested, the client session label′ may obtain a modified (and potentially adversarially-known) value gy′ in the
ServerHello message. In order to be able to compute the ephemeral secret ES of session label′ (and correctly
answer to a Reveal query on derived keys) without knowing exponents x or y′, we employ the PRF-ODH
assumption [JKSS12] here (see Appendix D for its definition).6 More specifically, we assume HKDF.Extract
satisfies the PRF-ODH assumption when considered as PRF deriving xES and xSS using ES = SS as key
and salt 0 as label.
In Game C.3, we then replace the extracted ephemeral and static secrets xES and xSS (which are equal
as ES = SS) by a uniform and independent random string x̃ES = x̃SS←$ {0, 1}λ in the tested session and,
if derived there, in the partnered session. We bound the introduced advantage difference for A by the
advantage of an algorithm B6 against the PRF-ODH security of HKDF.Extract (using ES = SS as source key
material and 0 as salt) as follows. First, B6 outputs 0 as the PRF challenge label. It obtains Diffie–Hellman
shares gx and gy which it encodes in the ClientKeyShare resp. ServerKeyShare message of the tested and
contributively partnered session label and label′. It further obtains a PRF challenge value which it uses as
the extracted ephemeral and static secret xES = xSS in session label and, if using the same Diffie–Hellman
shares, session label′. In case label′ is a client session and obtains within ServerKeyShare a value gy′ 6= gy,
B6 uses its PRF-ODH query to compute xES = xSS← HKDF.Extract(0, gxy′).

The simulation B6 provides equals Game C.2 in case the PRF challenge value equals HKDF.Extract(0, gxy)
and Game C.3 if the challenge is a uniformly random value. Thus,

AdvGC.2
draft-10-full,A ≤ AdvGC.3

draft-10-full,A + AdvPRF-ODH
HKDF.Extract,G,B6 .

Game C.4. Next, we replace the handshake traffic key tkhs, the expanded ephemeral and static se-
crets mES and mSS, and the finished secret FS derived in both the tested and its partnered session
by independent uniformly random values t̃khs, m̃ES, m̃SS, F̃S←$ {0, 1}λ. Recall that in contrast to the
extracted secrets xES and xSS that are derived using the same salt, the expanded secrets mES and mSS
are computed using distinct labels.
We can bound the difference in A’s advantage introduced through this step by the security of the
HKDF.Expand function which we model as a pseudorandom function keyed with uniformly random bit
strings from {0, 1}λ. The reduction B7 uses its PRF oracle for the evaluations of HKDF.Expand under the

6In an earlier version of this paper, we claimed this proof step can be reduced to the DDH assumption and PRF security
of HKDF.Extract. An adversary can however, for a tested server session, make the contributively partnered client session
derive ES with a different server-Diffie–Hellman share gy′

of its choice and challenge the simulation by revealing the key tkhs

derived from this value. We are not aware of a way to simulate such Reveal query without the help of an oracle-Diffie–Hellman
query and hence employ the PRF-ODH assumption here.
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key x̃ES = x̃SS in the tested and its partnered session. Observe that, in case the oracle computes the
PRF function, this equals Game C.3, whereas, if it computes a random function, this equals Game C.4.
The simulation is sound because the extracted ephemeral and static secret x̃ES = x̃SS, by the change in
Game C.3, is a random bit string chosen independently of all other values in the game.

The advantage of B7 in the PRF security game therefore bounds the advantage difference such that

AdvGC.3
draft-10-full,A ≤ AdvGC.4

draft-10-full,A + AdvPRF-sec
HKDF.Expand,B7 .

Game C.5. As the second to last step, we replace the master secret MS by a uniformly random value M̃S.
This again can be bounded by the advantage against the PRF security (with uniformly random keys)
of HKDF.Extract as MS is derived from key m̃ES and salt m̃SS, now independent uniformly random bit
strings. Therefore,

AdvGC.4
draft-10-full,A ≤ AdvGC.5

draft-10-full,A + AdvPRF-sec
HKDF.Extract,B8 .

Game C.6. Finally, we replace all HKDF.Expand evaluations using the (replaced) master secret M̃S as
key in the tested and its partnered session by a (lazy-sampled) random function. This change affects the
derivation of the handshake traffic key tkapp, the resumption master secret RMS, and the exporter master
secret EMS which are hereby replaced with independent random values t̃kapp, R̃MS, ẼMS←$ {0, 1}λ in in
both sessions.
As in the previous steps, we can bound the difference in A’s advantage introduced through this step by the
PRF security of HKDF.Expand, again defined for keys being uniformly random bit strings from {0, 1}λ. To
this extent, the reduction B9 as above uses its PRF oracle for all evaluations of HKDF.Expand under the
key M̃S in the tested and its partnered session. Depending on the oracles behavior, this perfectly simulates
either Game C.5 or Game C.6, as M̃S is a uniformly random and independent bit string and different labels
are used in the derivation of tkapp, RMS, and EMS.

We can hence can infer that

AdvGC.5
draft-10-full,A ≤ AdvGC.6

draft-10-full,A + AdvPRF-sec
HKDF.Expand,B9 .

In Game C.6, the session keys t̃khs and t̃kapp as well as the resumption and exporter master secrets R̃MS
and ẼMS are now chosen independently and uniformly at random. As the response to its Test query is
hence independent of the test bit btest, the adversary A cannot distinguish whether it is given the real key
or (another) independently chosen random value and thus

AdvGC.6
draft-10-full,A ≤ 0.

Combining the various bounds implied by the above sequence of game transitions yields the stated
security bound.

B Multi-Stage Preshared-Secret Key Exchange Model
We modify the multi-stage preshared-secret key exchange (MS-PSKE) model from our previous work to
also cover the forward secrecy aspects of the PSK / PSK-(EC)DHE TLS 1.3 draft-10 handshake variants.
Given that the first presentation of the MS-PSKE model was itself a high-level description of the changes
between MSKE and MS-PSKE, we now give a full reproduction of the model below:
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B.1 Preliminaries

We denote by U the set of identities used to model the participants in the system, identified by some U ∈ U .
Sessions of a protocol are identified as before using a label label ∈ LABELS = U × U × N, where (U, V, k)
indicates the k-th local session of identity U (the session owner) with V as the intended communication
partner. Each session is also associated with a key index of the preshared secret pss used in the protocol
run. Each pss is uniquely identified via a public preshared secret identifier psid. The challenger generates
pss values when prompted by the adversary, maintaining two lists of (nu) · (nu − 1) vectors of: preshared
secrets between distinct protocol participants, denoted ~pssU,V , and preshared secret identifiers of the
preshared secrets between distinct protocol participants, denoted ~psidU,V . Note that the kth entry in ~pssU,V
corresponds to the kth secret shared between parties U and V , and the kth entry in ~psidU,V corresponds to
its preshared secret identifier. We follow MSKE in considering unauthenticated, unilateral authenticated
and mutually authenticated (potentially from certain stages on) sessions. Our secret compromise paradigm
also follows MSKE in allowing leakage of long-term preshared secrets, and session keys, while disallowing
leakage of ephemeral secrets and session state.

For each session, a tuple with the following information is maintained as an entry in the session list
ListS.
• label ∈ LABELS: the (administrative) session label
• U ∈ U : the session owner
• V ∈ (U ∪ {∗}): the intended communication partner, allowing the identity of the communication
partner to be set once during the protocol run
• role ∈ {initiator, responder}: the session owner’s role in this session
• auth ∈ AUTH ⊆ {unauth, unilateral,mutual}M: the aspired authentication type of each stage from the

set of supported properties AUTH
• k ∈ N: the index of the preshared secret used in a protocol run with the communication partner
• pss ∈ ({0, 1}∗ ∪ {⊥}): the preshared secret to be used in the session
• psid ∈ ({0, 1}∗ ∪ {⊥}): the preshared secret identifier of the preshared secret to be used in the session
• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0]
• stage ∈ {0, . . . ,M}: the current stage [0], where stage is incremented to i when stexec reaches acceptedi

resp. rejectedi
• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i > 0
• cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi [⊥] indicates the contributive identifier in stage i > 0
• K ∈ ({0, 1}∗ ∪ {⊥})M: Ki [⊥] indicates the established session key in stage i > 0
• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in stage i > 0
• tested ∈ {true, false}M: test indicator testedi [false], where true means that Ki has been tested

By convention, if we add a partly specified tuple (label, U, V, role, auth, k, pss, psid) to ListS, then the other
tuple entries are set to their default value. As labels are unique, we write as a shorthand, e.g., label.sid for
the element sid in the tuple with label label in ListS, and analogously for other entries.

B.2 Adversary Model

We restate the differences between MS-PSKE and MSKE. Note that the Send, Test and Reveal queries are
virtually verbatim. The adversary can interact with the protocol via the following queries:

• NewSecret(U, V, k, psid): The challenger first checks that ~pssU,V does not already have an entry at
k, returning ⊥ if so. The challenger also checks that psid does not already exist in the experiment
as a psid for any pss, returning ⊥ to the adversary if so. This ensures global uniqueness of the psid
value. Creates a new preshared secret sampled uniformly at random and independently of each other
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from preshared secret space and stores it as the kth entry of ~pssU,V and ~pssV,U . Also stores the
adversary-provided psid value as the kth entry of ~psidU,V and ~psidV,U .

• NewSession(U, V, k, role, auth): Creates a new session for participant identity U with role role and
aiming at authentication type auth. If the challenger has not yet generated a preshared secret between
U and V with key index k, return ⊥. Otherwise the challenger generates a unique new label label and
adds the entry (label, U, V, k, role, auth) to ListS. The challenger sets the per-session variable label.psid
to the kth entry of ~psidU,V , and the per-session variable label.pss to the kth entry of ~pssU,V .

• Corrupt(label): Provides the session preshared secret label.pss to the adversary. No other queries are
allowed to sessions with labels label′ such that label′.psid = label.psid. In the non-forward secret case,
for each session with label′ such that label′.psid = label.psid, set label′.stkey,i (for all i) to revealed.
All keys output by sessions with the same preshared secret are considered disclosed. In the case of
stage-j forward secrecy, for each session with label′ such that label′.psid = label.psid, set label′.stkey,i to
revealed only if i < j or i > stage. This captures the notion that previous stage keys that are forward
secret are not considered disclosed. Reveal queries issued to sessions as a result of key-dependent
security are processed as in the Corrupt query definition of the MSKE model.

• Send(label,m): Sends a message m to the session with label label. If there is no tuple (label, U, V, role,
auth, k, psid, pss, stexec, stage, sid, cid,K, stkey, tested) in ListS, return ⊥. Otherwise, run the protocol
on behalf of U on message m and return the response and the updated state of execution stexec. As
before, if role = initiator and m = init, the protocol is initiated. If during protocol execution, the
state of execution changes to acceptedi for some i, the protocol execution is immediately suspended
and acceptedi is returned as result to the adversary, and can later trigger the resumption of the
protocol execution by issuing a special Send(label, continue) query. This is to allow the adversary
to test a session key before use in later stages prevents it. If the state of execution changes to
stexec = acceptedi for some i and there is a tuple (label′, V, U, role′, auth′, k, psid′, pss′, st′exec, stage′,
sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i and st′key,i = revealed, then, for key-independence,
stkey,i is set to revealed as well, whereas for key-dependent security, all stkey,i′ for i′ ≥ i are set to
revealed. If the state of execution changes to stexec = acceptedi for some i and there is a tuple
(label′, V, U, role′, auth′, k, psid′, pss′, st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i and
tested′i = true, then set label.Ki ← label′.K′i and label.testedi ← true. If the state of execution changes
to stexec = acceptedi for some i and the intended communication partner V is corrupted, then set
stkey,i ← revealed.

• Reveal(label, i): Reveals label.Ki, the session key of stage i in the session with label label. If there is
no tuple (label, U, V, role, auth, k, psid, pss, stexec, stage, sid, cid,K, stkey, tested) in ListS, or i > stage, or
testedi = true, then return ⊥. Otherwise, set stkey,i to revealed and provide the adversary with Ki.
If there is a tuple (label′, V, U, role′, auth′, k, psid′, pss′, st′exec, stage′, sid′, cid′,K′, st′key, tested′) in ListS
with sidi = sid′i and stage′ ≥ i, then st′key,i is set to revealed to ensure that partnered session keys are
also considered revealed. If i = stage, set stkey,j = revealed for all j > i, as they may depend on the
revealed key. If a partnered session label′ with sidi = sid′i has stage′ = i, then set st′key,j = revealed for
all j > i. Note that if however stage′ > i, then keys K′j for j > i derived in the partnered session are
not considered to be revealed by this query since they have been accepted previously, i.e., prior to Ki
being revealed in this query.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security game
this oracle is given a uniformly random test bit btest as state which is fixed throughout the game.
If there is no tuple (label, U, V, role, auth, k, psid, pss, stexec, stage, sid, cid,K, stkey, tested) in ListS or
if label.stexec 6= acceptedi, return ⊥. If there is a tuple (label′, V, U, role′, auth′, k, psid′, pss′, st′exec,
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stage′, sid′, cid′,K′, st′key, tested′) in ListS with sidi = sid′i, but st′exec 6= acceptedi, set the ‘lost’ flag to
lost ← true. This ensures that keys can only be tested if they have just been accepted but not
used yet, including ensuring any partnered session that may have already established this key has
not used it. If label.authi = unauth, but there is no tuple (label′, V, U, role′, auth′, k, psid′, pss′, st′exec,
stage′, sid′, cid′,K′, st′key, tested′) (for label 6= label′) in ListS with cidi = cid′i, then set lost← true. This
ensures that having an honest contributive partner is a prerequisite for testing responder sessions
in an unauthenticated or unilaterally authenticated stage and for testing an initiator session in an
unauthenticated stage.7 If label.testedi = true, return Ki, ensuring that repeated queries will be
answered consistently. Otherwise, set label.testedi to true. If the test bit btest is 0, sample label.Ki←$D
at random from the session key distribution D. This means that we substitute the session key by
a random and independent key which is also used for future deployments within the key exchange
protocol. Moreover, if there is a tuple (label′, V, U, role′, auth′, kidV , kidU , st′exec, stage′, sid′, cid′,K′,
st′key, tested′) in ListS with sidi = sid′i, also set label′.K′i ← label.Ki and label′.tested′i ← true to ensure
consistency in the special case that both label and label′ are in state acceptedi and, hence, either of
them can be tested first.
Return label.Ki.

B.3 Security of Multi-Stage Preshared Key Exchange Protocols

We adapt the notions for matching and multi-stage key secrecy to the preshared secret setting, essentially
replacing long-term secret compromise with preshared secret compromise.

B.3.1 Match Security

As previously, Match security for preshared-secret key exchange protocols ensures that session identifiers
effectively match the partnered sessions which must share the same view on their interaction. Note that the
following conditions for Match security are identical to Match security conditions for MSKE models with
the exception of condition 4, which was modified to account for agreement upon preshared secret key index.

1. sessions with the same session identifier for some stage hold the same key at that stage,
2. sessions with the same session identifier for some stage agree on that stage’s authentication level,
3. sessions with the same session identifier for some stage share the same contributive identifier at that

stage,
4. sessions are partnered with the intended (authenticated) participant, and for mutual authentication

share the same key index,
5. session identifiers do not match across different stages, and
6. at most two sessions have the same session identifier at any stage.
The security game GMatch

KE,A is as follows.

Definition B.1 (Match security). Let KE be a key exchange protocol and A a PPT adversary interacting
with KE via the queries defined in Section B.2 in the following game GMatch

KE,A :
Query. The adversary A has access to the queries NewSecret, NewSession, Send, Reveal, and Corrupt.
Stop. At some point, the adversary stops with no output.
We say that A wins the game, denoted by GMatch

KE,A = 1, if at least one of the following conditions hold:
1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.stexec 6= rejectedi, label′.stexec 6= rejectedi, but label.Ki 6= label′.Ki. (Different session
keys in the same stage of partnered sessions.)

7Note that ListS entries are only created for honest sessions, i.e., sessions generated by NewSession queries.
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2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage
i ∈ {1, . . . ,M} but label.authi 6= label′.authi (Different authentication types in some stage of partnered
sessions.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, but label.cidi 6= label′.cidi or label.cidi = label′.cidi = ⊥. (Different or unset contributive
identifiers in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.authi = label′.authi ∈ {unilateral,mutual}, label.role = initiator, and label′.role =
responder, but label.V 6= label′.U or (only if label.authi = mutual) label.U 6= label′.V or (only if
label.authi = mutual) label.k 6= label′.k. (Different intended authenticated partner or different key
indices in mutual authentication.)

5. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for
some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session identifier.)

6. There exist three distinct labels label, label′, label′′ such that label.sidi = label′.sidi = label′′.sidi 6= ⊥
for some stage i ∈ {1, . . . ,M}. (More than two sessions share the same session identifier.)

We say KE is Match-secure if for all adversaries A the following advantage is negligible in the security
parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

B.3.2 Multi-Stage Security

The Multi-Stage security game GMulti-Stage,D
KE,A similarly defines Bellare–Rogaway-like key secrecy in the

multi-stage setting with pre-shared keys as follows.

Definition B.2 (Multi-Stage security). Let KE be a preshared key exchange protocol with (session) key
distribution D, and A a PPT adversary interacting with KE via the queries defined in Section B.2 in the
following game GMulti-Stage,D

KE,A :
Setup. Choose the test bit btest←$ {0, 1} at random, and set lost← false.
Query. The adversary has access to the queries NewSecret, NewSession, Send, Reveal, Corrupt, and Test.

Note that some queries may set lost to true.
Guess. At some point, A stops and outputs a guess b.
Finalize. The challenger sets the ‘lost’ flag to lost← true if there exist two (not necessarily distinct) labels

label, label′ and some stage i ∈ {1, . . . ,M} such that label.sidi = label′.sidi, label.stkey,i = revealed, and
label′.testedi = true. (Adversary has tested and revealed the key in a single session or in two partnered
sessions.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false. We say KE is

Multi-Stage-secure in a key-dependent resp. key-independent and non-forward-secret resp. stage-j forward-
secret manner with concurrent authentication properties AUTH if KE is Match-secure and for all PPT
adversaries A the following advantage is negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .
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C Security Analysis of the TLS 1.3 draft-10 Pre-shared Key Hand-
shakes

C.1 Technical Specification for draft-10-PSK(EC)DHE and draft-10-PSK in the Multi-
Stage Key Exchange Model

We begin by defining the session identifiers for the two stages (note that RMS and EMS are not computed
in the PSK or PSK-(EC)DHE handshakes), deriving the handshake traffic key tkhs and the application
traffic key tkapp to be be (as in draft-ietf-tls-tls13-10 analysis) the unencrypted messages sent and
received excluding the finished message:

sid1 = (ClientHello, ClientKeyShare, ClientPreSharedKey,

ServerHello, ServerKeyShare†, ServerPreSharedKey)
sid2 = (ClientHello, ClientKeyShare, ClientPreSharedKey,

ServerHello, ServerKeyShare†, ServerPreSharedKey, EncryptedExtensions, “tkapp”)
sid3 = (sid2, “EMS”).

Note that † indicates messages only included in the PSK-(EC)DHE handshake mode.
We add flags to the session identifiers to ensure session identifiers for each stage are distinct. The

contributive identifiers are incrementally set with each flow of messages sent and received by each party.
So cid1 = (ClientHello, ClientKeyShare, ClientPreSharedKey) extended to cid1 = sid1 and cid2 = sid2,
cid3 = sid3, similarly to how draft-ietf-tls-tls13-10 incrementally sets cid1, cid2, and cid3.

C.2 Proof of draft-10-PSK(EC)DHE Match Security

We need to show the six properties of Match security. Note that the only condition that is changed between
Multi-Stage Key Exchange (MSKE) model and Multi-Stage Pre-Shared Key Exchange (MS-PSKE) is the
fourth one, which now also requires agreement on the preshared-secret identifier psid. In addition, there are
minor changes to account for the preshared secret, as well as the fact that RMS is not output.

1. Sessions with the same session identifier for some stage hold the same session key. As before, since the
session identifier contains the parties’ Diffie–Hellman contributions gx and gy which uniquely identify
the Diffie–Hellman key, as well as all data entering the key derivation step and the preshared-secret
identifier psid. Hence, equal session identifiers imply that both parties compute the same ephemeral
secret and thus same handshake traffic key tkhs on the first stage. For the second stage note that the
identifier sid2 contains the full sid1, implying that the parties have also computed the same ephemeral
secret. Since the key derivation for the application traffic key tkapp is only based on this secret value
and data from sid2 and pss, it follows that the session keys must be equal, too.

2. Sessions with the same session identifier for some stage agree on the authenticity of the stage.
Since draft-10-PSK(EC)DHE only specifies (unauth,mutual), this is trivally true.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
This holds again since the contributive identifier values cid1, cid2, cid3 are final and equal to the
respective session identifiers once the session identifiers sid1, sid2, sid3 are set.

4. Sessions are partnered with the intended partner.
Honest sessions are assured of a peer’s identity and key index as the preshared secret identifier psid is
included in sid1 and sid2 as ClientPreSharedKey and ServerPreSharedKey. Since each party knows
the mapping of key index k and psid, a party can determine peer identity via this mapping, and
agreement on sid1, sid2 implies agreement on partner identity.
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5. Session identifiers are distinct for different stages.
This holds as sid2 and sid3 contain distinct labels (“tkapp” resp. “EMS”) that are not contained in
sid1.

6. At most two sessions have the same session identifier at any stage.
Both client and server nonces and gx, gy are included in both stages session identifiers sid1, sid2,
and thus the probability of three-fold colliding session identifiers is bound by the probability of both
nonce collisions and thus: n2

s · 1/q · 2−|nonce| where ns is the maximum number of sessions, q is the
group order, and |nonce| = 256 the nonces’ bit-length.

C.3 Proof of draft-10-PSK(EC)DHE Multi-Stage Security

As in our previous proofs, we consider the case that the adversary A makes a single Test query, reducing
the advantage of A by a factor of 1/3ns (as RMS is not computed in the pre-shared modes of draft-10).
Additionally, we now know the session with label label that is to be tested in stage i. Our analysis considers
two disjoint cases:
A. The adversary tests a session without honest contributive partner in the first stage8

B. The adversary tests a session with an honest contributive partner in the first stage

Case A. Test Session without Partner

We first consider the case that the tested session is without honest contributive partner in the first stage.
Since for draft-10-PSK(EC)DHE the first stage is always unauthenticated, the adversary cannot test a session
in the first stage without an honest contributive partner, this restricts our focus to Test queries in stage
2 and 3. We proceed in the following sequence of game hops, where each game iteratively changes the
original Multi-Stage game and bound the advantage difference of adversary A between any two games by
complexity-theoretic assumptions.

Game A.0. This initial game equals the Multi-Stage game with a single Test query issued for a stage 2
session without honest contributive partner in stage 1. Thus,

AdvGA.0
draft-10-PSK(EC)DHE,A = Adv1-Multi-Stage,session without partner

draft-10-PSK(EC)DHE,A .

Game A.1. In this game, we let the challenger abort the game if any two honest sessions compute the
same hash value for different inputs in any evaluation of the hash function H.
Let abortH denote the event that the challenger aborts in this case. We can bound the probability Pr[abortH]
by the advantage AdvCOLL

H,B1 of an adversary B1 against the collision resistance of the hash function H. To
this extent, B1 acts as the challenger in Game A.1, using its description of H to compute hash values, and
running adversary A as a subroutine. If the event abortH occurs, B1 outputs the two distinct input values
to H resulting in the same hash value as a collision.

Note that B1 perfectly emulates the attack of A according to GA.0 up to the point when a hash collision
occurs. As B1 wins if abortH is triggered, we have that Pr[abortH] ≤ AdvCOLL

H,B1 and thus

AdvGA.0
draft-10-PSK(EC)DHE,A ≤ AdvGA.1

draft-10-PSK(EC)DHE,A + AdvCOLL
H,B1 .

8Note that this tested session can either have an initiator or responder role.
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Game A.2. In this game, the challenger aborts immediately if a session accepts in the second stage
without an honest contributive partner in stage 1. Let abortGA.2,A

acc denote this event this occurs. Then∣∣∣AdvGA.1
draft-10-PSK(EC)DHE,A − AdvGA.2

draft-10-PSK(EC)DHE,A

∣∣∣ ≤ Pr[abortGA.2,A
acc ].

We can immediately bound AdvGA.2
draft-10-PSK(EC)DHE,A. Throughout this proof case we assume that the Test

query is directed to a session without honest contributed partner in stage 1. Because the authentication
type of the protocol is (unauth,mutual,mutual), the Test query can only be directed to stage-2 or stage-3
keys of that session. As Game A.2 is aborted when the first such session accepts (in stage 2), there is after
all no moment in that game where a successful adversary could issue a Test query. Hence,

AdvGA.2
draft-10-PSK(EC)DHE,A = 0.

It remains to bound Pr[abortGA.2,A
acc ]. We do so via a sequence of games that continues on from Game A.2.

Game A.3. In this game, the challenger guesses a session (from at most ns sessions in the game) and
aborts if the guessed session is not the first session which accepts in the second stage without an honest
contributive partner in stage 1. If the challenger guesses correctly (which happens with probability at least
1/ns), then this game aborts at exactly the same time as the previous game:

Pr[abortGA.2,A
acc ] ≤ ns · Pr[abortGA.3,A

acc ].

Note that, in this game, the guessed session, which is the first stage-2 session that accepts without honest
contributive partner in the first stage, could not have been issued any Corrupt query, nor could a Corrupt
query have been issued to any other session sharing the same pre-shared secret. This is because sessions
using that pre-shared secret do not continue execution once the secret is corrupted, and this session has
accepted, so no Corrupt could have happened before it accepted in stage 2. Since the game terminates once
stage 2 has accepted, no Corrupt query could have been issued after, either.

This allows us, in the following games, to replace the pre-shared secret pss in the guessed and all other
sessions sharing the same pss value without being inconsistent or detectable with regards to the Corrupt
query.

Game A.4. In this game we guess the pre-shared secret pss (among the np secrets established) that the
guessed session will use, and the challenger aborts the game if that guess was wrong. This reduces the
adversary’s advantage by a factor of at most 1/np, thus:

Pr[abortGA.3,A
acc ] ≤ np · Pr[abortGA.4,A

acc ].

Let pssU,V,k be the guessed pre-shared secret.

Game A.5. We next replace the pseudorandom function HKDF.Extract in all evaluations using the
guessed session’s pre-shared secret pssU,V,k as key by a lazy-sampled random function. Beyond other
sessions using the same pre-shared secret, this in particular affects the derivation of xSS in the guessed
session, which is replaced with a random value x̃SS←$ {0, 1}λ.
We bound this difference of the advantage of A by the security of the pseudorandom function HKDF.Extract.
In the case of the oracle computing the function, the simulation equals Game A.4, but if it computes a
random function, the simulation equals Game A.5. For any successful adversary (note that a successful
adversary by Games A.3 and A.4 cannot corrupt pssU,V,k, i.e., cannot issue Corrupt(label) queries where
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label.pss = pssU,V,k) the pre-shared secret is uniformly random and unknown to A, so the simulation is
sound. Thus

Pr[abortGA.4,A
acc ] ≤ Pr[abortGA.5,A

acc ] + AdvPRF-sec
HKDF.Extract,B2 .

Game A.6. In this step we replace the evaluations of HKDF.Expand using x̃SS as key in the guessed
session by a lazy-sampled random function, thereby exchanging the finished secret value FS, and the
expanded static secret mSS with independent random values F̃S, m̃SS. We can bound this difference in the
same manner as above, and thus:

Pr[abortGA.5,A
acc ] ≤ Pr[abortGA.6,A

acc ] + AdvPRF-sec
HKDF.Expand,B3 .

Finally, we show how any adversary that manages to make the abortGA.6,A
acc event happen can be transformed

into an adversary B4 that breaks the existential unforgeability of the HMAC scheme.
To this extent, let B4 simulate Game A.6 for A as specified, but when the guessed session or partner

session requires a MAC computation using F̃S, B4 invokes its MAC oracle to generate that value. Since F̃S
is uniformly random and independent of all other values in the game, this simulation is sound.

Assume now A triggers abortGA.6,A
acc . In this case, the accepting session must have received a SF

(respectively, CF) message (when role = initiator, resp. responder) that is a valid MAC tag over the session
hash H(CH, ..., EE). Since every other honest session holds a different session identifier (as there exists no
honest contributive partner in the first stage of the accepting session), no honest party will have issued a
MAC tag on that session hash. Moreover, there exist no hash collisions by Game A.1, so the MAC input is
distinct to any other MAC input for any honest party. Therefore, this message was never queried to the
MAC oracle and hence constitutes a MAC forgery. This allows us to conclusively bound the probability for
abortion due to a stage-2 accepting session without stage-1 contributive identifier by

Pr[abortGA.6,A
acc ] ≤ AdvEUF-CMA

HMAC,B4 .

Summing the probabilities accumulated over the sequence of games, we obtain the result:

Adv1-Multi-Stage,session without partner
draft-10-PSK(EC)DHE,A ≤ AdvCOLL

H,B1 + n2
s ·
(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3 + AdvEUF-CMA

HMAC,B4

)
.

Case B. Test Session with Partner

We now come to the case where the tested session has an honest contributive partner in the first stage.

Game B.0. This initial game equals the Multi-Stage game with a single Test query issued for a session
with an honest contributive partner in stage 1. Thus,

AdvGB.0
draft-10-PSK(EC)DHE,A = Adv1-Multi-Stage,session with partner

draft-10-PSK(EC)DHE,A .

Game B.1. In this game, we let the challenger abort the game if any two honest sessions compute the
same hash value for different inputs in any evaluation of the hash function H.
Let abortH denote the event that the challenger aborts in this case. We can bound the probability Pr[abortH]
by the advantage AdvCOLL

H,B5 of an adversary B5 against the collision resistance of the hash function H. To
this extent, B5 acts as the challenger in Game B.1, using its description of H to compute hash values, and
running adversary A as a subroutine. If the event abortH occurs, B5 outputs the two distinct input values
to H resulting in the same hash value as a collision.
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Note that B5 perfectly emulates the attack of A according to GB.2 up to the point when a hash collision
occurs. As B5 wins if abortH is triggered, we have that Pr[abortH] ≤ AdvCOLL

H,B5 and thus:

AdvGB.0
draft-10-PSK(EC)DHE,A ≤ AdvGB.1

draft-10-PSK(EC)DHE,A + AdvCOLL
H,B5 .

Game B.2. Our second modification is to guess a session (from at most ns in the game) and abort if the
session guessed is not the honest contributive partner in stage 1 of the tested session. This reduces the
adversary’s advantage by a factor of at most 1/ns.

AdvGB.1
draft-10-PSK(EC)DHE,A ≤ ns · AdvGB.2

draft-10-PSK(EC)DHE,A.

Game B.3. In this game, we replace the extracted ephemeral secret xES derived in the tested and (poten-
tially) its contributive partner session with a uniformly random and independent string x̃ES←$ {0, 1}λ. As in
Game C.3 of the proof for draft-10-full (cf. Appendix A.3), we employ the PRF-ODH assumption in order
to be able to simulate the computation of xES in a partnered client session for a modified ServerKeyShare
message.9
More precisely, we can turn any adversary capable of distinguishing the change in this game into an adversary
B6 against the PRF-ODH security of the HKDF.Extract function (keyed with ES on label 0). For this, B6
asks for a PRF challenge on 0. It uses the obtained Diffie–Hellman shares gx and gy within ClientKeyShare
and ServerKeyShare of the tested and contributive partner session, and the PRF challenge value as xES
in the test session. If necessary, B6 uses its single PRF-ODH query to derive xES in the partnered session
on differing gy′ 6= gy.

Providing a sound simulation of either Game B.2 (if the PRF challenge value is real) or Game B.3 (if
the PRF challenge value is random), this bounds the advantage difference of A as

AdvGB.2
draft-10-PSK(EC)DHE,A ≤ AdvGB.3

draft-10-PSK(EC)DHE,A + AdvPRF-ODH
HKDF.Extract,G,B6 .

Game B.4. In this game, we replace the handshake traffic key tkhs and the expanded ephemeral secret
mES derived in both the tested and its contributive partner session with a uniformly random and independent
strings t̃khs, m̃ES←$ {0, 1}λ in the tested and partner session. We can turn any adversary capable of
distinguishing this change into an adversary B7 against the PRF security of the HKDF.Expand function
keyed with x̃ES. We let B7 simulate the previous game as the challenger, except it queries its PRF oracle
for the derivation of tkhs and mES from x̃ES. If the oracle computes the PRF, we are in Game B.3, but
if it computes a random function, we are in Game B.4 as x̃ES is uniformly random and independent bit
string. The advantage of B7 in the PRF security game bounds the advantage of this change, such that:

AdvGB.3
draft-10-PSK(EC)DHE,A ≤ AdvGB.4

draft-10-PSK(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B7 .

Game B.5. In this game, we replace the master secret MS derived from m̃ES in both the tested and its
contributive partner session with a uniformly random and independent string M̃S←$ {0, 1}λ in the tested
and partner session. We can turn any adversary capable of distinguishing this change into an adversary B8

9In an earlier version of this paper, we claimed this proof step can be reduced to the DDH assumption and PRF security
of HKDF.Extract. An adversary can however, for a tested server session, make the contributively partnered client session
derive ES with a different server-Diffie–Hellman share gy′

of its choice and challenge the simulation by revealing the key tkhs

derived from this value. We are not aware of a way to simulate such Reveal query without the help of an oracle-Diffie–Hellman
query and hence employ the PRF-ODH assumption here.
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against the security of the HKDF.Extract function which we still model as a pseudorandom function. Via a
similar argument to the previous games we find:

AdvGB.4
draft-10-PSK(EC)DHE,A ≤ AdvGB.5

draft-10-PSK(EC)DHE,A + AdvPRF-sec
HKDF.Extract,B8 .

Game B.6. In this game, we replace the application traffic key tkapp and the exporter master secret
EMS derived from M̃S in both the tested and its contributive partner session with a uniformly random and
independent strings t̃kapp, ẼMS←$ {0, 1}λ in the tested and partner session. We can turn any adversary
capable of distinguishing this change into an adversary B9 against the security of the HKDF.Expand function
which we still model as a pseudorandom function. Via a similar argument as the previous games we find:

AdvGB.5
draft-10-PSK(EC)DHE,A ≤ AdvGB.6

draft-10-PSK(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B9 .

Note that now t̃khs, t̃kapp and ẼMS are uniformly random bit strings independent of all other values. In
particular the response to the Test query is now independent of the test bit btest, and A cannot distinguish
real from random case and thus:

AdvGB.6
draft-10-PSK(EC)DHE,A ≤ 0.

This yields the following security bound:

Adv1-Multi-Stage,session with partner
draft-10-PSK(EC)DHE,A ≤ AdvCOLL

H,B5 + ns ·
(
AdvPRF-ODH

HKDF.Extract,G,B6 + AdvPRF-sec
HKDF.Expand,B7

+ AdvPRF-sec
HKDF.Extract,B8 + AdvPRF-sec

HKDF.Expand,B9

)
.

C.4 Proof of draft-10-PSK Multi-Stage Security

We again restrict the adversary A to make only a single Test query, reducing its advantage by a factor at
most 1/3ns via a hybrid argument that also fixes the tested session label and stage i.

Game 0. This initial game equals the Multi-Stage game with a single Test query, so

AdvG0
draft-10-PSK,A = Adv1-Multi-Stage

draft-10-PSK,A.

Game 1. In this game, the challenger aborts the game if any two honest sessions compute the same hash
value for different inputs in any evaluation of the hash function H. We can break the collision resistance
of H in case of this event by letting a reduction B1 output the two distinct input values to H. Hence:

AdvG0
draft-10-PSK,A ≤ AdvG1

draft-10-PSK,A + AdvCOLL
H,B1 .

Game 2. As a next step, we guess the pre-shared secret pss (among the np secrets established) that
the tested session will use, and the challenger aborts the game if that guess was wrong. This reduces the
adversary’s advantage by a factor of at most 1/np, thus:

AdvG1
draft-10-PSK,A ≤ np · AdvG2

draft-10-PSK,A.
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Let pssU,V,k be the guessed pre-shared secret.

Game 3. We next replace the pseudorandom function HKDF.Extract in all evaluations using the tested
session’s pre-shared secret pssU,V,k as key by a (lazy-sampled) random function. This in particular affects
the derivation of both the extracted ephemeral static secrets xES = xSS in the tested (and any potential
partnered) session, which is replaced by a random value x̃ES = x̃SS←$ {0, 1}λ.
We can bound the difference this step introduces in the advantage of A by the security of the pseudorandom
function HKDF.Extract. Notice here that for any successful adversary (which hence cannot invoke Corrupt
on pssU,V,k used in the tested session), the pre-shared key is an unknown and uniformly random value and,
hence, the simulation is sound and we establish:

AdvG2
draft-10-PSK,A ≤ AdvG3

draft-10-PSK,A + AdvPRF-sec
HKDF.Extract,B2 .

Game 4. We can now replace the HKDF.Expand applications in the tested and other sessions running on
the same pre-shared key (and, hence, same x̃ES and x̃SS values) with a random function. Thereby, we in par-
ticular replace the handshake traffic key tkhs, the expanded ephemeral and static secrecy mES, mSS, and the
finished secret FS in the tested (and any partnered) session by random values t̃khs, m̃ES, m̃SS, F̃S←$ {0, 1}λ.
These values are moreover independent of any value derived in a non-partnered session (which the adversary
may reveal): the Expand evaluations include the (hashed) session identifiers and, due to Game 1, no hash
collisions allows a different session identifier to be mapped to the same hash value.
We can, as before, bound the advantage difference introduces by this step by the PRF security of HKDF.Expand
and obtain:

AdvG3
draft-10-PSK,A ≤ AdvG4

draft-10-PSK,A + AdvPRF-sec
HKDF.Expand,B3 .

Game 5. Randomness and independence of m̃ES in the tested session then allows us to replace the
derived master secret by a random value M̃S, a step which is again reducible to the PRF security of
HKDF.Extract:

AdvG4
draft-10-PSK,A ≤ AdvG5

draft-10-PSK,A + AdvPRF-sec
HKDF.Extract,B4 .

Game 6. As the last change, we can now replace the application traffic key tkapp and the exporter
master secret EMS derived from M̃S by random values, which is undetectable given the PRF security of
HKDF.Expand:

AdvG5
draft-10-PSK,A ≤ AdvG6

draft-10-PSK,A + AdvPRF-sec
HKDF.Expand,B5 .

Finally, in Game 6 we reached a situation where all stages’ keys in the tested session are chosen uniformly
at random, which leaves A with no better chance then guessing:

AdvG6
draft-10-PSK,A ≤ 0.

Combining the given single bounds yields the overall security statement.

D The PRF-ODH Assumption
We restate here the pseudorandom-function oracle-Diffie–Hellman (PRF-ODH) assumption introduced
by Jager et al. [JKSS12], an adaptation of the oracle Diffie–Hellman assumption introduced by Abdalla
et al. [ABR01] to the PRF setting. The PRF-ODH assumption has been previously used by Jager et
al. [JKSS12] to analyze the security of the TLS version 1.2 DHE handshake (in the single-query variant
which we also employ here) and by Krawczyk et al. [KPW13] further TLS 1.2 handshake variants (in a
multi-query variant).
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Definition D.1 (PRF-ODH assumption). Let G = 〈g〉 be a cyclic group of prime order q with generator g,
PRF : G× {0, 1}∗ → {0, 1}λ be a pseudorandom function with keys in G, input strings from {0, 1}∗, and
output strings of length λ, let b ∈ {0, 1} be a bit, and A be a PPT algorithm.

We define the following PRF-ODH security game GPRF-ODH,b
PRF,G,A :

Challenge. The adversary A outputs a value x ∈ {0, 1}∗. The challenger chooses u, v←$ Zq at random.
It sets y0 ← PRF(guv, x) and y1←$ {0, 1}λ, and returns gu, gv, and yb to A.

Query. The adversary A may ask one query of the form (h, x′) ∈ (G, {0, 1}∗) with h 6= gu which the
challenger answers with the value y′ ← PRF(hv, x′).

Guess. Eventually, A stops and outputs a bit b′ which is also the game output, denoted by GPRF-ODH,b
PRF,G,A .

We define the advantage function

AdvPRF-ODH
PRF,G,A :=

∣∣∣Pr
[
GPRF-ODH,0

PRF,G,A = 1
]
− Pr

[
GPRF-ODH,1

PRF,G,A = 1
] ∣∣∣

and, assuming a sequence of groups in dependency of the security parameter, we say that the PRF-ODH
assumption holds for PRF with keys from (Gλ)λ if for any A the advantage function is negligible (as a
function in λ).
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