
Downgrade Resilience in
Key-Exchange Protocols

Ruth Ng

TLS Crypto Seminar, Winter 2019, UC San Diego

Overview

 High-level summary of the whole paper:

 Motivate the study of downgrade resilience

 (Very) brief discussion on modelling downgrade resilience

 Touch on all the authors’ results

 Case Study: Downgrade attacks in TLS

 Logjam as a downgrade attack on TLS 1.2 and TLS 1.3 (Draft 10)

 Mitigation of this attack in TLS 1.3

 Broader discussion on crypto standards in practice

 Inspired by talks at RSAC 2019

Overview of [BBF+16]: Motivation

 A key feature of real-world key exchange protocols is that can run in different
modes. This gives the protocol flexibility in handling different types of
network devices.

 E.g. different DH-groups, different primitives, up-to-date vs legacy versions

 This presents a challenge when trying to model it as a key exchange protocol
and prove its security.

 So far, we know how to:

 Prove that TLS running in one particular mode is secure (e.g. [JKSS12])

 Prove that TLS is secure, as long as any secure mode is chosen (e.g. [BPK+14])

 But none of these models discuss how a secure mode is chosen

 We want to guarantee that the “preferred common mode” is being used.

Joseph
Feb 7th

Overview of [BBF+16]: Model

 A (very) simplified version of the [BBF+16] model of key-
exchange protocols

 Two parties with different roles: initiator I and responder R

 Their goal is to set up two “partnered” sessions, I and R

 In the absence of an adversary, the sessions will send each
other messages until they complete and agree on some set of
(protocol specific) session variables X (e.g. mode, version
number).

 An adversary interacts with the sessions via oracles. He can (1)
initialize sessions (2) send messages to sessions and observe
their response and (3) corrupt sessions and look at key material

Either a description of how
flexible this model is, or how
hand-wavy my explanation of this
model is going to be. You pick.

Overview of [BBF+16]: Model

 In place of “correctness”, we define the following security goals for key-
exchange protocols in the presence of an adversary:

 Goal #1: (Uniqueness) A session can be partnered with at most one other session,
with an opposite role

 Goal #2: (Partnering security) A completed session cannot be unpartnered

 Goal #3: (Multi-mode authentication) A completed session must have a partner
session which agrees on X

 Goal #4: (Key indistinguishability) An adversary cannot distinguish real session keys
from random ones in uncorrupted sessions.

 Finally, we define our main goal: (downgrade resilience) A completed session
must have a partnered session who share a mode which is not downgraded

Overview of [BBF+16]: Downgrades

 But what is a “downgraded” session mode?

 Each key exchange protocol defined in a multi-mode setting defines an algorithm Nego
which takes as input the client and server configurations and returns a set of
“preferred” modes.

 For now, let’s assume that a configuration is a set of modes.

 A downgrade occurs when an adversary can alter the session mode to be inconsistent
with Nego.

 Here, Mode/ModeA are the modes that the algorithm can end up using without/ with
adversarial involvement.

CfgClient CfgServer Nego(CfgClient , CfgServer) Mode ModeA Downgrade?

{A,B} {A,B} {A} A B Yes

{A,C,D} {B,C,D} {C,D} C D No

{A,C,D} {B,C,D} {C,D} {C,D} D No

{A,C,D} {B,C,D} {C} C D Yes

Overview of [BBF+16]: Results

 Define a model to formalize downgrade resilience

 Formalize the following “folklore” result:

“To prevent an attack on a particular protocol mode, it is sufficient to
deactivate the configurations that lead to its negotiation”

 More specifically, “when downgrade security holds, only the security of modes
which can be negotiated in the absence of an adversary matters. That is, if peers
support insecure modes, but with such low priority that they never negotiate them
on their own, then these modes do not affect security in the presence of an
adversary.”

Overview of [BBF+16]: Results

 Model real-world protocols at all levels of the protocol stack:

 SSHv2: Application layer protocol

 zRTP: Transport layer protocol used to secure phone calls via UDP

 IKEv2: Internet layer protocol used in IPSec

 TLS: Between application and transport layers

 Analyze the security of real-world protocols:

 Stronger result for SSHv2

 Vulnerability/ Patch for zRTP and IKEv2

 Confirm that TLS 1.0-1.2 and TLS 1.3 (draft 10) is not secure, provide
simple patch used in TLS 1.3 (draft 11)

TLS Case Study

 For the rest of our discussion on downgrade resilience, we will use TLS as a
case study to show the strength of the model in formalizing and improving
downgrade resilience of real-world protocols.

 All this discussion is limited to TLS-(EC)DHE, with no client authentication.

 In other words, we come from the point-of-view of a server offering TLS 1.3, trying
to authenticate itself to clients and start sessions with them.

 TLS 1.2 and 1.3 (draft 10) offer some downgrade resilience, under stronger
conditions but these conditions are not realistic

 Logjam constitutes a downgrade attack on both TLS 1.2 and TLS 1.3 (draft 10)

 Small change to TLS 1.3 which assures downgrade resilience under more
reasonable assumptions

TLS 1.2

 We formalize TLS 1.2 using the notation from [BBF+16]. For simplicity, we will
consider the variant of TLS 1.2 with no client authentication.

 We will also assume that the server has a signing key sk and certificate cert.
The client has the corresponding public key pk and a way to check cert
(e.g.via a CA’s public key).

 In the client hello, the client will provide a number of configurations, [a1 …
an]. Each of these should specify the algorithms to be used later in the
protocol (mac, hash2, kdf, enc, sign).

 Logjam is a downgrade attack on TLS 1.2, where a configuration “DHE” is
downgraded to one using DHE-EXPORT.

 For simplicity, we will denote the configuration DHE instead of the full tuple.

TLS 1.2

Does TLS 1.2 offer downgrade
protection?

 Yes. But it is a strong requirement.

 First, we need that the signature scheme (sign) is secure

 This is a reasonable assumption. Without it we have no way to verify the server.

 We need the final MAC to be unforgeable

 We also need that the adversary cannot retrieve ms, k2 to compute the MAC
himself

 Which depends on kdf and hash2

 Are these reasonable assumptions?

 Logjam shows us that this is not. Attackers can use a weak group to retrieve ms, k2

Logjam downgrade:
1.2 (DHE) 1.2 (DHE-EXPORT)→ 1.2 (DHE-EXPORT)

TLS 1.3 (draft 10)

Does the problem go away with TLS 1.3?

 No. Because an attacker can downgrade the connection to TLS 1.2

 A client needs to be able to talk to a server that only offers TLS 1.2, so if the
server returns v=1.2, the client will proceed as in TLS 1.2

 This is a version downgrade

 So, unfortunately, TLS 1.3 (draft 10) is only secure against downgrades under
the same assumptions we used for TLS 1.2

Logjam again:
1.3 (DHE) 1.2 (DHE-EXPORT)→ 1.2 (DHE-EXPORT)

A simple “hack” to fix the problem

 Thankfully,
there is a
simple hack to
fix the
problem. We
just include
the version
number in the
server nonce.

 This means v
will be signed
by the server

Reflections from RSAC 2019

 To shift gears, I wanted to talk a little about my experiences from RSAC 2019

 RSA is a conference primarily aimed at practitioners.

 Sessions discussing computer security in industry

 Large expo to sell security products

 Many “networking events”

 I attended two sessions which brought up points which I found very relevant
to our discussions on the TLS standardization process.

 “Hacked by Crypto” by Bret Jordan (Director, Symantec)

 ”Assume possible interference” by Julie Tsai (InfoSec leader “passionate about
bettering society through technology”)

“Hacked by Crypto” (Bret Jordan)

“Hacked by Crypto” (Bret Jordan)

“Hacked by Crypto” (Bret Jordan)

 Talked about users who need to basically be protected from themselves

 “I don’t care if software sees what my mom is typing into Google, I just really
care that she doesn’t get phished!”

 Talked about his interactions with standards bodies who did not want to listen
to his use-cases

 Claims that they respond with lots of rage in an attempt to “make him go
away”

 Encourages practitioners to get involved in the standardization process and
voice their use-cases.

 “Make them know that you are the fly that won’t go away”

“Hacked by Crypto” (Bret Jordan)

“Assume Possible Interference”
(Julie Tsai)

 Not blindly using security technology, but ensuring that it aligns to your use
case

 An example: “If your current policy requires you to inspect all data on the
network except those coming from particular sites, and TLS 1.3 doesn’t allow
you to discriminate via whitelisting anymore, maybe you should discuss the
benefits of just looking at all the data”

Discussion

 Do we have an overly simplistic view of what is “correct” and what is
“wrong”?

 How can we better communicate in the standardization process?

	Folie 1
	Overview
	Overview of [BBF+16]: Motivation
	Overview of [BBF+16]: Model
	Overview of [BBF+16]: Model
	Overview of [BBF+16]: Downgrades
	Overview of [BBF+16]: Results
	Overview of [BBF+16]: Results
	TLS Case Study
	TLS 1.2
	TLS 1.2
	Does TLS 1.2 offer downgrade protection?
	Logjam downgrade: 1.2 (DHE) → 1.2 (DHE-EXPORT)
	TLS 1.3 (draft 10)
	Does the problem go away with TLS 1.3?
	Logjam again: 1.3 (DHE) → 1.2 (DHE-EXPORT)
	A simple “hack” to fix the problem
	Reflections from RSAC 2019
	“Hacked by Crypto” (Bret Jordan)
	“Hacked by Crypto” (Bret Jordan)
	“Hacked by Crypto” (Bret Jordan)
	Folie 22
	“Assume Possible Interference” (Julie Tsai)
	Discussion

