
A preliminary version of this paper appears in the proceedings of the 35th Annual Cryptology Conference
(CRYPTO 2015), DOI: 10.1007/978-3-662-48000-7_27. This is the full version.

Data Is a Stream: Security of Stream-Based Channels

Marc Fischlin1 Felix Günther1 Giorgia Azzurra Marson2 Kenneth G. Paterson3

1 Cryptoplexity, Technische Universität Darmstadt, Germany
2 NEC Laboratories Europe, Germany

3 Information Security Group, Royal Holloway, University of London, U.K.
marc.fischlin@cryptoplexity.de, guenther@cs.tu-darmstadt.de,

giorgia.marson@neclab.eu, kenny.paterson@rhul.ac.uk

December 8, 2017

Abstract. The common approach to defining secure channels in the literature is to consider trans-
portation of discrete messages provided via atomic encryption and decryption interfaces. This, however,
ignores that many practical protocols (including TLS, SSH, and QUIC) offer streaming interfaces in-
stead, moreover with the complexity that the network (possibly under adversarial control) may deliver
arbitrary fragments of ciphertexts to the receiver. To address this deficiency, we initiate the study
of stream-based channels and their security. We present notions of confidentiality and integrity for
such channels, akin to the notions for atomic channels, but taking the peculiarities of streams into
account. We provide a composition result for our setting, saying that combining chosen-plaintext con-
fidentiality with integrity of the transmitted ciphertext stream lifts confidentiality of the channel to
chosen-ciphertext security. Notably, for our proof of this theorem in the streaming setting we need an
additional property, called error predictability. We give an AEAD-based construction that achieves our
notion of a secure stream-based channel. The construction matches rather well the one used in TLS,
providing validation of that protocol’s design. Finally, we study how applications that actually aim at
transporting atomic messages can do so safely over a stream-based channel. We provide corresponding
security notions and a generic and secure ‘encode-then-stream’ paradigm.

Keywords. Secure channel, data stream, AEAD, confidentiality, integrity, fragmentation

1

http://dx.doi.org/10.1007/978-3-662-48000-7_27

Contents
1 Introduction 3

2 Preliminaries 8

3 Stream-Based Channels 8

4 Security for Stream-Based Channels 11
4.1 Confidentiality . 11
4.2 Integrity . 17
4.3 Relations Amongst Notions and Generic Composition Theorem 19

5 Stream-Based Channels from AEAD 24
5.1 Authenticated Encryption with Associated Data . 24
5.2 Construction Based on Authenticated Encryption with Associated Data 25
5.3 Security Analysis . 27
5.4 A Note on the TLS Record Protocol . 30

6 Atomic-Message Channels Supporting Fragmentation 31
6.1 Syntax and Functionality . 32
6.2 Security . 33
6.3 Relations Amongst Notions . 35

7 Generic Construction of Atomic-Message Channels from Stream-Based Channels 36
7.1 Length-Regular Instantaneously Decodable Encoding Schemes 37
7.2 The Encode-then-Stream Construction . 38
7.3 Security of Encode-then-Stream . 39

7.3.1 Conciseness of ciphertext streams . 40
7.3.2 Integrity and Confidentiality of Encode-then-Stream 42
7.3.3 Secure Instantiation from AEAD-based Streaming Channel Construction 49

8 Conclusion and Open Problems 50

A Alternative Confidentiality Definition 57

B IND-CCFA Attack Against Intuitively Confidential Scheme 60

C INT-CST Implies INT-PST 61

D aINT-CST Implies aINT-PTXT 62

2

1 Introduction
The most widely-used application for cryptography today is still secure communications—providing a
secure channel for the transmission of data between two parties. Secure channel protocols are numerous
and diverse in their features, operating at different network layers and offering different security services.
Prominent examples can be found in GSM, UMTS and LTE [rGPP] mobile telecommunications systems, in
WEP, WPA andWPA2 [oEEE] (which secure wireless LAN communications), IPsec [KS05] (which provides
security at the IP layer), TLS [DR08] and DTLS [RM12] (which run over TCP [Pos81] and UDP [Pos80],
respectively), Google’s QUIC protocol [QUI], and SSH [YL06a] (an ‘application layer’ secure protocol).

AEAD and secure channels in the literature. Authenticated Encryption with Associated Data
(AEAD) [Rog02] has emerged as being the right cryptographic tool for building secure channels. AEAD
provides both confidentiality and integrity guarantees for data. However, on its own, AEAD does not
constitute a secure channel. For example, in most practical situations, a secure channel should provide
more than simple encryption of messages, but also guarantee detection of (and possibly recovery from) out-
of-order delivery and replays of messages. Furthermore, a secure channel should deal with error handling,
with errors potentially arising from both cryptographic and non-cryptographic processing—whether or not
to tear-down a secure channel session if an error is encountered, and how (and indeed whether) to signal
errors to the other side. As another difference, some secure channel designs (such as IPsec and to a limited
extent TLS) have additional features that can be used to provide protection against traffic analysis. A
secure channel may accept messages of arbitrary length and need to fragment these before encryption,
and may reassemble these fragments again after decryption; alternatively, it may present to applications a
maximum message size that is well-matched to the underlying network infrastructure. Finally, and most
importantly in the context of the paper here, a secure channel may be designed to protect a stream of data
rather than the series of discrete messages that is usually found in cryptographic abstractions.

There is, then, a substantial gap between what the AEAD primitive can reasonably provide and the
needs of secure channels. We are not the first to recognize this gap, of course. For example, Bellare et
al. [BKN02, BKN04] extended the standard security notions of confidentiality and integrity for symmetric
encryption to the stateful setting, enabling the treatment of security of the ordering of discrete messages
in a secure channel, with application to the analysis of SSH being their principle motivation. Their notions
were later extended by Kohno et al. [KPB03] to include a richer variety of features, suitable for handling
channels that permit (or deny) replays, message drops, and reordering. Meanwhile, Namprempre [Nam02]
gave a characterization of channels secure in the UC sense (as introduced by Canetti and Krawczyk [CK01])
in terms of standard, game-based notions of security for AEAD. Even earlier, Shoup [Sho99] introduced
a basic functional model for secure channels in a simulation-based setting; a secure channel concept was
established by Canetti in the UC framework in [Can00].

More recently, Maurer and Tackmann [MT10] developed the constructive cryptography framework and
applied it to the study of generic compositions with encryption and authentication with a view to achieving
a particular security notion for secure channels. With the analysis of TLS in mind, Jager et al. [JKSS12]
developed the ACCE security notion, which combined the security of key exchange and the subsequent use
of the resulting session keys in a secure channel. Their work builds on that of Paterson et al. [PRS11], who
introduced extensions of the standard AEAD notions to allow for length hiding; the ACCE approach was
subsequently adopted and extended by Krawczyk et al. [KPW13] to analyze a wider set of TLS Handshake
Protocol options. Again in the constructive cryptography setting, Badertscher et al. [BMM+15] proposed
an abstraction of a secure channel, essentially the constructive-cryptography counterpart of a stateful
AEAD scheme, and argued that the security of a modified version of the TLS 1.3 record protocol fulfills
the corresponding security goal.

3

Stream-based channels. Characteristic of all the above-mentioned prior works is that they treat secure
channels as providing an atomic interface for messages, meaning that the channel is designed only for
sending and receiving sequences of discrete messages. However, this only captures a fraction of secure
channel designs that are actually used in the real world. In particular, TLS, SSH, and QUIC all provide
a streaming interface for the applications that use them: applications submit segments (or fragments)
of message (or plaintext) streams to an application programming interface (API), and similarly receive
fragments of message streams from the API. The sending side may arbitrarily buffer and/or fragment the
message stream before encapsulating it for sending.

Moreover, in some cases, even under normal operations, it is not guaranteed by the network that the
resulting stream of ciphertext fragments (which we refer to as ciphertexts henceforth treating them as
opaque bit strings) that is sent will arrive at the receiver with the same pattern of fragmentation, even if
the reconstructed message streams are in the end identical.1 Under adversarial conditions, such guarantees
certainly do not hold: for example, TLS runs over TCP and an active man-in-the-middle adversary can
tinker with the TCP segments, adding, removing and reordering TLS data at will. Thus practical secure
channels need to securely process arbitrarily fragmented ciphertexts. Finally, to make things even more
complex, and coming full circle, applications (like HTTP) often rely on stream-oriented secure channels
(like TLS) to securely deliver what are actually, in their semantics, atomic messages.

This discussion points to a mismatch between atomic descriptions of secure channels in the cryptogra-
phy literature and the reality of the operation of secure channels. As one may expect, such mismatches can
have negative consequences for security. The starkest example of this comes from the plaintext recovery
attack against SSH given by Albrecht et al. [APW09]. Their attack specifically exploits the adversary’s
ability to deliver arbitrary sequences of SSH packet fragments to the receiver (over TCP) and observe the
receiver’s behavior in response. The attack is possible despite the analysis of [BKN04] which proved that
the SSH secure channel satisfies suitable atomic stateful security notions. Related attacks against certain
IPsec configurations (and exploiting IPsec’s need to handle IP fragmentation) were presented in [DP10].
Attacks highlighting a disjunction between what applications expect and what secure channels provide,
in the specific context of HTTP and TLS, can be found in [SP13, BDF+14]. All these attacks highlight
deficits of previous approaches to modeling and analyzing secure channels.

Boldyreva et al. [BDPS12] extended the classical, atomic secure-channel confidentiality notion to cover
the case of SSH-like stream-based secure channels, broadening the SSH-specific work of Paterson and
Watson [PW10]. Subsequently, Albrecht et al. [ADHP16] augmented the model of [BDPS12] with a
corresponding notion of integrity. However, while their work allows for fragmented delivery of ciphertexts
to the receiver, it still assumes that the encryption process on the sender’s side is atomic, meaning that
there is a one-to-one correspondence between messages and ciphertexts. This may be the case for SSH
when used in interactive sessions, but it is not the case for the tunneling mode of SSH, and never the
case for other secure channel protocols. For example, even though the TLS specification [DR08] does not
include a formal API definition, it is clear that the design intention is to provide a secure channel for data
streams and the application programmer is in practice offered a TCP-like socket interface. As noted above,
the sending side can arbitrarily buffer and fragment the message stream when preparing ciphertexts for
sending.

Our contributions. In this paper we develop formal functional specifications, security notions, and a
construction (using AEAD as a building block) for stream-based channels. We also explore how applica-
tions, given access to a stream-based channel meeting our security notions, can safely use it to transport

1IPsec is a prime example; because of the interaction between IPsec and IP with its fragmentation features, IPsec-protected
packets can arrive at their destination in a sequence of fragments, each fragment contained in its own IP packet, and possibly
arriving out of order.

4

ERR-PRE

IND-CCFA

IND-CPFA

INT-CST

INT-PST

CON-CST

aIND-CCFA

aIND-CPA

aINT-CST

aINT-PTXT

aERR-PRE

IND-CPA AUTH IND-sfCFA INT-sfCTF

ChAEAD [5.1]

[5.2, 5.3,
5.4, 7.13]

aChEtS [7.5]

[7.9, 7.10,
7.11, 7.12]

[C.1]

[4.5]

[D.1]

[6.6]

stream-based channels

atomic-message channels

symmetric encryption supporting
fragmentation [BDPS12, ADHP16]

authenticated encryption
with associated data [Rog02]

Figure 1: Overview of the notions we establish for stream-based channels and atomic-message channels supporting fragmen-
tation, as well as their formal or conceptual relations to established notions that we demonstrate for authenticated encryption
with associated data (AEAD) [Rog02] and symmetric encryption supporting fragmentation [BDPS12, ADHP16]. We provide
confidentiality notions in terms of (atomic-message) indistinguishability ((a)IND) under chosen plaintext, plaintext fragment
and ciphertext fragment attacks (CPA/CPFA/CCFA), integrity notions in terms of (atomic-message) integrity ((a)INT) of
plaintexts, plaintext streams and ciphertext streams (PTXT/PST/CST), and more specific notions for (atomic-message) error
predictability ((a)ERR-PRE) and conciseness of ciphertext streams (CON-CST).
Filled rounded rectangular areas indicate the three conceptual notions for channels and the notion of AEAD. Solid arrows
indicate implications we establish between security notions within these. Dotted rounded rectangles encompass the security
notions achieved by our generic constructions ChAEAD and aChEtS. Dashed arrows indicate the security notions required in
these constructions from the corresponding building blocks. Wavy lines indicate conceptually analogous security notions
between our setting of atomic-message channels supporting fragmentation and the notion of symmetric encryption supporting
fragmentation [BDPS12, ADHP16]. Numbers in brackets refer to the corresponding theorems and constructions in our paper.
Further discussions can be found in the text.

atomic messages over a fragmenting network via an atomic-message channel (supporting fragmentation).
Our models are in the game-based tradition, and extend those of [BKN04, BDPS12] to handle the

streaming nature of the channels that we consider. Figure 1 gives an overview of the notions we establish
for both stream-based and atomic-message channels and their relations, including formal and conceptual
relations to the established notions of AEAD [Rog02] and symmetric encryption supporting fragmenta-
tion [BDPS12, ADHP16].

While our methodology and modeling closely resemble those of [BDPS12], and indeed build upon
them, a crucial difference comes in our treatment of the sending (or encrypting) function of a stream-
based channel: in [BDPS12], this is still atomic (while decryption is not), whereas in our stream-based
channel setting, both the sending and receiving function support streams of data, with potentially arbitrary
buffering and fragmentation on the sending and receiving side. This requires careful modification of
the confidentiality definitions of [BDPS12]. In addition, we develop suitable integrity notions for the
streaming setting whereas [BDPS12] does not consider this aspect. This is important because the (informal)
security properties that applications expect a secure channel to provide confidentiality as well as integrity.
Concurrent to our work, Albrecht et al. [ADHP16] augmented the model of [BDPS12] with an integrity
notion for an analysis of the SSH protocol.

Bringing integrity into the picture for stream-based channels also enables us to prove a composition

5

result analogous to the classical result of [BN00] for symmetric encryption schemes, which states that
IND-CPA security in combination with integrity of ciphertexts (INT-CTXT security) guarantees IND-CCA
security. This provides an easy route to proving that a given stream-based channel construction pro-
vides strong confidentiality (indistinguishability under chosen ciphertext-fragment attacks, or IND-CCFA
security) and integrity (integrity of plaintext streams, INT-PST security).

The composition theorem brings an interesting technical challenge to surmount: as was already rec-
ognized in [BDPS14] for the classical (atomic) setting, the possibility that realistic models of encryption
schemes may involve multiple error messages means that the original composition proof of [BN00] does
not go through. In [BDPS14], this was overcome by assuming the scheme is such that, from an adversarial
point of view, only one of the possible error messages has a non-negligible chance of being produced during
operation of the scheme. Here we take a different tack, introducing the concept of error predictability,
which guarantees the existence of an efficient algorithm that can predict which errors should be output
during decryption of a ciphertext stream. We exemplify that such a predictor can exist for a given scheme,
even in cases where the analogous conditions to those in [BDPS14] are not satisfied. Our approach can also
be used in the atomic-message setting to extend the composition theorem to schemes with distinguishable
but predictable errors.

We demonstrate the feasibility of our security notions by providing a generic construction for a stream-
based channel that uses AEAD as a component and achieves our strongest confidentiality and integrity
notions. The resulting stream-based channel closely mimics the TLS record protocol. That way, our
security results provide validation for this important real-world protocol design, whilst fully taking its
streaming behavior into account.

Finally, we analyze how applications can safely transport atomic messages over a possibly fragmenting
network. To formalize in cryptographic terms the meaning of the latter we propose the notion of atomic-
message channel supporting fragmentation and develop corresponding confidentiality and integrity notions.
With a rigorous security goal in mind we can confirm that the straightforward approach (used, e.g., in
HTTP) to encode distinguished end-of-message symbol into the message stream, thus allowing the receiver
to reconstruct the message boundaries, does achieve the desired security goal. After looking closely at this
approach we develop a generic paradigm, that we call encode-then-stream, for building atomic-message
channels from stream-based channels, and study its security. The resulting construction provably achieves
strong confidentiality and integrity guarantees, as we show, provided that the underlying stream-based
channel also offers strong security.

Ultimately, the study of atomic-message security in the presence of ciphertext fragmentation casts a
formal light on the truncation [SP13] and ‘cookie-cutter’ [BDF+14] attacks on HTTP running over TLS,
showing how they can be seen as arising from a misunderstanding of the security guarantees that can
be provided by a stream-based channel to applications expecting an atomic-message channel. In essence,
applications relying on non–integrity-protected end-of-message indicators cannot hope to safely reconstruct
atomic messages on the receiving end of a (stream-based) channel.

Further related work. Bhargavan et al. [BFK+13] have developed notions of security for stream-based
channels as part of their detailed analysis of the TLS record protocol. Their approach involves expressing
channel security properties as types in a programming language, and then formally proving that the type
definitions are respected in an adversarial setting (where the adversary is modeled as another program
interacting with the code for the send and receive functions of the channel). This can then be related to
more traditional game-based security notions (specifically in [BFK+13], to LH-AEAD security as defined in
[PRS11]). This is an intriguing approach that deserves further study, as it offers the prospect of obtaining
semi-automated proofs of security and can in principle deal with greater complexity than our approach,
as well as running code. However, the lack of detail in the definitions of [BFK+13] (for the streaming

6

interface with an atomic LH-AEAD security notion underneath) precludes a detailed comparison with the
stream-based security notions that we obtain using a traditional game-based approach. In a subsequent
work, Bhargavan et al. [DLFK+17] extended this approach to verify an implementation of TLS 1.3.

A seemingly similar line of work to ours concerns blockwise-adaptive security and on-line symmetric
encryption schemes, as developed in [BBKN01, JMV02, FJMV04, FJP04, BT04, Bar07] and recently also
taken into account within the CAESAR competition [Ber] and authenticated encryption [FFL12, HRRV15].
There, the schemes operate in an on-the-fly manner, processing one fixed-size block of plaintext or cipher-
text at a time; meanwhile the adversary is given access to blockwise encryption (and possibly decryption)
oracles. Beyond that, Tsang et al. [TSS09] consider streamwise (on-line) authenticated encryption in the
stateless setting (i.e., for a single fragmented ciphertext, treated as a ‘stream’), with a focus on latency
and overhead on resource-constrained devices. However, in these papers messages and ciphertexts are
ultimately regarded as discrete entities, rather than as streams of message and ciphertext fragments as
in our treatment. Moreover, the encryption and decryption interfaces presented by an on-line encryption
scheme and a stream-based channel (as we define it here) are rather distinct. These differences makes the
two lines of work in fact quite incomparable. Of course, our work is trivially distinguished from the vast
body of research on stream ciphers and on the treatment of specific cryptographic problems in stream-
ing contexts such as [OS05] or the foundational work of [PY14] on the feasibility of cryptography with
streaming devices.

Paper organization. After introducing some basic notation and terminology in Section 2, we present
in Section 3 our formal definition for stream-based channels. Section 4 contains our security notions for
confidentiality and integrity of stream-based channels as well as our composition theorem. In Section 5
we provide a generic construction of stream-based channels from AEAD. Section 6 turns to discussing
how to provide a secure atomic-message interface on top of a fragmenting network and which security
guarantees such an interface should provide. To this end, we formalize the notion of atomic-message chan-
nels supporting ciphertext fragmentation as well as corresponding confidentiality and integrity properties,
and study their relations. In Section 7 we propose a generic paradigm, encode-then-stream, for building
atomic-message channels from stream-based channels, and assess its security. We conclude with open
questions arising from this work in Section 8.

Comparison with proceedings version. A preliminary (proceedings) version of this work appeared
as [FGMP15]. The proceedings version only contained the definition, security, and generic construction
of stream-based channels (cf. Sections 3–5 of this paper). In this version we provide detailed proofs for
the implications among stream-based security notions, the composition theorem, and the security of our
generic construction. We also modify the IND-CCFA and INT-CST notions to correct a flaw in the security
properties presented in [FGMP15] which also appears in the confidentiality notion of [BDPS12] (the original
notions failed to exclude a class of trivial attacks; see Section 4 for the technical details).

In the present work we additionally study how applications can safely use a stream-based channel to
transport atomic messages over a possibly fragmenting network. To this end, we formalize in Section 6
the notion of atomic-message channels supporting fragmentation, similar in spirit to [BDPS12], and cor-
responding security properties. We then provide a generic ‘encode-then-stream’ construction in Section 7,
generalizing the common approach of applications and ensuring provably-secure atomic-message transport
over a stream-based channel.

7

2 Preliminaries
Notation. Let Σ be an alphabet and s ∈ Σ∗ be a string, where s = ε denotes the empty string. By
|s| we denote the length of the string s, by s[i] ∈ Σ the i-th character of the string (where s[1] is the
first character for a non-empty string), and by s[i, . . . , j] the substring from and including s[i] up to and
including s[j], i.e., s[i, . . . , j] = s[i] ‖ . . . ‖ s[j]. Given two strings s, t ∈ Σ∗ we write s 4 t to indicate that
s is a prefix of t, i.e., there exists r ∈ Σ∗ such that s ‖ r = t; in this case we write r = t% s. Similarly, we
write s ≺ t to indicate that s is a strict prefix of t, i.e., s 4 t and s 6= t. We denote the longest common
prefix of s and t by [s, t] = [t, s]. Note that s 4 t is equivalent to having [s, t] = s. With the above notation
s% [s, t] denotes the suffix of s with the longest common prefix of s and t stripped off.

Let s = (s1, . . . , s`) ∈ (Σ∗)` be a vector of strings for some integer `. (The strings need not be of equal
length.) For all 0 ≤ i ≤ j ≤ ` we denote s[i] = si and s[i, . . . , j] = (si, . . . , sj). We say that two vectors
s = (s1, . . . , s`) ∈ (Σ∗)` and t = (t1, . . . , t`′) ∈ (Σ∗)`′ are equal, and write s = t, if and only if ` = `′ and
for all i ∈ {1, . . . , `} it holds s[i] = t[i]. The conversion of a vector into a string is simply performed via
the concatenation operation ‖s = s1 ‖ . . . ‖ s`. By convention, the concatenation of an empty vector ()
is the empty string ε. Slightly overloading notation, we denote the merge of two vectors s = (s1, . . . , s`)
and t = (t1, . . . , t`′) as s ‖ t = (s1, . . . , s`, t1, . . . , t`′). We also indicate by s 4 t that s is a prefix of t, i.e.,
` ≤ `′ and s1 = t1, . . . , s` = t`, and in this case we denote by t % s the (potentially empty) vector u such
that t = s ‖ u. We write s ≺ t to indicate that s is a strict prefix of t. Similarly, we denote by [s, t] the
longest vector that is a prefix of both s and t.

Channel Terminology. Before defining channels formally, it is useful to settle some terminology. Our
syntax reflects the generic functionality that a channel should provide, i.e., allowing a sender to transmit
messages and a receiver to obtain them in a reliable way. In particular, the notion of a channel is inde-
pendent of the targeted security properties (like confidentiality or integrity) as these may vary from one
specific application to another. While, e.g., a secure channel is generically thought of as being realized via
stateful authenticated encryption, an authenticated channel might choose to leave confidentiality aside and
provide only integrity. We prefer to keep a higher level of abstraction and explicitly separate the generic
notion of a channel from its building blocks or targeted security guarantees and hence define sending (Send)
and receiving (Recv) algorithms rather than encryption and decryption algorithms.

3 Stream-Based Channels
We capture the functionality of channel protocols that offer a reliable transmission of streams like the
Transmission Control Protocol (TCP) [Pos81] and, in a second step, we define confidentiality and integrity
properties expected from (stream-based) secure channel protocols like the Transport Layer Security (TLS)
record protocol [DR08] or the Secure Shell (SSH) Binary Packet Protocol [YL06b].2 To do so we first
need to define the syntax of stream-based channels that, in contrast to previous models for channels,
send fragments of a message (or plaintext) stream rather than atomic messages. In order to remain close
to real-world implementations we restrict both the message space and the ciphertext space to the set of

2Our model inherently assumes that, in a benign scenario, ciphertext fragments are delivered reliably and in order (i.e.,
in a TCP-like manner). While we recognize that efficient and secure transmission protocols can be designed also on top of
unreliable protocols like the User Datagram Protocol (UDP) [Pos80] as done, e.g., in Google’s Quick UDP Internet Connections
(QUIC) protocol [QUI], we deem these approaches orthogonal or unrelated to our work. In such cases, a reliable and ordered
stream transmission can be implemented non-cryptographically either by TCP-like preprocessing of the UDP datagrams before
handing them over to a stream-based channel according to our definition or by postprocessing UDP datagrams which are
encrypted and authenticated individually (e.g., using an AEAD scheme).

8

(from application)

m1 m2 m3 m4 m5 message stream

c1 c3 c4 c5 ciphertext stream

Send

(lower-layer transmission)

c′1 c′2 c′3 c′4 c′5 ciphertext stream

m′1 m′2 m′4 m′5 message stream

Recv

(to application)

Figure 2: Illustration of the behavior of the Send and Recv algorithms of a stream-based channel, indicating the message and
ciphertext fragments being sent (mi resp. ci) and received (m′i resp. c′i). Note that, due to buffering, output ciphertexts and
messages (ci resp. m′i) can be empty.

bit strings, where we understand ‘messages’ and ‘ciphertexts’ not as atomic units, but as fragments (i.e.,
substrings) of a message stream and a ciphertext stream.

Additionally, we do not stipulate a particular input/output behavior on the sender side, but instead
allow the sending algorithm Send to process input data at its discretion, e.g., implementing some form of
buffering before sending. We enforce sending out particular chunks of the message stream by employing
the established concept of ‘flushing a stream’ known from network socket programming, and provide the
Send algorithm with an additional flush flag f ∈ {0, 1} which, if set to f = 1, ensures that all the message
fragments fed so far are sent out instantaneously. Jumping ahead, in our security model this choice
conservatively also allows the adversary to control the flush flag. If the flush flag is set to zero, Send
may internally decide to keep accepting more message fragments or to send out a ciphertext fragment,
depending on its implementation and resources.

We remark that our model also captures real-world channels that, instead of offering an explicit flushing
mechanism, buffer their input until a specified timeout is reached. In such scenarios, the adversary is simply
given control over the timeout through controlling the flush flag.3

In our definition below for any message fragment m processed by Send we denote by c the (potentially
empty) resulting ciphertext. We stress that c should not be interpreted as an encapsulation of m (i.e., we
do not require that c decrypts to m, as we expand later) but just as a label for the output of Send on
input m and the current state. In particular, letting Send output empty ciphertexts allows the algorithm
to buffer message fragment for later sending. Similar considerations hold for Recv, which may buffer
ciphertext fragments before returning a non empty message fragment. Figure 2 illustrates the behavior of
the sending and receiving algorithms of a stream-based channel.

We proceed by defining syntax and correctness of stream-based channels.
3While any practical channel implementation will send buffered data out eventually (on explicit request or on timeouts),

note that our model is general enough to also capture channels that do not offer any control over flushing: for this it suffices
to consider a restricted channel interface where the flush flag is fixed to f = 0.

9

Definition 3.1 (Syntax of stream-based channels). A stream-based channel Ch = (Init,Send,Recv) with
associated sending and receiving state space SS resp. SR and error space E, where E ∩ {0, 1}∗ = ∅, consists
of three efficient algorithms:

• Init. On input a security parameter 1λ, this probabilistic algorithm outputs initial states stS,0 ∈ SS,
stR,0 ∈ SR for the sender and the receiver, respectively. We write (stS,0, stR,0)←$ Init(1λ).

• Send. On input a state stS ∈ SS, a message fragment m ∈ {0, 1}∗, and a flush flag f ∈ {0, 1},
this (possibly) probabilistic algorithm outputs an updated state st′S ∈ SS and a ciphertext fragment
c ∈ {0, 1}∗. We write (st′S , c)←$ Send(stS ,m, f).

• Recv. On input a state stR ∈ SR and a ciphertext fragment c ∈ {0, 1}∗, this deterministic algorithm
outputs an updated state st′R ∈ SR and a message fragment m ∈ ({0, 1} ∪ E)∗. We write (st′R,m)←
Recv(stR, c).

Given a state pair (stS,0, stR,0), an integer ` ≥ 0, and tuples of message fragments m = (m1, . . . ,
m`) ∈ ({0, 1}∗)` and of flush flags f = (f1, . . . , f`) ∈ {0, 1}`, let (stS , c) ←$ Send(stS,0,m, f) be shorthand
for the sequential execution (stS,1, c1) ←$ Send(stS,0,m1, f1), . . . , (stS,`, c`) ←$ Send(stS,`−1,m`, f`) with
c = (c1, . . . , c`) and stS = stS,`. For ` = 0 we define c to be the empty vector and stS,` = stS to be the
initial state. We use an analogous notation for the receiver’s algorithm.

Correctness of stream-based channels should guarantee that if, after initialization, Send is fed with a
message stream, and (a prefix of) the corresponding ciphertext stream is then processed by Recv, then no
matter how the ciphertexts are fragmented at the sender’s side and re-fragmented at the receiver’s side
(provided that the order of the bits is preserved), then the returned message stream is a prefix of the initial
message stream. Moreover, when Recv consumes a full ciphertext fragment generated by a call to Send
with the flush flag set to 1, the stream output by Recv should contain all the message fragments input
to Send up to that call.

More precisely, if the receiver obtains (in an arbitrarily fragmented way) a prefix ‖c′ of the string of
ciphertexts ‖c created by the sender for an input message vector m ∈ ({0, 1}∗)` and flush flag vector
f ∈ {0, 1}`, and if string ‖c′ contains the concatenation c1 ‖ . . . ‖ ci of the first i ciphertexts of c, then we
require that the message string ‖m′ returned on the receiver’s side contains as a prefix the concatenation
m1 ‖ . . . ‖ mi of the first i messages of m for all indices i ∈ {0} ∪ {j : fj = 1} for which the corresponding
call to Send flushed its buffer (if all flush flags fj are set to zero then the above concatenations of ciphertexts
and messages are empty and the correctness condition is trivially fulfilled). In particular, this requires
that the receiver must output the full and correct message stream if the last Send call has the flush flag f`
set to 1.

Definition 3.2 (Correctness of stream-based channels). Let Ch = (Init,Send,Recv) be a stream-based
channel. We say that Ch provides correctness if for all state pairs (stS,0, stR,0)←$ Init(1λ), all `, `′ ≥ 0, all
choices of the randomness for algorithms Init, Send and Recv, all message-fragment vectors m ∈ ({0, 1}∗)`,
all flush-flag vectors f ∈ {0, 1}`, all sending output sequences (stS,`, c)←$ Send(stS,0,m, f), all ciphertext-
fragment vectors c′ ∈ ({0, 1}∗)`′, and all receiving output sequences (st′R,`′ ,m′) ← Recv(stR,0, c′), we have
for any i ∈ {0} ∪ {j : fj = 1} that

‖c[1, . . . , i] 4 ‖c′ 4 ‖c =⇒ ‖m[1, . . . , i] 4 ‖m′ 4 ‖m.

Remark 3.3. Note that the receiver’s output alphabet consists of bits and of distinct error symbols of the
set E ; correctness therefore implies that the receiver does not output error symbols for genuine ciphertext
streams.

10

Remark 3.4. It is instructive to compare our correctness definition with that of Boldyreva et al. [BDPS12].
There, correctness requires that if a sequence m of discrete messages is encrypted, and the resulting
ciphertext stream ‖c is then decrypted (possibly in a fragmented manner), then the obtained message
sequence (when message separators ¶ are removed) is identical to the original sequence m. In the special
case of a single message, this implies that encryption ‘always flushes’ in the setting of [BDPS12], and is
in turn the reason why encryption is necessarily an atomic operation. By contrast, in our setting the
Send algorithm is equipped with a flush flag and, when the latter is set to zero, potentially the entire
message fragment is buffered for delayed sending. This is, then, an essential difference between the setting
of Boldyreva et al. [BDPS12] and the streaming one. An additional difference is that the correctness
condition in [BDPS12] is stronger than ours as it incorporates a certain amount of robustness. More
specifically, the sequence of ciphertext fragments c′ submitted for decryption in the correctness definition
of [BDPS12] may extend the sequence produced by encryption (in other words, ‖c is only required to be
a prefix of ‖c′ in order for decryption to still work correctly up to ‖c). Such cases will be dealt with by
our integrity notions.

4 Security for Stream-Based Channels
In this section we introduce confidentiality and integrity notions for stream-based channels and study the
relations among these notions. Our notions are game-based and extend security properties for stateful
authenticated encryption [BKN04] to the streaming setting. We specify these properties in terms of
asymptotic security; analogous notions in the concrete setting are easy to infer.4

4.1 Confidentiality

Following the approach of Bellare et al. [BKN04] for stateful encryption we define confidentiality in terms of
left-or-right indistinguishability of ciphertexts. We recall that chosen-plaintext attacks (CPA) for stateful
encryption are modeled through a game in which A is given a left-or-right oracle OLoR that, upon being
queried on pairs of messages (m0,m1), returns encryptions of either the ‘left’ messages m0 or the ‘right’
messages m1, depending on a secret bit b ∈ {0, 1}. The game to model chosen-ciphertext attacks (CCA)
is similar but additionally provides the adversary with a decryption oracle ORecv that A can query on
ciphertexts of its choice, obtaining the corresponding decrypted messages except for in-sync ciphertexts
(i.e., the sequence of ciphertexts output by the left-or-right oracle OLoR whose decryption would reveal the
challenge sequence mb by correctness). In both games A’s goal is to determine the bit b. We now adapt
these notions to the stream-based setting.

As for the case of symmetric encryption supporting ciphertext fragmentation—introduced by Boldyreva
et al. in [BDPS12]—our security notions should reflect that the algorithms of a stream-based channel sup-
port processing of arbitrary fragments of the message stream and of the ciphertext stream respectively.
However, while Boldyreva et al. consider only fragmented decryption (i.e., the encryption process is atomic)
and therefore focus their attention on the CCA setting, in our case the fragmentation at the sender also
affects the adversarial capabilities in the CPA setting. We hence define two new indistinguishability no-
tions, one for chosen plaintext-fragment attacks (IND-CPFA) and one for chosen ciphertext-fragment attacks
(IND-CCFA). The corresponding experiments, that we denote by ExptIND-atk,b

Ch,A for atk ∈ {CPFA,CCFA}, are
depicted in Figure 3.

Before specifying in detail the logic of our experiments we introduce some useful notation. Within
the experiments we denote by CS the concatenation of the ciphertext fragments sent so far; similarly, we

4It is straightforward to define a concrete notion of security by considering the advantage of the adversary as a concrete
function of its running time, the numbers of oracle queries, and bounds on the size of the input streams for oracle queries.

11

write CR for the concatenation of the ciphertext fragments queried to the receiver. We abbreviate CS
and CR as the sent (ciphertext) stream and the received (ciphertext) stream, respectively. We say that
the sent and received streams are in-sync, or equivalently that they match, if the latter is a prefix of the
former (CR 4 CS). If CS 64 CR and CR 64 CS then we say that the two streams deviate, or equivalently
that they are out-of-sync. In the experiment we keep a flag sync to indicate whether the above two streams
are in-sync (sync = 1) or not. As soon as the streams go out-of-sync we also say that also the oracle ORecv
goes out-of-sync.

Adapting the CPA experiment to the stream-based settings is relatively easy. We do so by incorporating
the flush flag f into the oracle OLoR and letting the adversary also specify the value of f ; this provides A
with the same interface for Send as that of an application. For each query (m0,m1, f) the oracle OLoR
operates as follows: after checking that the message fragments m0 and m1 have the same bit length, it
invokes Send on input the current state stS , messagemb, and flush flag f , it records the resulting ciphertext
fragment c into the ciphertext stream CS , and finally gives c to the adversary.

Formalizing a sound security notion for the CCA setting, where the adversary can also obtain the output
of Recv for chosen ciphertext-fragments, turns out to be more delicate. Ideally, we envision a receiving
oracle ORecv that lets A see as much decrypted plaintext as possible without enabling trivial attacks.
Following this principle we mimic the strategy of Bellare et al. [BKN04] to model stateful encryption
security by declaring ORecv to be in-sync—thus instructing it to artificially suppress the output of Recv—
as long as the adversary supplies a prefix of the original ciphertext stream output by the left-or-right
oracle.

There is, however, a definitional challenge to surmount. In contrast to stateful encryption where
messages input to the encryption algorithm are considered as atomic units and correspond in a one-to-one
manner to the output ciphertexts, in the streaming scenario messages and ciphertexts can be arbitrarily
fragmented. Therefore, it is not clear a priori how to translate deviations of the ciphertext sequences
into deviation of the message sequences. To adapt the suppression mechanism of Bellare et al. to the
streaming setting we need to determine at which point exactly the ciphertext stream at the receiver should
be considered out-of-sync.

Synchronization/suppression mechanism for symmetric encryption supporting fragmenta-
tion. The experiment for indistinguishability against chosen-fragment attacks (IND-sfCFA) proposed by
Boldyreva et al. [BDPS12, Definition 4] in the context of symmetric encryption supporting ciphertext
fragmentation stays close to the original definitions of [BKN04] and conservatively defines synchronization
to be lost at the ciphertext boundaries. That is, ORecv suppresses the output of Recv up to the longest
sequence of genuine ciphertexts (recall that in [BDPS12] the encryption algorithm is atomic, and hence it
outputs entire ciphertexts rather than fragments, making it possible to identity ciphertext boundaries in
a security experiment). In a run of the IND-sfCFA experiment let m1, . . . ,mi be the messages processed
by Send and let c1, . . . , ci be the resulting ciphertexts, let j ≤ i be maximal such that the receiving algo-
rithm processes entirely the sequence of the first j sent ciphertexts, and suppose that the stream CR of
ciphertext fragments processed by Recv deviates from the genuine sequence CS = c1 ‖ · · · ‖ ci. Then syn-
chronization is considered to be lost from the first bit following ciphertext cj , and hence ORecv suppresses
exactly the first j sent messages m1, . . . ,mj from the output of Recv.

As we show in the following examples, this option is inappropriate in a stream-based setting where
the ciphertext fragments output by Send do not necessarily correspond one-to-one to the input message-
fragments.

Consider the case of TLS and the Send algorithm being called on a (214 + 1)-byte input message
with the flush flag set to 1—mimicking the behavior of many TLS implementations that keep no send
buffer. Obeying the limit of at most 214 bytes of payload in a single TLS record, Send is forced to output

12

a ciphertext fragment containing (at least) two TLS records. According to the IND-sfCFA experiment
in [BDPS12], an adversary could forward this fragment to the decryption oracle with the second record
modified but the first record untouched. The adversary would then obtain the decryption of both records
as the IND-sfCFA experiment considers them as jointly forming a single ciphertext, hence revealing parts
of the challenge message string. Thus, the IND-sfCFA notion would be unachievable for TLS.

As another example assume that a stream-based channel, aiming at confidentiality only, generates the
ciphertext stream CS as the bitwise XOR of the message streamMS and the output of a stream cipher. In
this setting, the IND-sfCFA notion would consider the ciphertext fragments output by Send on the input
message fragments to be units that should be either completely kept confidential or, if modified, can be
fully leaked to the adversary. However, with the channel exhibiting no further structure, enforcing any
block boundaries clearly becomes artificial.

Synchronization/suppression mechanism for stream-based channels. Taking into account that
in the streaming scenario the output of Send is a bit stream without any further structure in general, we
declare synchronization to be lost starting from the first bit of the receiving ciphertext stream CR deviating
from the genuine stream CS .

Concretely, suppose that during an execution of the IND-CCFA experiment the adversary causes CR to
deviate from CS by submitting for decryption a strict prefix of the genuine stream followed by additional
bits that deviate from CS (using a more compact notation: [CS , CR] ≺ CS and [CS , CR] ≺ CR). In this
case the streams CS and CR are considered to be in-sync up to their longest common prefix [CS , CR] while
the deviating portion CR % [CS , CR] is out-of-sync. Given this, we let ORecv process ciphertext fragments
submitted for decryption by updating CR with the newly queried fragment and, as long as CR is a prefix
of CS , invoking Recv (thereby updating the state stR) on this fragment and suppressing the corresponding
output. If the adversary instead submits a fragment that causes CR to deviate from CS the oracle stops
suppressing and, from then on, the output of Recv is given to the adversary.

Processing the first ciphertext fragment that causes a deviation requires some care, though. The
challenging situation is as follows: all fragments submitted for decryption so far are in-sync (CR 4 CS)
and the ‘next’ ciphertext fragment c induces a deviation (CR ‖ c 64 CS). Now, if c contains a non-
empty in-sync prefix its decryption may trivially reveal challenge bits that should instead be suppressed
(as in the above example concerning TLS). To resolve this issue we let the receiving oracle invoke Recv
on both the entire fragment c and its longest in-sync prefix c̃ (the latter is the longest prefix of c that
matches CS), making sure that Recv takes as input the same state stR for both operations. Let m and m̃
be the resulting message fragments respectively, and note that m̃ matches the genuine message stream
by correctness. Then ORecv suppresses from m its longest prefix that matches the genuine stream (i.e., it
suppresses the potentially empty fragment [m, m̃]) and gives the resulting string m′ = m % [m, m̃] to the
adversary. The idea behind this strategy is that any potential challenge bit originating from the in-sync
part of c remains hidden from the adversary.

Another subtlety arising from the ciphertext fragmentation concerns the possibility that CR and CS are
neither in-sync nor out-of-sync. This may happen if the adversary submits to ORecv the entire (potentially
empty) genuine stream of ciphertexts followed by additional bits, making CR exceed CS . In such a case the
stream CR does not explicitly deviate from, but only extends, the genuine stream CS , that is, CS ≺ CR.

One could argue that submitting for decryption any bit that has not been honestly produced at the
sender should be considered an active attack and, thus, any part of CR exceeding CS should be declared
out-of-sync.5 This intuition turns out to be wrong, though. In fact, the ability to guess a small prefix of
the ‘next’ ciphertext fragment output by Send should not be considered as giving a significant advantage to

5This was indeed the argument adopted in [BDPS12] as well as in the proceedings version of this work [FGMP15], and
later identified as flawed by Degabriele [Deg16] in May 2016.

13

ExptIND-atk,b
Ch,A (1λ):

1 (stS , stR)←$ Init(1λ)
2 sync← 1
3 CS ← ε, CR ← ε
4 b′ ←$ AOLoR(·,·,·),ORecv(·)(1λ)
5 return b′

If A queries OLoR(m0, m1, f):
6 if |m0| 6= |m1| then
7 return ε to A
8 (stS , c)←$ Send(stS , mb, f)
9 CS ← CS ‖ c

10 return c to A

If A queries ORecv(c):
11 if sync = 0 then // already out-of-sync
12 (stR, m)← Recv(stR, c)
13 return m to A
14 else if CR ‖ c 4 CS then // still in-sync
15 (stR, m)← Recv(stR, c)
16 CR ← CR ‖ c
17 return ε to A
18 else
19 if CR ≺ [CR ‖ c, CS] then

// c deviates or exceeds, contains genuine part
20 c̃← [CR ‖ c, CS] % CR
21 s̃tR ← stR
22 (s̃tR, m̃)← Recv(s̃tR, c̃)
23 (stR, m)← Recv(stR, c)
24 m′ ← m % [m, m̃]
25 else // c deviates or exceeds, contains no genuine part
26 (stR, m′)← Recv(stR, c)
27 if CS 64 CR ‖ c or m′ 6= ε then

// deviation, or exceeding portion produces output
28 sync← 0
29 CR ← CR ‖ c
30 return m′ to A

Figure 3: Security experiment for confidentiality (IND-atk with atk ∈ {CPFA, CCFA}) of stream-based channels. A CPFA-
attacker only has access to the oracle OLoR.

the adversary. Then, declaring synchronization to be lost with the first bit of CR exceeding CS would allow
for trivial attacks like the following. The adversary starts by making a guess on the first bit d′ ∈ {0, 1}
output by Send and querying ORecv on input fragment d′. As CR = d′ deviates from CS = ε this first query
desynchronizes the receiving oracle. The adversary proceeds by posing a left-or-right query (m0,m1, 1)
with m0 6= m1, obtains a challenge ciphertext-fragment c′, and if its guess was correct (i.e., d′ 4 c′) it
submits for decryption the ciphertext fragment c′ % d′, otherwise it terminates. If the adversary correctly
guessed the first bit of c′ then by correctness it gets from ORecv the message m′ = mb. This strategy
succeeds with probability 1

2 . Merely guessing a small prefix of the next genuine ciphertext fragment which
does not produce any output is possible for any stream-based channel, but should not be considered as a
success of the adversary.

To exclude the class of attacks like the one just described we adopt the following strategy: we only
declare synchronization to be lost when the exceeding portion CR %CS produces a non-empty output—in
which case we also conservatively provide the adversary with this output. In other words, we only give
credit to the adversary if it is able to predict a non-trivial ciphertext fragment that actually leads to a
non-empty plaintext. This allows ORecv to later suppress further message bits in case, as a consequence
of the adversary posing more left-or-right queries, CS and CR end up being matching again (in the sense
that CR 4 CS).

To facilitate understanding we illustrate in Figure 4 how ORecv processes the first deviating ciphertext
fragment (CR ‖ c 64 CS) or an exceeding ciphertext fragment (CS ≺ CR ‖ c) by performing two calls
to Recv, one on input c and the other on input c̃.

Putting everything together, we can now unpack from Figure 3 the instructions executed by the ORecv
oracle upon being queried on a ciphertext fragment c. Its logic treats the two simplest cases first. In
case synchronization has been already lost (indicated by the flag sync being 0, line 11) the oracle responds

14

c1 c2 c3

ORecv
ORecv ORecv

ε m′ m

c̃2

c2

Recv

Recv

m̃

m

m′

stR

stR

Figure 4: Illustration of the ORecv oracle behavior in the IND-CCFA experiment from Figure 3 for ciphertext fragment inputs
c1, c2, c3 specified by the adversary A where c2 deviates from or exceeds the genuine ciphertext stream after the zigzag line.
The oracle ORecv goes out-of-sync on deviation or if exceeding ciphertext input produces non-empty output.

with the entire output of Recv on input the fragment c. If c is in-sync (CR ‖ c 4 CS , line 14) the oracle
invokes Recv on input c but fully suppresses its output. Next consider the case in which c makes CR
extend CS (CR ‖ c 64 CS but CS 4 CR ‖ c) or causes a deviation (CR ‖ c 64 CS and CS 64 CR ‖ c). Here
the oracle ORecv first checks whether c contains a non-empty, in-sync prefix c̃ matching CS which may
contain challenge-message bits that should be suppressed. Note that the corresponding check in line 19
evaluates to true if either CR ‖ c deviates from CS but c contains a non-empty in-sync prefix c̃ (thus
[CR ‖ c, CS] = CR ‖ c̃ ≺ CS with c̃ 6= ε), or CR ‖ c extends CS but c contains a non-empty prefix
matching CS (i.e., [CR ‖ c, CS] = CR ‖ c̃ = CS also with c̃ 6= ε). If from the above check it turns out
that c contains a non-empty in-sync prefix, the receiving operation is handled by performing a double
invocation of Recv on input identical states stR = s̃tR and ciphertext fragments c and c̃ respectively, which
yields message fragments m and m̃, as described earlier. We stress that the second invocation should be
considered as an auxiliary step performed by the oracle to establish which portion of m, if at all, shall be
suppressed (line 24). Indeed, the latter step is skipped in case c is fully deviating from or fully exceeding CS
(line 25). In either case, the oracle proceeds with determining whether synchronization is lost upon the
receipt of c because of a deviation (CS 64 CR ‖ c) or because the adversary managed to guess a non-trivial
ciphertext fragment leading to a non-emtpy output (CS 4 CR ‖ c but m′ 6= ε). The message fragment m′
here denotes the output of Recv corresponding to the deviating or exceeding part of c; this is the actual
message fragment that ORecv returns to the adversary.

We are now ready to give the formalism of our confidentiality experiments.

Definition 4.1 (IND-CPFA and IND-CCFA Security). Let Ch = (Init, Send,Recv) be a stream-based channel
and experiment ExptIND-atk,b

Ch,A (1λ) for an adversary A and a bit b be defined as in Figure 3, where atk is a
placeholder for either CPFA or CCFA. Within the experiment the adversary A is given access to a (stateful)
left-or-right sending oracle OLoR and, in the case of IND-CCFA security, a (stateful) receiving oracle ORecv.
We say that Ch provides indistinguishability under chosen plaintext-fragment attacks, respectively chosen
ciphertext-fragment attacks (IND-CPFA, resp. IND-CCFA) if for all PPT adversaries A the following
advantage function is negligible in the security parameter:

AdvIND-atk
Ch,A (λ) :=

∣∣∣Pr
[
ExptIND-atk,1

Ch,A (1λ) = 1
]
− Pr

[
ExptIND-atk,0

Ch,A (1λ) = 1
]∣∣∣ .

Length hiding. Note that we do not consider the extended length-hiding setting that was introduced
in [PRS11] to model TLS’s variable length padding capability and subsequently incorporated into the
ACCE security definition for secure channels in [JKSS12, KPW13]. While our work could conceivably be

15

extended to incorporate length hiding, it remains unclear to us what its value would be in the setting of
streaming channels, since length hiding is a notion intrinsically connected to atomic messages.

Alternative option to define confidentiality. For the sake of completeness we comment on an al-
ternative, intuitively appealing definition for the receiving oracle in Appendix A. The idea essentially is
to split the first deviating or any exceeding fragment c into two parts, its longest in-sync prefix c̃ and
the remaining portion c % c̃, then process both parts through Recv and give only the second output to
the adversary. While this option requires no auxiliary invocation of Recv, it results in a strictly weaker
confidentiality notion.

Revision of the proceeding version. We point out that the notion of confidentiality against chosen
ciphertext-fragment attacks (IND-CCFA) presented here is a revised version of the notion that appeared
in the proceedings version of this work [FGMP15]. As noted earlier, the notion in [FGMP15] failed to
exclude trivial attacks where A merely guesses exceeding bits, a case where synchronization should not be
considered lost if no output is produced. Beyond bookkeeping, line 27 contains the core difference between
the proceedings version and the present version of the experiment. The check identifies synchronization to
be lost if either CR deviates from CS or if the exceeding portion leads to a non-empty message. This issue
was pointed out to us by Degabriele in May 2016 [Deg16]. The same issue arises in the setting of [BDPS12]
and was reported for that setting in [ADHP16]. An analogous revision was applied to the integrity notion
for streams, presented in the following section.

On the scope of our confidentiality definition. When formalizing a security goal it is common to
develop a notion that is as strong as possible, yet achievable. The inability to foresee new attacks is the
main reason for aiming at the strongest notion. However, sometimes this conservative approach leads to
security notions that are ‘too strong’ for some applications, meaning that some schemes which have no
actual vulnerability are declared insecure within the model. An example of a security notion that—one
might argue—is too strong is IND-CCA security for symmetric encryption. For instance, if one starts
with an IND-CCA-secure encryption scheme and modifies it by letting the encryption routine append a
redundant bit to each ciphertext and letting the decryption routine ignore that last bit of each ciphertext,
the resulting scheme is no longer IND-CCA-secure. However, adding a redundant bit that is then ignored
for decryption should not harm the scheme’s confidentiality.6

Our IND-CCFA notion for stream-based channel may likewise be too strong for some applications. In
Appendix B we describe a scheme due to Poettering [Poe16] that, despite being intuitively confidential, is
vulnerable to an IND-CCFA attack. Briefly, this stream-based channel processes message fragments to be
sent by AEAD-encrypting fixed-length chunks of each input fragment, and similarly processes ciphertext
fragments to be received by AEAD-decrypting corresponding ciphertext blocks in such a way that, if any of
the AEAD decryptions fails, then a distinguished constant string is returned rather than an error. Clearly,
the scheme does not provide integrity protection, because the receiver would not be able to detect that the
message output stems from an error. However, because of the AEAD security, the message fragment output
by Recv on input a deviating ciphertext fragment should only reveal the distinguished string independently
of the challenge-message fragment and, thus, confidentiality should not be compromised. The way message
output is suppressed in our IND-CCFA experiment (cf. Figure 3) however enables an IND-CCFA attack on
this scheme which is always successful, as described in Appendix B. Exploring possible relaxations of
the stream-based IND-CCFA confidentiality notion which still uphold an intuitive, strong confidentiality
guarantee is an interesting direction for future work.

6An alternative notion of confidentiality that precisely aims at resolving this issue was proposed by Canetti et al. [CKN03]
as RCCA security (for ‘replayable’ CCA) in the public-key setting (and can be easily extended to the secret-key setting).

16

4.2 Integrity

Next, we formalize integrity notions for stream-based channels. We highlight that, while integrity prop-
erties for atomic messages (and atomic ciphertexts) are well-understood, no previous work considered
integrity in the non-atomic setting. In particular Boldyreva et al. [BDPS12] only addressed confidentiality
in the presence of ciphertext fragmentation; their notions were later and concurrently to this work aug-
mented with integrity notions by Albrecht et al. [ADHP16]. We define integrity notions for stream-based
channels as refinements of standard (stateful) properties of plaintext integrity (INT-sfPTXT), resp., cipher-
text integrity (INT-sfCTXT) from [BKN04] and refer to the new properties as plaintext-stream integrity,
resp., ciphertext-stream integrity (INT-PST, resp., INT-CST).

Similarly to the setting with atomic messages, INT-PST ensures that no adversarial query to the receiv-
ing oracle causes the message stream output by Recv to deviate from the message stream input to Send.
This notion is quite simple to formulate. Formalizing the stronger INT-CST property demands more care.
Intuitively, from ciphertext integrity we expect that when processing any ‘out-of-sync’ ciphertext, the al-
gorithm Recv should return an error message. However, when considering a stream-based interface it may
happen that Recv processes an out-of-sync ciphertext which does not yet contain ‘enough information’ to
be recognized as being invalid; in this case the receiving algorithm would buffer (part of) the ciphertext
and wait for further fragments until a sufficiently long ciphertext string is available to be processed and
deemed as valid or invalid. In such a scenario, a naive adaptation of the INT-sfCTXT definition of [BKN04]
would allow trivial attacks by declaring successful any adversary that makes the Recv buffer (part of) an
out-of-sync ciphertext, without producing non-trivial output. Our notion of ciphertext-stream integrity
carefully identifies the case just described and, by letting the receiving oracle wait for further ciphertext
fragments, declares the adversary successful only if Recv outputs a non-empty message fragment resulting
from an out-of-sync or exceeding portion of the ciphertext stream.

We formalize integrity of plaintext and ciphertext streams through the security experiment ExptINT-atk
Ch,A

depicted in Figure 5. The experiment provides the adversary with oracles OSend and ORecv, where the
former grants A access to algorithm Send under arbitrarily chosen message fragments and the latter
gives A an interface with algorithm Recv. We highlight that, while the sending oracle OSend is common
for both experiments INT-PST and INT-CST, the receiving oracle ORecv follows different procedures in the
two cases, as we further explain below.

In the execution of the INT-PST experiment, OSend maintains in string MS the stream of all sent
message fragments and, analogously, ORecv maintains in MR the stream of all received message fragments
(and/or error symbols). The adversary wins the game if it causes MS and MR to deviate in such a way
that their difference contains more than error symbols. Formally, we demand that the string MR output
by the receiver is not a prefix of the sender’s string MS , but such that this prefix-freeness is not only due
to error symbols from E .

In the INT-CST experiment oracles OSend and ORecv maintain strings CS and CR to record the streams
of sent ciphertexts, resp. received ciphertext fragments. Furthermore, ORecv decides when the adversary
wins by inspecting sent and received ciphertext streams, an inherently more complex task than looking
for deviations in the underlying sequences of sent/received message fragments. Indeed, in a stream-
based channel the algorithm Recv may need to buffer several ciphertexts before being able to recover
the underlying message stream or detecting that an error occurred; such a behavior is reflected in our
experiment. When processing in-sync ciphertexts ORecv simply appends each new fragment to CR. At the
moment when an out-of-sync ciphertext fragment or one that exceeds the sent ciphertext stream arrives,
the oracle compares the outputs of algorithm Recv when processing (i) the current input ciphertext c and
(ii) its longest in-sync prefix c̃. The adversary wins if ORecv outputs more in case (i) than it would in
case (ii) and if the difference between the two outputs is a non-empty, valid message. It also wins if it is
able to make Recv output a non-empty, valid message with a subsequent out-of-sync ciphertext. As for

17

ExptINT-atk
Ch,A (1λ):

1 (stS , stR)←$ Init(1λ)
2 sync← 1
3 win← 0
4 MS , CS ← ε, MR, CR ← ε
5 AOSend(·,·),ORecv(·)(1λ)
6 return win

If A queries OSend(m, f):
7 (stS , c)←$ Send(stS , m, f)
8 MS ←MS ‖ m
9 CS ← CS ‖ c

10 return c to A

INT-PST
If A queries ORecv(c):
11 (stR, m)← Recv(stR, c)
12 MR ←MR ‖ m
13 if MR % [MR, MS] /∈ E∗ then
14 win← 1
15 return m to A

INT-CST
If A queries ORecv(c):
16 if sync = 0 then // already out-of-sync
17 (stR, m)← Recv(stR, c)
18 if m /∈ E∗ then win← 1
19 else if CR ‖ c 4 CS then // still in-sync
20 (stR, m)← Recv(stR, c)
21 CR ← CR ‖ c
22 else
23 if CR ≺ [CR ‖ c, CS] then

// c deviates or exceeds, contains genuine part
24 c̃← [CR ‖ c, CS] % CR
25 s̃tR ← stR
26 (s̃tR, m̃)← Recv(s̃tR, c̃)
27 (stR, m)← Recv(stR, c)
28 m′ ← m % [m, m̃]
29 else // c deviates or exceeds, contains no genuine part
30 (stR, m′)← Recv(stR, c)
31 m← m′

32 if CS 64 CR ‖ c or m′ 6= ε then
// deviation, or exceeding portion produces output

33 sync← 0
34 CR ← CR ‖ c
35 if m′ /∈ E∗ then win← 1
36 return m to A

Figure 5: Security experiment for integrity (INT-atk with atk ∈ {PST, CST}) of stream-based channels. A PST-attacker is
provided with access to the left ORecv oracle (INT-PST), whereas a CST-attacker is instead granted access to the oracle on the
right-hand side (INT-CST).

confidentiality (see the discussion in Section 4.1) we consider the ORecv oracle to go out of sync (and set
sync ← 0) if the ciphertext fragment deviates from the corresponding bits in the sent ciphertext stream
or, when it merely exceeds the sent stream, if the output of Recv for the exceeding part is non-empty.7

Definition 4.2 (INT-PST and INT-CST Security). Let Ch = (Init,Send,Recv) be a stream-based channel
and experiment ExptINT-atk

Ch,A (1λ) for an adversary A be defined as in Figure 3, where atk is a placeholder for
either PST or CST. Within the experiment, the adversary A is given access to a sending oracle OSend and
a receiving oracle ORecv. We say that Ch provides integrity of plaintext streams, respectively ciphertext
streams (INT-PST, resp. INT-CST) if for all PPT adversaries A the following advantage function is
negligible in the security parameter:

AdvINT-atk
Ch,A (λ) := Pr

[
ExptINT-atk

Ch,A (1λ) = 1
]
.

Remark 4.3. Our definitions of integrity do not preclude from deeming those channels secure in which
message bits can be output as a result of the adversary delivering partial ciphertexts to the Recv oracle.
This is because in the streaming setting we care about the adversary’s ability to force the receiver to accept
message fragments corresponding to a part of the ciphertext stream that has gone out-of-sync, without

7As already discussed in Section 4.1, withholding synchronization loss for exceeding fragments that produce no output
eliminates the trivial attack which was present in the proceedings version of this paper [FGMP15]. There, the adversary could
guess (and input to ORecv) the first bit(s) of the next OSend output and, if successful, feed in the remaining ciphertext. With
ORecv considered out-of-sync on these first bit(s), although generating no output, this attack illegitimately was considered a
successful break of ciphertext-stream integrity.

18

attaching importance to ciphertext boundaries. Hence, this is quite distinct from the usual atomic setting.
Of course, applications making use of a streaming channel may wish to recover a secure channel for atomic
messages, in a more traditional sense. For example, this is the case for HTTP running over TLS and, as
noted in the introduction, has been a source of confusion for developers and led to concrete attacks on
protocols such as TLS [SP13, BDF+14]. We will examine this situation in greater detail in Section 6.

We further note that stream-based integrity providing weaker guarantees than atomic-message integrity
seems to be an intrinsic consequence of the nature of stream-based channels. In particular, apparent
avenues for strengthening the given integrity definition lead to notions which are clearly inappropriate in
the streaming setting. On the one hand, requiring a channel to output an error immediately after processing
the first bit deviating from the sent ciphertext stream is, for most constructions, an unattainable goal as
it is in general impossible to decide if an initial bit received is genuine or not.8 On the other hand,
requiring that a channel does not output any message bit until a full ciphertext output by Send is received
inappropriately enforces an atomic structure on the channel, i.e., basically the one of [BDPS12]. The latter
notion, as already discussed, is too strong for channels that, like TLS, might output ciphertexts which
contain multiple, independent parts.

4.3 Relations Amongst Notions and Generic Composition Theorem

We now explore relations between confidentiality and integrity—well-established for atomic messages
by [BN00, BKN04] and follow-up work, culminating in [NRS14]—and investigate whether these relations
can be lifted to our streaming setting. We highlight that, since integrity for encryption schemes supporting
ciphertext fragmentation was not addressed in [BDPS12], we are the first to consider such relations in the
presence of fragmentation.

Ideally we would like to translate the classic implications IND-CCA =⇒ IND-CPA, INT-CTXT =⇒
INT-PTXT, and the powerful composition result IND-CPA ∧ INT-CTXT =⇒ IND-CCA, all from [BN00],
to the realm of stream-based channels. It is immediate to see that, as in the setting where messages are
atomic, the stronger notions implies the weaker ones for both confidentiality and integrity individually.
Unfortunately, when integrity and confidentiality are targeted simultaneously, the situation for streams is
fundamentally more challenging.

Recall that, in the atomic-message setting, the proof of the composition theorem in [BN00] proceeds in
two steps: starting from the IND-CCA game, one first bounds the probability that the adversary submits a
valid decryption query distinct from an output of the encryption oracle by using the INT-CTXT advantage.
This then allows a reduction to the IND-CPA experiment (now assuming integrity of ciphertexts), simply
by answering all decryption queries with the distinguished error symbol ⊥. As already noted by Boldyreva
et al. [BDPS14], the same proof strategy does not work for schemes that have multiple decryption error
symbols (which models common real-world behavior of encryption schemes). This is because the reduction
can no longer (in general) know which one of the several possible error symbols should be output when
simulating decryption.

Thus the classic result IND-CPA ∧ INT-CTXT =⇒ IND-CCA already does not follow in the situation
where multiple error messages are possible, not even considering streaming. Worse, [BDPS14] shows that,
in the multiple decryption error setting, there exist schemes that are secure in both IND-CPA and INT-CTXT
senses, yet are not IND-CCA secure. We show later in this section that similar issues arise for stream-
based channels, even when restricting to the case of single error messages. Specifically, fragmentation at
the receiver’s side makes it harder to emulate a receiving oracle for the IND-CCFA experiment given a
receiving oracle for the INT-CST game.

8Indeed, stream-based integrity does not enforce that Recv outputs an error on deviating ciphertext fragments at all, but
is also satisfied by a channel providing no output (i.e., the empty string) in such cases.

19

As a remedy we propose an adapted version of the composition theorem, resurrecting the result both
in our streaming setting and in the case of multiple errors that was considered in [BDPS14]. However this
result can be proven only at the cost of introducing further assumptions on the output behavior of the
receiving algorithm. The conditions for the composition theorem may initially look quite demanding but,
as we confirm in Section 5, there exist natural schemes that satisfy the required conditions. Moreover, the
use of the composition theorem is not the only route to achieving IND-CCFA security: for specific schemes
it may be possible to prove IND-CCFA security directly.

Confidentiality. A study of the experiments in Figure 3 immediately shows that IND-CCFA security
implies IND-CPFA security, since an attacker in the IND-CPFA game only needs to emulate the left-or-
right oracle to provide a faithful simulation of the IND-CCFA game, and can trivially do so by relaying all
encryption queries to its own left-or-right oracle.

Integrity. Assume that ciphertext-stream integrity (INT-CST) from Definition 4.2 holds for a stream-
based channel. Then the channel also provides integrity of plaintext streams (INT-PST) and the security
reduction is tight. To see why consider the integrity experiment depicted in Figure 5: given the INT-CST
property, every efficient adversary either never produces a ciphertext stream CR that deviates from the
ciphertext stream CS (hence, by correctness, no deviation will occur in the underlying message streams)
or, if it generates a stream CR that does deviate from CS , by INT-CST the underlying message streams
will only differ by an error string. We give a formal proof in Appendix C.

Generic composition. As explained earlier, standard arguments to prove the composition theorem
do not apply in the streaming setting. The issue here is that losing the integrity game does not make
the output of ORecv (in the confidentiality game) predictable. Therefore, any strategy which allows the
recovery of the composition theorem should make it possible to forecast the output behavior of the receiving
algorithm when certain conditions are met. In line with this observation we introduce a new notion, so-
called error predictability, which precisely formalizes the ability to efficiently predict (part of) the output
of Recv in case error messages are expected. Intuitively speaking, error predictability demands that any
error symbols returned by Recv on input the ‘next ciphertext’ c can be efficiently predicted given only the
ciphertext stream CS output by Send, the ciphertext stream CR input to Recv, and the ciphertext c.

As formalized in Definition 4.4 and through the security experiment of Figure 6, we say that a channel
provides error predictability (ERR-PRE) with respect to an efficient probabilistic predictor algorithm Pred
if this predictor Pred, given CR, CS , and c, accurately outputs the above-mentioned error string with high
probability, for every arbitrarily chosen ciphertext c. Put differently, the ERR-PRE experiment declares
its adversary to be successful if it ever queries a (counterfeit) ciphertext c that induces Recv to produce
different errors from those output by the predictor. Note that the adversary can always learn if it has won
by evaluating the winning condition “〈m〉E 6= Pred(CS , CR, c)” itself for the available data.

Definition 4.4 (Error predictability (ERR-PRE)). Let Ch = (Init,Send,Recv) be a stream-based channel
with error space E, and let Pred be an efficient probabilistic algorithm. We say that Ch provides error pre-
dictability (ERR-PRE) with respect to Pred if for every PPT adversary A playing the experiment ERR-PRE
defined in Figure 6 against channel Ch, the following advantage function is negligible:

AdvERR-PRE
Ch,Pred,A(λ) := Pr

[
ExptERR-PRE

Ch,Pred,A(1λ) = 1
]
.

The next theorem formalizes the idea that, for the class of error-predictable channels, the generic
composition theorem holds (even for channels supporting multiple decryption errors).

20

ExptERR-PRE
Ch,Pred,A(1λ):

1 (stS , stR)←$ Init(1λ)
2 win← 0
3 CS , CR ← ε
4 AOSend(·,·),ORecv(·)(1λ)
5 return win

If A queries OSend(m, f):
6 (stS , c)←$ Send(stS , m, f)
7 CS ← CS ‖ c
8 return c to A

If A queries ORecv(c):
9 (stR, m)← Recv(stR, c)

10 if 〈m〉E 6= Pred(CS , CR, c) then
11 win← 1
12 CR ← CR ‖ c
13 return m to A

Figure 6: Security experiment for error predictability (ERR-PRE) of stream-based channels. We denote by 〈·〉E : ({0, 1}∪E)∗ →
E∗ the ‘projection onto the error space’, i.e., the mapping that removes from a string all occurrences that do not belong to
the error space E . For instance, let E = {⊥1,⊥2} and m = 01⊥1100⊥2; then 〈m〉E = ⊥1⊥2.

Theorem 4.5 (INT-CST∧IND-CPFA∧ERR-PRE =⇒ IND-CCFA). Let Ch = (Init,Send,Recv) be a (correct)
stream-based channel. If Ch provides integrity of ciphertext streams, error predictability with respect to
a predictor Pred, and indistinguishability under chosen plaintext-fragment attacks then it also provides
indistinguishability under chosen ciphertext-fragment attacks. Formally, for every efficient IND-CCFA
adversary A there exist efficient INT-CST adversary B, ERR-PRE adversary C, and IND-CPFA adversary D
such that

AdvIND-CCFA
Ch,A ≤ 2 · AdvINT-CST

Ch,B + 2 · AdvERR-PRE
Ch,Pred,C + AdvIND-CPFA

Ch,D .

Proof. We will consider a sequence of game transitions from the IND-CCFA experiment to the IND-CPFA
experiment and bound the difference in probability between each game and its successor in the sequence
with the advantage of a specific adversary. For better legibility we will denote the intermediate experiments
by Ei,bA for i ∈ {0, 1, 2} and, with a slight abuse of notation, use the shorthand Pr[Ei,bA] to indicate the
probability Pr[Ei,bCh,A = 1]. In the game transitions we only change the experiment’s ORecv oracle behavior;
the modifications are also shown in Figure 7.

Starting from the IND-CCFA experiment of Figure 3 against A, that we denote E0,b
A , we define a new

experiment E1,b
A which provides the adversary only with the output of the error predictor in case it breaks

ciphertext integrity of streams. More precisely, we modify the ORecv oracle in E1,b
A as follows: we add before

Lines 13 and 29 of the original experiment a conditional check for m /∈ E∗ (before line 13) resp. m′ /∈ E∗
(before line 29). If either of these conditions evaluates to true, we set a flag badbI and replace m, resp. m′,
with the output of Pred(CS , CR, c). Let badbI also denote event that the flag badbI is set to true. Note that
E1,b
A and E0,b

A execute the same instructions as long as badbI does not happen (beyond bookkeeping of CR in
the sync = 0 case which could also be inserted in E0,b

A without changing its behavior). We can thus assert
that Pr[E0,b

A ∧ ¬badbI] = Pr[E1,b
A ∧ ¬badbI], and hence obtain the bound

∣∣Pr[E0,b
A] − Pr[E1,b

A]
∣∣ ≤ Pr[badbI] (by

the Difference Lemma [Sho06] or the Fundamental Lemma of game playing [BR06]).
We show next how to convert any adversaryA that triggers either event bad0

I or bad1
I into an adversary B

that violates the INT-CST security of Ch. Adversary B initially chooses a bit d uniformly at random and
then runs A, answering its queries as follows. If A queries (m0,m1, f) to OLoR then B queries (md, f) to
its oracle OSend and forwards the oracle’s answer to A. Similarly B relays every receiving query c to its
oracle ORecv, obtains a response m, and returns the projection 〈m〉E of m onto the error space E to A.
Note that if the message A is supposed to obtain were to contain any non-error symbol then it would
trigger the bad event. When A halts, so does B.

As games E0,b
A and E1,b

A are the same until badbI we conclude that B provides a perfect simulation of
the games as long as A does not trigger badbI . Moreover, if A triggers badbI then B wins in the INT-CST
experiment if it had chosen d = b. Thus, we derive the inequality AdvINT-CST

Ch,B ≥ Pr[bad0
I ∧ d = 0] +

Pr[bad1
I ∧ d = 1] = 1

2 · Pr[bad0
I] + 1

2 · Pr[bad1
I], from which we can bound the advantage of A in the

21

ORecv(c) in E0,b
A :

11 if sync = 0 then
12 (stR, m)← Recv(stR, c)

13 return m to A
14 else if CR ‖ c 4 CS then
15 (stR, m)← Recv(stR, c)
16 CR ← CR ‖ c
17 return ε to A
18 else
19 if CR ≺ [CR ‖ c, CS] then
20 c̃← [CR ‖ c, CS] % CR
21 s̃tR ← stR
22 (s̃tR, m̃)← Recv(s̃tR, c̃)
23 (stR, m)← Recv(stR, c)
24 m′ ← m % [m, m̃]
25 else
26 (stR, m′)← Recv(stR, c)
27 if CS 64 CR ‖ c or m′ 6= ε then
28 sync← 0

29 CR ← CR ‖ c
30 return m′ to A

ORecv(c) in E1,b
A :

1 if sync = 0 then
2 (stR, m)← Recv(stR, c)
3 if m /∈ E∗ then
4 badbI ← true
5 m←$ Pred(CS , CR, c)

6 CR ← CR ‖ c
7 return m to A
8 else if CR ‖ c 4 CS then
9 (stR, m)← Recv(stR, c)

10 CR ← CR ‖ c
11 return ε to A
12 else
13 if CR ≺ [CR ‖ c, CS] then
14 c̃← [CR ‖ c, CS] % CR
15 s̃tR ← stR
16 (s̃tR, m̃)← Recv(s̃tR, c̃)
17 (stR, m)← Recv(stR, c)
18 m′ ← m % [m, m̃]
19 else
20 (stR, m′)← Recv(stR, c)
21 if CS 64 CR ‖ c or m′ 6= ε then
22 sync← 0
23 if m′ /∈ E∗ then
24 badbI ← true
25 m′ ←$ Pred(CS , CR, c)

26 CR ← CR ‖ c
27 return m′ to A

ORecv(c) in E2,b
A :

1 if sync = 0 then
2 (stR, m)← Recv(stR, c)
3 if m /∈ E∗ then
4 badbI ← true
5 m←$ Pred(CS , CR, c)
6 e←$ Pred(CS , CR, c)
7 if m 6= e then
8 badbE ← true
9 CR ← CR ‖ c

10 return e to A
11 else if CR ‖ c 4 CS then
12 (stR, m)← Recv(stR, c)
13 CR ← CR ‖ c
14 return ε to A
15 else
16 if CR ≺ [CR ‖ c, CS] then
17 c̃← [CR ‖ c, CS] % CR
18 s̃tR ← stR
19 (s̃tR, m̃)← Recv(s̃tR, c̃)
20 (stR, m)← Recv(stR, c)
21 m′ ← m % [m, m̃]
22 else
23 (stR, m′)← Recv(stR, c)
24 if CS 64 CR ‖ c or m′ 6= ε then
25 sync← 0
26 if m′ /∈ E∗ then
27 badbI ← true
28 m′ ←$ Pred(CS , CR, c)
29 e←$ Pred(CS , CR, c)
30 if m′ 6= e then
31 badbE ← true
32 CR ← CR ‖ c
33 return e to A

Figure 7: The modifications in the proof of Theorem 4.5 within the ORecv oracle in experiments E0,b
A (equal to the IND-CCA

experiment), E1,b
A , and E2,b

A . Lines in frames in experiment Ei,bA differ from those in the previous experiment Ei−1,b
A . Other

lines (on same height) are identical in both experiments. Line numbering in E0,b
A is as in the IND-CCFA experiment (see

Figure 3).

22

DA,OLoR(·,·,·)(1λ):
1 sync← 1
2 CS , CR ← ε
3 b′ ←$ AO

∗
LoR(·,·,·),O∗

Recv(·)(1λ)
4 return b′

If A queries O∗LoR(m0, m1, f):
5 if |m0| 6= |m1| then
6 return ε to A
7 c← OLoR(m0, m1, f)
8 CS ← CS ‖ c
9 return c to A

If A queries O∗Recv(c):
10 if sync = 0 then
11 e←$ Pred(CS , CR, c)
12 CR ← CR ‖ c
13 return e to A
14 else if CR ‖ c 4 CS then
15 CR ← CR ‖ c
16 return ε to A
17 else
18 e←$ Pred(CS , CR, c)
19 if CS 64 CR ‖ c or e 6= ε then
20 sync← 0
21 CR ← CR ‖ c
22 return e to A

Figure 8: IND-CPFA adversary D simulates the experiment E2,b
A , as in the proof of Theorem 4.5.

IND-CCFA experiment as follows:

AdvIND-CCFA
Ch,A =

∣∣∣Pr[E0,1
A]− Pr[E0,0

A]
∣∣∣

≤
∣∣∣Pr[E0,1

A]− Pr[E1,1
A]
∣∣∣+ ∣∣∣Pr[E1,1

A]− Pr[E1,0
A]
∣∣∣+ ∣∣∣Pr[E1,0

A]− Pr[E0,0
A]
∣∣∣

≤ Pr[bad1
I] +

∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣+ Pr[bad0

I]

≤ 2 · AdvINT-CST
Ch,B +

∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣ .

Observe that in experiment E1,b
A , if badbI is not triggered, the receiving algorithm when fed with a

deviating or exceeding ciphertext fragment either outputs error symbols or an empty string. Using the error
predictability of the channel wrt. predictor Pred, we can now predict which one of these two cases actually
occurs. To this end, we define a variant of E1,b

A , denoted E2,b
A , in which the receiving oracle additionally

processes deviating or exceeding ciphertext fragments using the predictor Pred and provides A with that
output. Furthermore, a flag badbE is set if the output of Pred differs from the output of Recv in these
cases. See Figure 7 for the precise changes from E1,b

A to E2,b
A . Let again badbE also denote the event that

the flag badbE is set to true. Then E1,b
A and E2,b

A execute the same instructions as long as badbE does not
happen, and hence their difference in probability is bounded by Pr[badbE].

Similarly to the previous hop we define an ERR-PRE adversary C which runsA, chooses a bit d uniformly
at random, and simulates games Ei,bA for i ∈ {1, 2} by relaying A’s queries to its oracles (as above, left-or-
right queries (f,m0,m1) are first turned into (f,md), then sent to C’s oracle). First of all observe that, in
the check m 6= e (resp. m′ 6= e) triggering badbE , it always holds that m ∈ E∗ (resp. m′ ∈ E∗) and hence
m = 〈m〉E resp. m′ = 〈m′〉E . Thus, if A triggers badbE , this makes C win in the ERR-PRE experiment, as
m 6= e if and only if 〈m〉E 6= Pred(CS , CR, c) (and likewise for m′).

Using a similar argument as above we deduce AdvERR-PRE
Ch,Pred,C ≥ 1

2 · Pr[bad0
E] + 1

2 · Pr[bad1
E], which allows

us to bound the advantage of A in the second experiment as follows:∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣ ≤ ∣∣∣Pr[E1,1

A]− Pr[E2,1
A]
∣∣∣+ ∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣+ ∣∣∣Pr[E2,0

A]− Pr[E1,0
A]
∣∣∣

≤ 2 · AdvERR-PRE
Ch,Pred,C +

∣∣∣Pr[E2,1
A]− Pr[E2,0

A]
∣∣∣ .

We finally observe that the indistinguishability game E2,b
A can be safely emulated using an IND-CPFA

adversary D, as shown in Figure 8. Here D is granted oracle access to OLoR as in the IND-CPFA experiment

23

of Figure 3 and simulates the IND-CCFA oracles O∗LoR and O∗Recv for A. Adversary D simply relays O∗LoR
queries to its oracle OLoR, while it answers queries to O∗Recv on its own by invoking the predictor Pred and
returning its output.9 This leads to the following bound:∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣ ≤ AdvIND-CPFA

Ch,D .

Combining the bounds implied by the transitions of games above yields the stated security bound.

Remark 4.6 (Error predictability vs. error simulatability). After the original publication of this work,
Barwell et al. introduced the notion of error simulatability for subtle authenticated encryption [BPS15b,
BPS15a]. Error simulatability is similar in spirit to, but seemingly weaker than, error predictability (the
latter requires the existence of an efficient algorithm that outputs the same errors produced by Recv while
the former only demands that simulated errors be indistinguishable10 from those output by Recv). In fact,
since error predictability is defined for a stateful primitive and error simulatability accounts for a stateless
primitive, the two notions are incomparable. However, if error simulatability were to be adapted to the
streaming setting, it seems plausible that Theorem 4.5 also holds under such weaker requirement. We
leave open how to adapt error simulatability to the context of stream-based channels and to investigate
further how it relates to error predictability.

5 Stream-Based Channels from AEAD
In this section we demonstrate the feasibility of our security notions by providing a generic construction of
stream-based channels which is directly based on the well-established primitive of authenticated encryption
with associated data (AEAD) and provides strong security in terms of confidentiality as well as integrity.
Although being illustrative rather than definitive, we remark that our construction is quite close to the TLS
record protocol. Before specifying the details of our construction we recall the basic properties of AEAD.

5.1 Authenticated Encryption with Associated Data

Originally, authenticated encryption with associated data (AEAD) was introduced as a variant of nonce-
based symmetric encryption in [Rog02], however, its syntax can be flexibly adapted to randomized and
stateful algorithms. In this paper we stay close to our channel syntax and consider a randomized encryption
algorithm. An AEAD scheme AEAD = (Enc,Dec) with key space K and distinguished error symbol ⊥ is
defined as follows. The probabilistic encryption algorithm Enc takes as input a key K ∈ K, a message m ∈
{0, 1}∗, and an associated data string ad ∈ {0, 1}∗, and outputs a ciphertext c ∈ {0, 1}∗. The deterministic
decryption algorithm Dec takes as input a key K ∈ K, a ciphertext c ∈ {0, 1}∗, and an associated data
string ad ∈ {0, 1}∗, and outputs a message m ∈ {0, 1}∗ or the error symbol ⊥. We correspondingly
write c ←$ EncK(ad,m) and m ← DecK(ad, c). Correctness requires that for every key K ∈ K, every
message m ∈ {0, 1}∗, every associated data string ad ∈ {0, 1}∗, and every choice of the randomness for the
encryption algorithm, it holds that DecK(ad,EncK(ad,m)) = m.

9We note that D could actually always downright invoke the error predictor, which would be conceptually closer to the
original composition theorem proof for stateful encryption [BKN04]. We however decided to follow the in-sync/out-of-sync
case distinction to facilitate comparison with the structure of ORecv in E2,b

A .
10More precisely, a subtle AE scheme is an AE scheme augmented with a ‘leakage function’ describing how (a specific

implementation of) the decryption algorithm reacts when processing invalid ciphertexts. Thus, according to [BPS15b], the
simulator’s output need not be indistinguishable from the output of the decryption algorithm, but rather from the output of
the leakage function.

24

AEAD security is defined as a combination of confidentiality against passive adversaries (IND-CPA)11
and integrity of ciphertexts (AUTH). In the IND-CPA experiment the adversary has access to a left-or-
right encryption oracle OLoR. The adversary can query any pair (ad,m0,m1) of equal length messages
and the oracle returns c ←$ EncK(ad,mb) where b is a challenge bit; the adversary’s goal is to predict b.
We correspondingly define the IND-CPA advantage as AdvIND-CPA

AEAD,A (λ) = |Pr[AOLoR(·,·) = 1 | b = 1] −
Pr[AOLoR(·,·) = 1 | b = 0]|, where the probability is taken over the randomness of the experiment, including
A’s randomness.

In the AUTH experiment the adversary has access to an encryption oracle OEnc that returns AEAD
encryptions of adversarially chosen pairs (ad,m); the adversary’s goal is to forge a valid pair (ad∗, c∗) for
which no query (ad∗,m∗) has been made such that EncK(ad∗,m∗) has returned c∗. We define the AUTH
advantage as AdvAUTH

AEAD,A(λ) = Pr[(ad∗, c∗) ←$ AOEnc(·) : DecK(ad∗, c∗) 6= ⊥], where we implicitly presume
that (ad∗, c∗) is fresh.

5.2 Construction Based on Authenticated Encryption with Associated Data

We now propose a generic construction of a stream-based channel ChAEAD = (Init,Send,Recv) from any
AEAD scheme AEAD = (Enc,Dec) with key space K and error symbol ⊥. For il, ol ∈ N we assume
that AEAD supports encryption of variable-length messages of up to il bits and that the ciphertext output
for any such message has bit-length at most 2ol − 1. This enables us to encode the length of each AEAD
ciphertext with a fixed-size string of ol bits. Our channel construction ChAEAD has sending state space
SS = K × N × {0, 1}∗, receiving state space SR = K × N × {0, 1}∗ × {0, 1}, and error space E = {⊥}. In
Figure 9 we give an algorithmic specification of our construction, and describe it next in detail.

Construction 5.1 (AEAD-based construction ChAEAD). Consider an AEAD scheme AEAD = (Enc,Dec)
with key space K and error symbol ⊥. We define ChAEAD = (Init,Send,Recv) to be the stream-based channel
algorithmically specified in Figure 9 and described in detail below.

Init. The initialization algorithm first draws uniformly at random a key K for the AEAD scheme. It
then initializes the sending and receiving state respectively as tuples containing key K, a sequence number
set to 0, and a message-fragment resp. ciphertext-fragment buffer initially empty; the receiving state also
contains a failure flag fail, initially set to 0.

Send. The sending algorithm keeps on buffering input message strings until it has collected at least il
bits. If sufficiently many bits have been collected, then Send invokes the AEAD encryption algorithm on
input message chunks m′ of length |m′| = il and a running sequence number seqno as associated data.12
The corresponding AEAD ciphertext c′ is then prepended with the binary encoding of its size, i.e., the
bitstring len = |c′|, and the resulting string is appended to the ciphertext string c to be output. In case the
Send algorithm was called with the flush flag set to 1, in a final step it also AEAD encrypts any remaining
buffered message in the same way, in order to empty the message buffer (this message will potentially
contain less than il bits). Note that the size encoding len is a bitstring of fixed length ol and it is not
authenticated. Henceforth we may refer to the concatenation of an AEAD ciphertext c′ prepended with
its size encoding len as a ‘block’ B = len ‖ c′ (see line 9 in Figure 9).

11Rogaway [Rog02] actually defines AEAD confidentiality using the stronger IND$-CPA notion, demanding that ciphertexts
are indistinguishable from randomly chosen bitstrings, which in particular implies IND-CPA security based on a standard
left-or-right encryption oracle. We only require IND-CPA, though, as it is sufficient for our security proof.

12A variant construction in the nonce-based setting would use seqno as the encryption nonce and have empty associated
data input, as done, e.g., in the TLS 1.3 record protocol from draft-11 [Res15] on. We have chosen the present construction
because of its closeness to TLS 1.2 [DR08] and initial drafts of TLS 1.3 (before draft-11), which treat the sequence number
as associated data.

25

Init(1λ):
1 K ←$ K
2 stS,0 = (K, 0, ε)
3 stR,0 = (K, 0, ε, 0)
4 return (stS,0, stR,0)

Send(stS , m, f):
1 parse stS as (K, seqno, buf)
2 buf ← buf ‖ m
3 c← ε
4 while |buf| ≥ il do
5 m′ ← buf[1, . . . , il]
6 buf ← buf % m′

7 c′ ← EncK(seqno, m′)
8 seqno← seqno + 1
9 B ← |c′| ‖ c′ // |c′| ∈ {0, 1}ol

10 c← c ‖ B
11 if f = 1 and buf 6= ε then
12 c′ ← EncK(seqno, buf)
13 seqno← seqno + 1
14 c← c ‖ |c′| ‖ c′ for |c′| ∈ {0, 1}ol

15 buf ← ε
16 stS ← (K, seqno, buf)
17 return (stS , c)

Recv(stR, c):
1 parse stR as (K, seqno, buf, fail)
2 if fail = 1 then
3 return (stR,⊥)
4 buf ← buf ‖ c
5 m← ε
6 while |buf| ≥ ol do
7 parse buf[1, . . . , ol] as integer `
8 if |buf| ≥ ol + ` then
9 len← buf[1, . . . , ol]

10 c′ ← buf[ol + 1, . . . , ol + `]
11 buf ← buf % len ‖ c′

12 m′ ← DecK(seqno, c′)
13 seqno← seqno + 1
14 m← m ‖ m′

15 if m′ = ⊥ then
16 fail← 1
17 break // leave while loop
18 else
19 break // leave while loop
20 stR ← (K, seqno, buf, fail)
21 return (stR, m)

Figure 9: Generic construction of a stream-based channel ChAEAD = (Init, Send, Recv) from any authenticated encryption with
associated data (AEAD) scheme AEAD = (Enc, Dec) with key space K and distinguished error symbol ⊥ which allows to
encrypt variable-length messages of up to il bits and for which the ciphertext output has length at most 2ol − 1 bits.

Recv. The receiving algorithm outputs an error (without any further state modification) once a first error
has emerged from the AEAD decryption algorithm in some previous call (this is indicated by the failure
flag set to fail = 1); otherwise, it appends the incoming ciphertext fragment to its buffer. In case enough
bits to parse the length field of ol bits were received it does so. Next, it checks whether the buffer contains
a complete AEAD ciphertext c′ of the indicated length len and, if so, strips it from the buffer, decrypts
it (incrementing the sequence number used in the associated data), and appends the result m′ to the
message m to be output. This process is repeated until there is no full block B = len ‖ c′ left in the buffer.
However, in case the AEAD decryption algorithm outputs an error, after appending the error symbol ⊥
to the output message, the Recv algorithm sets the failure flag to 1 and stops parsing further input.

Correctness. For correctness, observe that the Send algorithm generates a ciphertext output which
always consists of blocks of ol bits plus the number ` of bits binary encoded in these ol bits (at most
2ol − 1), where the sequence number seqno is increased with each such block output. Moreover, when
called with the flush flag set to 1, the Send algorithm ensures that the entire message stream input so
far is written into the ciphertext being output. The Recv algorithm buffers its input and re-establishes
the same blocks of ol + ` bits as generated by Send, thus also assigning the same sequence number to
each block. Since the AEAD decryption algorithm in Recv is called on the same sequence number and
exactly the output generated by the encryption algorithm call in Send, we obtain correctness for our generic
stream-based channel construction ChAEAD by virtue of the correctness of the AEAD scheme.

26

5.3 Security Analysis

Our generic stream-based channel construction ChAEAD from Construction 5.1 provides indistinguisha-
bility under chosen plaintext-fragment attacks (IND-CPFA), integrity of ciphertext streams (INT-CST),
and error predictability (ERR-PRE), given that the underlying authenticated encryption with associated
data scheme AEAD provides indistinguishability under chosen plaintext attacks (IND-CPA) and authen-
ticity (AUTH) as defined in Section 5.1. Using Theorem 4.5 we can moreover infer that it also provides
indistinguishability under chosen ciphertext-fragment attacks (IND-CCFA).

Theorem 5.2 (IND-CPFA security of ChAEAD). The stream-based channel ChAEAD from Construction 5.1
provides indistinguishability under chosen plaintext-fragment attacks (IND-CPFA) if the authenticated en-
cryption with associated data scheme AEAD provides indistinguishability under chosen plaintext attacks
(IND-CPA). Formally, for every efficient IND-CPFA adversary A against ChAEAD there exists an efficient
IND-CPA adversary B against AEAD such that

AdvIND-CPFA
ChAEAD,A (λ) ≤ AdvIND-CPA

AEAD,B (λ).

Proof. We reduce the IND-CPFA security of ChAEAD to the IND-CPA security of AEAD by constructing from
an efficient adversary A against the former property an efficient adversary B against the latter property.
In order to simulate the OLoR oracle for A we let B perform the buffering and sending procedure as
defined for Send in Figure 9, keeping two buffers for the two message inputs m0 and m1 from A and a
sequence number. As the buffering behavior and sending procedure only depends on the length of the
input message to Send but not its content, the message blocks to be encrypted using the AEAD scheme are
treated identically for either the m0 or the m1 buffer. This allows B to replace the encryption operations
by calls to its encryption oracle in the IND-CPA game with the according blocks (of same size) both from
the m0 and m1 buffer and the (always coinciding) sequence number. This results in a single ciphertext
which B can then process further, as defined in the Send algorithm, to provide the output ciphertext to
A. Finally, when A outputs its guessed bit b′, we let B output the same bit as its guess.

Assume A is successful. Since B perfectly simulates the OLoR oracle for A, it also wins in the IND-CPFA
game.

Theorem 5.3 (INT-CST security of ChAEAD). The stream-based channel ChAEAD from Construction 5.1
provides integrity of ciphertext streams (INT-CST) if the authenticated encryption with associated data
scheme AEAD provides authenticity (AUTH). Formally, for every efficient INT-CST adversary A against
ChAEAD there exists an efficient AUTH adversary B against AEAD such that

AdvINT-CST
ChAEAD,A(λ) ≤ AdvAUTH

AEAD,B(λ).

Proof. Recall that the receiving algorithm Recv of our channel construction processes the ciphertext stream
by identifying blocks B1, B2, . . . with Bi = leni ‖ c′i where c′i is an AEAD ciphertext and leni is the
(fixed-length) binary encoding of its size |c′i|. The message fragments output by Recv are obtained by
concatenating the AEAD decryptions m′i of the so identified ciphertexts c′i. In particular, Recv produces
some non-trivial output if and only if it processes at least a full block Bi. The main observation is that, in
order to break the INT-CST property of ChAEAD, an adversary must submit to ORecv a non-genuine (i.e.,
deviating or exceeding) ciphertext stream whose non-genuine part contains a full valid block B∗ = len∗ ‖
c′∗. More precisely, the AEAD decryption of c′∗ with the current sequence number seqno as associated data
must yield some valid message m∗. Now, since the scheme increases seqno before each AEAD encryption,
no associated data is ever repeated. Moreover, by hypothesis the block B∗ deviates from the genuine
ciphertext stream. Thus (seqno, c′∗) is an AEAD forgery.

27

We now formalize this intuition. Let A be an adversary attacking the INT-CST of channel ChAEAD.
We build an adversary B which runs A internally as a black box and breaks the AUTH property of AEAD
as long as A is successful against the INT-CST property of ChAEAD. Adversary B emulates the channel
construction (see Figure 9) by forwarding AEAD encryptions to the oracle OEnc(·, ·) provided in the AUTH
security experiment and by performing the buffering steps on its own. For this it keeps buffer strings bufS ,
bufR and a sequence number seqno, initialized to the empty strings and to zero respectively. It also keeps
lists m′ and c′ for bookkeeping of sent AEAD messages and ciphertexts respectively, as well as a string CR
in which it registers the received (stream) ciphertext fragments.
B answers A’s queries as follows.

• When A poses a sending query (m, f), B appends m to the buffer bufS , initializes an empty ci-
phertext c, and repeats the steps of instructions 4–10 from Figure 9. In particular, B performs
the encryption steps by querying OEnc on tuples (ad,m′) where ad = seqno is a running sequence
number, and registers the AEAD messages m′ and ciphertexts c′ in the lists m′ and c′, respectively,
according to the order in which they are processed. If the flush flag is set to f = 1, B executes one
more encryption (oracle call) using as m′ the remaining buffer. Finally it returns c to A.

• When A poses a receiving query c, the reduction updates buffer bufR and string CR by appending c
to both of them and checks if c is genuine by comparing the components of c′ with the blocks Bi =
leni ‖ c′i contained in CR.
If c is genuine, B traverses the buffer bufR and identifies the blocks Bi corresponding to the sent
AEAD ciphertexts. Recall that for each block Bi = leni ‖ c′i the AEAD ciphertext c′i is registered
in the list c′ and, correspondingly, its decryption m′ is registered in the list m′. Thus, B can
for each identified ciphertext c′i recover the decryption m′i. After this, B removes the identified
blocks Bi = leni ‖ c′i from the buffer bufR and concatenates all corresponding messages m′i in the
same order they appear in m′, obtaining a string m; finally B gives m to A.
If c is not genuine, B first performs the procedure above, but using instead of c its longest genuine
prefix C̃ that contains only full blocks Bi. Note that after this step the buffer bufR will be empty
(because it only contained full blocks and all these are processed). Afterwards B tries to extract
a forgery from the remaining part of c and potentially subsequent queries: if c % C̃ contains a full
block B∗ then B immediately extracts a forgery, otherwise it keeps answering with the empty string
all subsequent receiving queries until it gets enough ciphertext bits to extract a forgery. As soon as
the buffer CR is augmented with at least a non-genuine full block B∗ = len∗ ‖ c′∗, the reduction
outputs as forgery (ad∗, c′∗) with ad∗ = seqno + 1 and halts. Note that ChAEAD by construction
from the first occurring AEAD error on only outputs outputs errors. Hence, if A succeeds at all in
breaking integrity, then it will be with the first deviating ciphertext, which consequently B outputs
as its forgery attempt.

It is immediate to see that B performs a sound simulation of the INT-CST experiment. Indeed, for
answering sending queries it executes the same instructions as Send (only the AEAD encryption is replaced
with an oracle call to OEnc, however, the AEAD encryption takes place within the oracle). Although B
lacks a decryption oracle and, thus, cannot process A’s receiving queries, it can answer all genuine queries
since, for these, the AEAD decryption is correct. In the same way B can recover the longest genuine
message fragment underlying the first non-genuine query. Regarding non-genuine decryption queries, B
can either extract an AEAD forgery, or trivially answer by returning an empty message and waiting for
more ciphertext bits.

It remains to show that if A breaks the INT-CST property of ChAEAD then B is successful in the AUTH
game against AEAD. Let c denote A’s first out-of-sync query, let c̃ be the longest in-sync prefix of c, and

28

let m and m̃ be the message fragments that Recv would output on input c and c̃ respectively in the real
execution of the INT-CST experiment.

Assume first thatA is successful with its first non-genuine query toORecv: we thus havem%[m, m̃] /∈ E∗.
Suppose that the (genuine) ciphertext stream that Recv would process up to c̃ contains the first i AEAD
blocks B1, . . . , Bi sent. By construction m̃ = m′1 ‖ · · · ‖ m′i where each m′i is the AEAD decryption
of c′i. Then the ciphertext fragment c % (B1 ‖ · · · ‖ Bi) contains as a prefix a full block B∗ = len∗ ‖ c′∗
such that c′∗ with associated data seqno∗ = i + 1 AEAD-decrypts to m∗ 6= ⊥, otherwise we would have
either m% [m, m̃] ∈ E or m% [m, m̃] = ε, against our hypothesis.

The argument above easily extends to the general case in which A poses several non-genuine queries
to ORecv before breaking the INT-CST security of ChAEAD by letting ORecv create some non-trivial output:
B simply keeps buffering and answering queries with an empty string until it collects enough ciphertext
bits to form a full block B∗ = len∗ ‖ c′∗ (here ‘enough’ means ol + len∗ bits).

In both cases, once B obtains sufficiently many ciphertext bits to isolate a block B∗, it stops the
simulation and returns as valid AEAD forgery the pair (seqno∗, c′∗).

Theorem 5.4 (Error predictability of ChAEAD). The stream-based channel ChAEAD from Construction 5.1
provides error predictability (ERR-PRE), with respect to the predictor Pred given in the proof of the theorem,
if the authenticated encryption with associated data scheme AEAD provides authenticity (AUTH). Formally,
for every efficient ERR-PRE adversary A against ChAEAD and predictor Pred there exists an efficient AUTH
adversary B against AEAD such that

AdvERR-PRE
ChAEAD,Pred,A(λ) ≤ AdvAUTH

AEAD,B(λ).

Proof. We start by defining the predictor algorithm Pred. On input CS ∈ {0, 1}∗, CR ∈ {0, 1}∗, and
c ∈ {0, 1}∗ the predictor first computes C ′R ∈ {0, 1}∗ by removing from CR ‖ c the longest prefix with CS
which only consists of complete blocks containing each a length field (of ol bits, where ol is determined by
the AEAD scheme) followed by as many bits as binary encoded in that length field. In case C ′R contains a
complete block (length field plus encoded number of bits), Pred outputs the distinguished error symbol ⊥
of the AEAD scheme, otherwise it outputs the empty string ε.

Now we reduce the error predictability ERR-PRE of ChAEAD to the AUTH security of AEAD by turning
any efficient adversary A that distinguishes the output of Recv from the output of Pred into an efficient
adversary B against the AUTH property of the AEAD scheme. Initially, B sets CS ← ε, CR ← ε. As in
the previous two proofs, it simulates the oracle OSend for A using the encryption oracle in the AUTH game
and furthermore appends the obtained result c to CS .

For simulating the ORecv oracle for A, adversary B appends c to CR and returns the empty string ε to
A as long as the ciphertext fragments provided are in sync (CR ‖ c 4 CS). When A provides ciphertext
fragments such that the receiving buffer at some point contains a full block (consisting of an encoded
length and the ciphertext of that length) which at some point deviates from the genuine ciphertext stream
(i.e., was never output by B’s simulation of OSend), B outputs the ciphertext of this block along with the
current sequence number value as associated data field as its forgery in the AUTH game and stops.

Note that B perfectly simulates the ERR-PRE experiment for A, as by correctness of ChAEAD and the
buffering behavior of Recv, the first point where Recv could output an error symbol is when it received a
complete ciphertext block which deviates from the ciphertext stream generated by Send. Up to this point,
also Pred will not have output an error, so that A cannot have won yet.

Assume A wins at the point where the input ciphertext c completes the first deviating ciphertext
block input to Recv. As this requires that 〈m〉E 6= Pred(CS , CR, c) but the output of Pred will be ⊥, this
means that the ciphertext block (and the according sequence number as associated data) decrypts under
the AEAD scheme to a valid message (and not the distinct error symbol). Hence, this output constitutes
a valid forgery and B thus also wins in the AUTH game. Furthermore, note that A cannot win in the

29

ERR-PRE experiment with a later call to its ORecv oracle, because after the first error occurred, both Recv
and Pred consistently output ⊥ for any further ciphertext fragment input c.

Applying Theorem 4.5 we can now deduce the following corollary.

Corollary 5.5 (IND-CCFA security of ChAEAD). The stream-based channel ChAEAD from Construction 5.1
provides indistinguishability under chosen ciphertext-fragment attacks (IND-CCFA) if the authenticated
encryption with associated data scheme AEAD provides indistinguishability under chosen plaintext attacks
(IND-CPA) and authenticity (AUTH).

Remark 5.6. Our ChAEAD construction can be easily modified to produce a channel with multiple error
messages (occurring with non-negligible probability) which still permits the definition of a suitable error
predictor and which thus remains amenable to the application of our composition theorem. Consider, e.g.,
a variant of ChAEAD which extends the length field by one bit, but which outputs an error symbol ⊥2
different from the AEAD scheme’s error symbol ⊥ when the leading bit in this length field is set to 1.
Although an adversary can easily make the Recv algorithm output either of the new channel’s two error
symbols at will, observe that it is also still easy to define a suitable error predictor for such a channel.

Length fields and potential error conditions arising from malicious encodings are commonly encountered
in real-world channel schemes (e.g., TLS with its bad_record_mac and record_overflow error messages).
The above artificial variant of ChAEAD provides an illustrative example of how our approach of using an
error predictor in the composition theorem allows us to resurrect the classical composition result in the
stream-based setting, even for channels having multiple errors which can all occur with non-negligible
probabilities (recall that the corresponding composition theorem in the much simpler atomic setting in
[BDPS14] required all but one of the errors to occur with negligible probability).

Remark 5.7. The security of our stream-based channel ChAEAD is based on the IND-CPA and AUTH
properties of the underlying AEAD scheme, and the AUTH notion [Rog02] is given in the single-error
setting. Thus, while our results establish the security of ChAEAD in the multiple-error setting, we still
assume that the AEAD scheme in use produces a unique error (or, in the terminology of [BPS15b], that
the AEAD scheme is implemented ideally). We conjecture that our results also hold in a subtle-AE–like
model for the underlying AEAD scheme, and in particular assuming error simulatability (see Remark 4.6).

5.4 A Note on the TLS Record Protocol

As discussed earlier, the Transport Layer Security (TLS) record protocol implements a stream-based chan-
nel whose complete analysis as such lies outside of the scope of this work. However we do pause to note that
our Construction 5.1 of a stream-based channel based on authenticated encryption with associated data
is conceptually close to the TLS record protocol when using an AEAD scheme as specified for TLS ver-
sion 1.2 [DR08, Section 6.2.3.3] and in the current (as of December 2017) draft for TLS version 1.3 [Res17,
Section 5]: the record protocol also incorporates a sequence number which is authenticated but not sent
on the wire and a length field which is sent and authenticated in TLS 1.2 (and which is sent but not
authenticated in the draft TLS 1.3).13 However, the TLS record protocol in version 1.2 additionally in-
cludes a 2-byte version number and a 1-byte content type; these are both sent and authenticated in the
associated data. Moreover, the AEAD schemes used are considered to be nonce-based, with the TLS 1.3
draft specifying how the nonce is formed and TLS 1.2 leaving the exact nonce generation to be specified

13That is, our approach of using a length field which is sent on the wire, but not part of the authenticated associated data
of the AEAD ciphertext conforms with the approach adopted in the TLS 1.3 draft. In contrast to our approach, the TLS 1.3
draft implicitly authenticates the sequence number by letting it enter the AEAD nonce rather than explicitly authenticating
it in the associated data field.

30

by the particular cipher suite in use. TLS (in both versions) furthermore specifies padding mechanisms
and TLS 1.3 uses a double-header structure for backwards compatibility reasons.

The content type field in particular allows TLS to multiplex data streams for different purposes within
a single connection stream, as TLS 1.2 does for the Handshake Protocol, the Alert Protocol, the ChangeCi-
pherSpec protocol, and the Application protocol. While our model does not capture multiplexing several
message streams into one ciphertext stream, it can be augmented to do so. This brings additional com-
plexity and is an avenue for future work.

6 Atomic-Message Channels Supporting Fragmentation
Many application layer protocols rely on a stream-based transport protocol like TCP, as the data they
transmit is inherently stream-based (like in audio or video streaming applications) or may consist of
individual messages that are too large to be written to, or read from, the transport protocol in one go (as
in HTTP transfers of large files). For such applications, our security model appropriately captures security
guarantees to be expected from a cryptographic stream-based transport protocol or channel such as TLS.

Other application layer protocols, however, are inherently message-based (e.g., chat protocols or header
transmission in HTTP) and might crucially demand that only messages that are guaranteed to be authentic
and complete (i.e., non-truncated) are delivered. Most secure transport protocols in use (e.g., TLS),
though, are stream-based in nature and might deliver input messages—which they consider as fragments—
in several parts, both in real-world implementations and in our model. Unwary processing of message
fragments on the receiver’s side might thus break, and has broken in the past, the security of message-
dependent application layer protocols (see, e.g., [SP13, BDF+14]). This raises the following safety question:
How can a reliable and secure transport channel for atomic messages be provided on top of a secure
stream-based channel in order to protect message-dependent application protocols from misinterpreting
partial messages on the receiver’s side as complete ones?

Note that previous works on channels do not provide a satisfying solution to this problem. For instance,
while Bellare et al. [BKN04] and the follow-up works (e.g., [KPB03, PRS11, JKSS12, BDPS14, BSWW13])
consider the transport of atomic messages, their model lacks potential fragmentation on the network.
Boldyreva et al. [BDPS12] made a first step further in this direction by considering confidentiality of
channels that treat messages atomically at the sender’s side and allow for fragmentation on the network.
Integrity in this setting was later, and concurrently to this work, defined by Albrecht et al. [ADHP16].
Still, while their notions approach capturing atomic-message channels over fragmented transport, they do
not provide an answer to the question of how to achieve such from a given stream-based channel.

To fill this gap we first introduce the notion of atomic-message channels supporting fragmentation which
covers schemes that transport atomic messages in a secure way over a potentially fragmenting network.
While our (strong) confidentiality and integrity notions are similar in spirit to those defined by Boldyreva
et al. [BDPS12] and Albrecht et al. [ADHP16], our syntax already intrinsically encodes an atomic-message
interface both for the input on the sender’s side as well as for the output on the receiver’s side. Beyond
that, we further define the corresponding weaker variants of chosen-plaintext confidentiality and plaintext
integrity for atomic-message channels supporting fragmentation.

In a second step we propose a generic way to safely transport atomic messages using a stream-based
channel. Our strategy is to add an encoding layer that turns a message sequence into a stream of bits
and allows to recover from that bit stream the original message sequence; then, we simply transmit the
obtained bit stream through any secure stream-based channel.

31

6.1 Syntax and Functionality

The syntax of atomic-message channels supporting fragmentation for the sending algorithm aSend reverts
back to the classical setting with an atomic message input and an atomic ciphertext output, obviating
the need for a flush flag. Note also that we therefore use the vector notation where appropriate, e.g.,
m[1, . . . , i] then refers to the first i entries of the vector m (and not the first i bits of the string m).

To capture ciphertext fragmentation on the underlying network we allow the receiving algorithm aRecv
to take a ciphertext fragment as input, but we syntactically require it to output clearly separated atomic
messages (instead of chunks of a message stream where the boundaries of individual chunks have no
inherent meaning). As a ciphertext fragment might contain more than one original ciphertext output by
aSend, we need to allow aRecv to output not only a single message but a vector of messages (which may
be empty). In contrast to stream-based channels here we consider a generic message space M ⊆ {0, 1}∗
instead of fixingM = {0, 1}∗.

Definition 6.1 (Syntax of atomic-message channels supporting fragmentation). An atomic-message chan-
nel supporting fragmentation aCh = (aInit, aSend, aRecv) with associated message space M, sending and
receiving state space SS resp. SR, and error space E consists of three efficient algorithms:

• aInit. On input a security parameter 1λ, this probabilistic algorithm outputs initial states stS,0 ∈ SS,
stR,0 ∈ SR for the sender and the receiver, respectively. We write (stS,0, stR,0)←$ aInit(1λ).

• aSend. On input a state stS ∈ SS and a message m ∈ M, this (possibly) probabilistic algorithm
outputs an updated state st′S ∈ SS and a ciphertext c ∈ {0, 1}∗. We write (st′S , c)←$ aSend(stS ,m).

• aRecv. On input a state stR ∈ SR and a ciphertext fragment c ∈ {0, 1}∗, this deterministic algorithm
outputs an updated state st′R ∈ SR and a (potentially empty) vector of messages (m1, . . . ,m`) ∈
(M∪ E)∗. We write (st′R, (m1, . . . ,m`))← aRecv(stR, c).

In the rest of the paper we use the shorthand atomic-message channels to indicate atomic-message
channels supporting fragmentation. We also use the same vector notation as for stream-based channels
from Section 3 and correspondingly write, e.g., (stS , c) ←$ aSend(stS,0,m) to indicate that the sending
algorithm is invoked sequentially on input the components of m and that it outputs as ciphertexts the
components of c.

Intuitively, correctness requires that an atomic-message channel recovers the sequence of messages sent
as long as the entire sequence of ciphertexts sent is received completely, independently of its fragmentation.
It also requires that, if any prefix of the sequence of sent ciphertexts is processed at the receiver, then the
corresponding prefix of the sent message sequence is recovered completely.

Definition 6.2 (Correctness of atomic-message channels). Let aCh = (aInit, aSend, aRecv) be an atomic-
message channel. We say that aCh provides correctness if for all choices of the randomness for al-
gorithms aInit, aSend and aRecv, all `, `′ ≥ 0, all message vectors m ∈ M`, all sending output se-
quences (stS,`, c) ←$ aSend(stS,0,m), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)`′, all receiving output
sequences (st′R,`′ ,m′)← aRecv(stR,0, c′), and every 0 ≤ i ≤ `, we have

‖c[1, . . . , i] 4 ‖c′ 4 ‖c =⇒m[1, . . . , i] 4 m′ 4 m.

Note that, in contrast to [BDPS12, ADHP16], for correctness in the above setting we do not demand
that already ‖c[1, . . . , i] 4 ‖c′ implies m[1, . . . , i] 4 m′, even if ‖c′ 64 ‖c. As we already discussed in the
streaming setting (cf. Remark 3.4), this would encode a certain amount of robustness in an adversarial
setting which is concerned with security rather than correctness.

32

ExptaIND-atk,b
aCh,A (1λ):

1 (stS , stR)←$ aInit(1λ)
2 sync← 1
3 i← 0, j ← 1
4 MS ← (), CS ← ()
5 MR ← (), CR ← ε
6 b′ ←$ AOLoR(·,·),ORecv(·)(1λ)
7 return b′

If A queries OLoR(m0, m1):
8 if |m0| 6= |m1| then
9 return ε to A

10 (stS , c)←$ aSend(stS , mb)
11 i← i + 1
12 MS[i]← mb, CS[i]← c
13 return c to A

If A queries ORecv(c):
14 (stR, m)← aRecv(stR, c)
15 CR ← CR ‖ c
16 MR ←MR ‖m
17 if sync = 0 then // already out-of-sync
18 return m to A
19 else if CR 4 ‖CS then // still in-sync
20 return () to A
21 else
22 while j ≤ i and ‖CS[1, . . . , j] 4 CR and MS[1, . . . , j] 4 MR
23 do j ← j + 1
24 if j ≤ i or |MR| > i then

// deviation, or exceeding portion produces output
25 sync← 0
26 if j > |MR| then
27 m′ ← ()
28 else
29 m′ ←MR[j, . . . , |MR|]
30 return m′ to A

Figure 10: Security experiment for confidentiality (aIND-atk with atk ∈ {CPA, CCFA}) of atomic-message channels. A CPA-
attacker only has access to the oracle OLoR.

6.2 Security

In this section we formalize confidentiality and integrity notions for atomic-message channels.

Confidentiality. In order to translate the standard confidentiality requirements against chosen-plaintext
attacks and chosen-ciphertext attacks to the setting of atomic-message channels supporting fragmentation
we formulate the notions of atomic-message indistinguishability under chosen-plaintext attacks (aIND-CPA)
as well as under chosen ciphertext-fragment attacks (aIND-CCFA). The former provides the adversary with
a left-or-right sending oracle defined in the natural way. The latter essentially transcribes the IND-sfCFA
notion by Boldyreva et al. [BDPS12] to our setting for atomic-message channels. Briefly, the decryption
mechanism of our aIND-CCFA notion returns to the adversary all non-genuine message blocks output on
receiving the first deviating ciphertext fragment and all follow-up calls.

In more detail, the adversary is provided with a left-or-right oracle OLoR and, in the aIND-CCFA exper-
iment, with a receiving oracle ORecv. Left-or-right queries do not include a flush flag; this is a consequence
of the syntax. A major difference with the streaming setting is that, since the receiving algorithm out-
puts atomic-message sequences rather than portions of a stream, synchronization is lost at the ciphertext
boundaries (similarly to the case of symmetric encryption supporting fragmentation [BDPS12]). That is,
the exact point where synchronization is lost is not necessarily aligned with its counterpart in the stream-
ing setting. However, in contrast to symmetric encryption supporting fragmentation, here suppressing
from the received message sequence the (vector) prefix covered by correctness would be inaccurate, as we
explain next.

Suppose that A causes OLoR to send messages mb
1, . . . ,m

b
i and obtains challenge ciphertexts c1, . . . , ci.

For the sake of exposition let us make the first out-of-sync ciphertext coincide with the first receiving
query and suppose that A submits to ORecv a single ciphertext fragment c∗ that contains c1 ‖ · · · ‖ cj−1 as
a prefix, for some j ≤ i, but deviates from cj onwards. Correctness then does not impose any requirement
on the decryption m∗ of the adversarially chosen c∗: it may contain none of the messages sent, but it

33

may also contain the full sequence (mb
1, . . . ,m

b
j−1). Thus, despite c∗ being out-of-sync, giving A the full

decryption of c∗ could lead to trivial wins. However, suppressing from m∗ its first j − 1 components may
hide non-genuine messages, excluding valid attacks from being caught. Intuitively, we want to suppress
from the sequence of received messages only the longest genuine prefix. This intuition explains the working
principle of the oracle ORecv, which answers the first out-of-sync query by returning the sequence obtained
from MR by stripping off the longest genuine prefix MS[1, . . . , j − 1] (see lines 21ff. in Figure 10), and
subsequent out-of-sync queries by returning the full output of aRecv. As for the streaming setting, we
define synchronization to be lost only on an exceeding ciphertext fragment if that fragment produces
(non-empty) output.

Definition 6.3 (aIND-CPA and aIND-CCFA Security). Let aCh = (aInit, aSend, aRecv) be an atomic-
message channel supporting fragmentation and ExptaIND-atk,b

aCh,A (1λ) for an adversary A and a bit b be defined
as in Figure 10, where atk is a placeholder for either CPA or CCFA. Within the experiment the adversary A
is given access to a left-or-right sending oracle OLoR and, in the case of aIND-CCFA security, a receiving
oracle ORecv. We say that aCh provides atomic-message indistinguishability under chosen-plaintext attacks,
respectively, chosen ciphertext-fragment attacks (aIND-CPA resp. aIND-CCFA) if for all PPT adversaries
A the following advantage function is negligible:

AdvaIND-atk
aCh,A (λ) := Pr

[
ExptaIND-atk,1

aCh,A (1λ) = 1
]
− Pr

[
ExptaIND-atk,0

aCh,A (1λ) = 1
]
.

Integrity. As for confidentiality we adapt the integrity notions from the streaming setting and define
(atomic-message) integrity of plaintexts (aINT-PTXT) and integrity of ciphertext streams (aINT-CST).
The idea behind plaintext integrity is that the adversary wins if it manages to make the receiver output
a valid message sequence that differs from the sequence of messages that have been sent. In integrity of
ciphertext streams, instead, the adversary wins if it submits a modified ciphertext sequence for decryp-
tion whose deviating part produces some valid messages. Again, our aINT-CST notion is analogous to
the corresponding INT-sfCTF notion by Albrecht et al. [ADHP16] for symmetric encryption supporting
fragmentation, proposed concurrently to this work here.

In both integrity experiments the adversary is provided with a sending oracle OSend and a receiving
oracle ORecv that it can query on arbitrary messages, respectively, ciphertext fragments. The aINT-PTXT
experiments declares A successful if the sequence MR of received messages deviates from the sequence MS
of sent messages and if the deviation contains more than just errors. In the aINT-CST experiment the
adversary wins if the string CR submitted (in an arbitrary fragmented way) for decryption deviates from
the concatenation ‖CS of ciphertexts that have been sent and if such deviation causes aRecv to output
valid (genuine or non-genuine) messages. In different words, ciphertext-stream integrity is violated if aRecv
produces any valid message once it lost synchronization. It is worth mentioning that, as for confidentiality,
the exact point where synchronization is lost is defined to align with one of the (sent) ciphertext boundaries
and, in contrast to the streaming setting, does not coincide with the first deviating bit of ciphertext. To
detect where this point falls the ORecv oracle uses the same mechanism as in the aIND-CCFA experiment
(see lines 25ff. of Figure 11).

Definition 6.4 (aINT-PTXT and aINT-CST Security). Let aCh = (aInit, aSend, aRecv) be an atomic-
message channel supporting fragmentation and ExptaINT-atk

aCh,A (1λ) for an adversary A be defined as in Fig-
ure 11, where atk is a placeholder for either PTXT or CST. Within the experiment, the adversary A is
given access to a sending oracle OSend and a receiving oracle ORecv. We say aCh provides atomic-message
integrity of plaintexts, respectively, ciphertext streams (aINT-PTXT resp. aINT-CST) if for all PPT ad-
versaries A the following advantage function is negligible:

AdvaINT-atk
aCh,A (λ) := Pr

[
ExptaINT-atk

aCh,A (1λ) = 1
]
.

34

ExptaINT-atk
aCh,A (1λ):

1 (stS , stR)←$ aInit(1λ)
2 sync← 1, win← 0
3 i← 0, j ← 1
4 MS ← (), CS ← ()
5 MR ← (), CR ← ε
6 AOSend(·),ORecv(·)(1λ)
7 return win

If A queries OSend(m):
8 (stS , c)←$ aSend(stS , m)
9 i← i + 1

10 MS[i]← m
11 CS[i]← c
12 return c to A

aINT-PTXT
If A queries ORecv(c):
13 (stR, m)← aRecv(stR, c)
14 MR ←MR ‖m
15 if MR % [MR, MS] /∈ E∗ then
16 win← 1
17 return m to A

aINT-CST
If A queries ORecv(c):
18 (stR, m)← aRecv(stR, c)
19 CR ← CR ‖ c
20 MR ←MR ‖m
21 if sync = 0 then // already out-of-sync
22 if m /∈ E∗ then
23 win← 1
24 else if CR 64 ‖CS then // deviating or exceeding
25 while j ≤ i and ‖CS[1, . . . , j] 4 CR and MS[1, . . . , j] 4 MR
26 do j ← j + 1
27 if j ≤ i or |MR| > i then

// deviation, or exceeding portion produces output
28 sync← 0
29 if j > |MR| then
30 m′ ← ()
31 else
32 m′ ←MR[j, . . . , |MR|]
33 if m′ /∈ E∗ then
34 win← 1
35 return m to A

Figure 11: Security experiment for integrity (aINT-atk with atk ∈ {PTXT, CST}) of atomic-message channels. A PTXT-
attacker is provided with access to the left ORecv oracle (aINT-PTXT), whereas a CST-attacker is instead granted access to
the oracle on the right-hand side (aINT-CST).

6.3 Relations Amongst Notions

Here we explore how the different security notions for atomic-message channels supporting fragmentation
relate to each other. Similarly to the case of stream-based channels, we can show that integrity of ci-
phertext streams implies integrity of plaintext streams, that indistinguishability against chosen-ciphertext
attacks implies indistinguishability against chosen-plaintext attacks, and that the weaker confidentiality
notion together with ciphertext integrity and (an adaptation of) error predictability imply the stronger
confidentiality notion.

The relation aIND-CCFA =⇒ aIND-CPA immediately follows from the fact that the aIND-CCFA experi-
ment gives access to a left-or-right oracle as in the aIND-CPA experiment as well as to a decryption oracle.
In particular, a successful chosen-plaintext attack can be seen as a successful chosen ciphertext-fragment
attack that ignores the decryption oracle.

To see that aINT-CST =⇒ aINT-PTXT it suffices to observe that, in order to produce a deviation
in the sequence of messages accepted by aRecv an adversary must submit for decryption a sequence of
ciphertext fragments that, in turn, deviates from the genuine ciphertext sequence so that the deviating
part produces some valid messages. Put differently, an adversary cannot violate the plaintext integrity
property without violating integrity of ciphertext streams. We formalize this intuition and provide a formal
proof in Appendix D.

As in the case of stream-based channels, we can prove that confidentiality against passive adversaries
in combination with ciphertext-stream integrity can be lifted to confidentiality against active adversaries
by additionally requiring that decryption errors are efficiently predictable. For this we adapt our stream-
based error predictability notion (see Definition 4.4) to the atomic-message setting in the natural way by

35

ExptaERR-PRE
aCh,Pred,A(1λ):

1 (stS , stR)←$ aInit(1λ)
2 win← 0, i← 0
3 CS ← ()
4 CR ← ε
5 AOSend(·),ORecv(·)(1λ)
6 return win

If A queries OSend(m):
7 (stS , c)←$ aSend(stS , m)
8 i← i + 1
9 CS[i]← c

10 return c to A

If A queries ORecv(c):
11 (stR, m)← aRecv(stR, c)
12 if 〈m〉E 6= Pred(CS, CR, c) then
13 win← 1
14 CR ← CR ‖ c
15 return m to A

Figure 12: Security experiment for error predictability (aERR-PRE) of atomic-message channels. We denote by 〈·〉E : (M∪
E)∗ → E∗ the ‘projection on the error space’, i.e., the mapping that removes from a vector all occurrences that do not belong
to the error space E . For instance, if m = (m1,⊥1, m2, m3,⊥2) with m1, m2, m3 ∈M then 〈m〉E = (⊥1,⊥2).

demanding the predictor to output the vector of errors that aRecv would return on input a given sequence
of ciphertext fragments. More formally, we say that an atomic-message channel provides (atomic-message)
error predictability (aERR-PRE) with respect to an efficient probabilistic predictor algorithm Pred if this
predictor Pred, given the vector CS of ciphertexts sent, the string CR of ciphertext fragments received-
so-far, and the ‘next’ ciphertext fragment c, returns a (potentially empty) vector containing all the errors
that aRecv would output on input the (arbitrarily fragmented) string CR ‖ c, in the same order they
appear when output by the latter.

Definition 6.5 (Atomic-message error predictability (aERR-PRE)). Let aCh = (aInit, aSend, aRecv) be an
atomic-message channel with message space M and error space E, and let Pred be an efficient probabilis-
tic algorithm. We say that aCh provides (atomic-message) error predictability (aERR-PRE) with respect
to Pred if for every PPT adversary A playing the experiment aERR-PRE defined in Figure 12 against
channel aCh, the following advantage function is negligible:

AdvaERR-PRE
aCh,Pred,A(λ) := Pr

[
ExptaERR-PRE

aCh,Pred,A(1λ) = 1
]
.

We are now ready to state a composition result for atomic-message channels analogous to that for
stream-based channels.

Theorem 6.6 (aINT-CST∧aIND-CPA∧aERR-PRE =⇒ aIND-CCFA). Let aCh be a (correct) atomic-message
channel. If aCh provides integrity of ciphertext streams (aINT-CST), indistinguishability against chosen-
plaintext attacks (aIND-CPA), as well as error predictability (aERR-PRE) with respect to a predictor Pred,
then it also provides indistinguishability against chosen ciphertext-fragment attacks (aIND-CCFA).

To prove this relation we can apply essentially the same strategy used in the proof of Theorem 4.5
and, for this reason, we abstain from providing a full proof but recall the informal argument. Assume
that we have an adversary A attacking the aIND-CCFA property of a channel that provides aIND-CPA,
aINT-CST, and aERR-PRE. Then given only CPA capabilities one can answer A’s queries by forwarding
sending queries to the left-or-right oracle provided by the aIND-CPA experiment, returning empty vectors
in response to in-sync decryption queries, and returning the output of the error predictor on input out-of-
sync decryption queries. The aINT-CST property ensures that no valid message originates from out-of-sync
decryption queries, while the aERR-PRE property allows to (efficiently) compute decryption errors.

7 Generic Construction of Atomic-Message Channels from Stream-
Based Channels

In practice, applications relying on atomic-message processing perform some encoding of those messages
prior to handing them over to the underlying (stream-based) secure channel. The HTTP protocol provides

36

two prime examples for such encoding approaches. HTTP headers are encoded by having an empty line
indicate the end of the header section [FR14, Section 3], i.e., a header message ends with the distinguished
“end-of-message” marker “\n\n” which is not allowed to occur anywhere else in the header.14 An HTTP
body message in contrast can be an arbitrary byte string (i.e., the specification cannot single out a
distinguished end-of-message symbol) and is hence, as one option, demarcated through indicating the body
length in the Content-Length header field [FR14, Section 3.3]. Of course there are numerous alternative
approaches to encode atomic messages in a bit stream; prepending the message with a fixed-length binary
encoding of its length is a particularly efficient one, applicable whenever (an upper bound on) the message
length is known.

For our generic construction that enables secure transmission of atomic messages over a generic secure
stream-based channel we capture all these and further approaches under the framework of instantaneously
decodable encodings.

7.1 Length-Regular Instantaneously Decodable Encoding Schemes

We recall the properties of length-regular instantaneously decodable encoding schemes that will be later
used as a tool in our construction. The idea of using instantaneously decodable encodings was already
employed by Boldyreva et al. [BDPS12] in the context of symmetric encryption supporting fragmentation
in order to encode (atomic) messages in ciphertexts that might be fragmented. Such an encoding consists
of an algorithm Encode that turns a word w into a codeword v, and an algorithm Decode which takes a
string as input and outputs a vector w of words and a string s (the latter is, in fact, the part of the input
string which contains no full words as a prefix).

Definition 7.1 (Length-regular instantaneously decodable encoding schemes). An encoding scheme with
word space W ⊆ {0, 1}∗ is a pair ES = (Encode,Decode) of efficient deterministic algorithms defined
as follows. The encoding algorithm Encode takes as input a word w ∈ W and returns a codeword v ←
Encode(w) where v ∈ {0, 1}∗. The decoding algorithm Decode takes as input a string v′ ∈ {0, 1}∗ and
outputs a (potentially empty) vector of words w′ ∈ W ∗ and a string s′ ∈ {0, 1}∗. We indicate this by
writing (w′, s′) ← Decode(v′). We use the shorthand v ← Encode(w) to indicate that Encode is executed
sequentially on the components of w = (w1, . . . , wn) ∈ W ∗ and the corresponding codewords are the
components of v = (v1, . . . , vn) ∈ ({0, 1}∗)∗ with vi ← Encode(wi).

We say that ES is instantaneously decodable if for all w ∈W ∗ and s ∈ {0, 1}∗, and for v← Encode(w)
and (w′, s′)← Decode(v1 ‖ . . . ‖ vn ‖ s) where v = (v1, . . . , vn), the following two properties hold:

ID1. w 4 w′, i.e., all input words from w are recovered by Decode in w′ (and potentially further words
contained in the string s), and

ID2. If there is no w ∈W such that Encode(w) 4 s then w′ = w and s′ = s, i.e., if s does not contain an
encoded word then Decode recovers exactly the words in w = w′ and puts the remaining bits in s′.

We furthermore say that ES is length-regular if for all w′, w with |w′| = |w| it holds that |v| = |v′|
where v← Encode(w) and v′ ← Encode(w′).

Since in this paper we only make use of encoding schemes that are instantaneously decodable and
length-regular, from now on the term ‘encoding scheme’ refers to schemes fulfilling these properties.

Remark 7.2. For every w ∈ W ∗ and v ← Encode(w) it holds that Decode(‖v) = (w, ε). Indeed, for
v = (v1, . . . , vn), s = ε and (w′, s′)← Decode(v1 ‖ · · · ‖ vn ‖ s) property (ID2) implies w′ = w and s′ = ε.

14As a technical side remark, violating the HTTP header decoding rules was part of what enabled the ‘cookie-cutter’
attack [BDF+14].

37

Remark 7.3. The set of codewords V = {Encode(w) | w ∈ W} induced by ES is prefix-free. Indeed,
let v, v′ ∈ V be such that v 4 v′ and write v′ = v ‖ s for some s ∈ {0, 1}∗. By definition there exist
w,w′ ∈W such that v = Encode(w) and v′ = Encode(w′). By Remark 7.2 we have Decode(v′) = ((w′), ε);
similarly, by property (ID2) we derive Decode(v′) = Decode(v ‖ s) = (w′′, s′′) where (w) 4 w′′. Putting
these relations together we get (w) 4 w′′ = (w′) =⇒ w = w′ and thus v = Encode(w) = Encode(w′) = v′.
In what follows, when writing that an encoding scheme is prefix-free we mean that its set of codewords is.

Example 7.4 (The end-of-message encoding). Take any string � ∈ {0, 1}∗ and let κ = |�| be its length.
Define W ⊂ {0, 1}∗ recursively in such a way that no (finite) concatenation of words in W contains the
distinguished string �. Formally, we require that for all u ∈ W with |u| ≥ κ and for all i such that
1 ≤ i ≤ |u| − κ it holds � 6= u[i, . . . , i + κ]. We define the end-of-message encoding through the following
functions. We encode m ∈ W by appending to it the end-of-message symbol �, i.e., Encode(m) = m ‖ �.
To decode a string y ∈ {0, 1}∗ we first initialize w← (), s← ε, then we scan y from left to right until we
find the first occurrence of �. If there is none, we set s = y and return (w, s). Otherwise we found the first
word w1 that y encodes, i.e., such that w1 ‖ � 4 y; thus, we append w1 to w and proceed (recursively)
as above using the unprocessed string y′ ← y % (w1 ‖ �) instead of y. Observe that, by definition of W ,
any string y ∈ {0, 1}∗ admits a unique decomposition y = w1 ‖ � ‖ · · · ‖ w` ‖ � ‖ w`+1 with ` ≥ 0,
w1, . . . , w` ∈ W and w`+1 ∈ {0, 1}∗ \W . By the obvious correctness of this algorithm, wee see that the
end-of-message encoding is instantaneously decodable. It is also length-regular due to the fixed length κ
of the appended end-of-message symbol �.

A specific instance of the end-of-message encoding is the HTTP header encoding where � = \n\n (i.e.,
two ASCII newline characters) and header messages follow a specific format which in particular forbids
two subsequent newlines to occur in a message.

7.2 The Encode-then-Stream Construction

For our generic construction of an atomic-message channel from a stream-based channel we now leverage a
length-regular instantaneously decodable encoding scheme ES = (Encode,Decode) with word spaceW =M
as a generalization of both real-world and theoretical approaches to convert atomic messages into a stream
and, vice versa, a stream into (a vector of) atomic messages. We name this paradigm encode-then-stream
and denote by aChEtS the resulting atomic-message channel.

The main idea is very natural: we encode atomic messages within the message stream sent and, on the
receiver’s side, to buffer the incoming stream and only output messages once they are received completely.
Briefly, algorithm aSend takes an atomic message m and first encodes it by invoking v ← Encode(m).
It then processes the corresponding string v using the stream-based channel’s sending algorithm (with a
flush request), obtaining (stS , c) ←$ Send(stS , v, 1). Correspondingly, algorithm aRecv takes as input a
ciphertext fragment c ∈ {0, 1}∗ and first invokes the streaming receiving algorithm (stR, v)← Recv(stR, c).
It then extracts from v the longest prefix v′ that does not contain error symbols and concatenates the
latter to the buffer, buf ← buf ‖ v′. Finally, it decodes the new buffer content to obtain an atomic-message
vector and an updated (potentially empty) buffer, (m, buf)← Decode(buf).

Construction 7.5 (Encode-then-stream construction aChEtS). Consider a stream-based channel Ch =
(Init,Send,Recv) with error space E and an encoding scheme ES = (Encode,Decode) with word space W ⊆
{0, 1}∗. We define aChEtS = (aInit, aSend, aRecv) to be the atomic-message channel with message space
M = W and error space {⊥} obtained by applying to Ch the transform described in Figure 13.

Correctness of aChEtS directly follows from the correctness of Ch and the instantaneous decodability
of ES, as we show in the following proposition.

38

aInit(1λ):
1 (st′S,0, st′R,0)←$ Init(1λ)
2 buf ← ε
3 fail← 0
4 stS,0 = st′S,0
5 stR,0 = (st′R,0, buf, fail)
6 return (stS,0, stR,0)

aSend(stS , m):
1 v ← Encode(m)
2 (stS , c)←$ Send(stS , v, 1)
3 return (stS , c)

aRecv(stR, c):
1 parse stR as (st′R, buf, fail)
2 if fail = 1 then
3 return (stR, (⊥))
4 (st′R, v)← Recv(st′R, c)
5 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
6 v′ ← v[1, . . . , `] // longest non-error prefix of v
7 buf ← buf ‖ v′

8 (m, buf)← Decode(buf)
9 if v′ 6= v then

10 fail← 1
11 m←m ‖ (⊥)
12 stR ← (st′R, buf, fail)
13 return (stR, m)

Figure 13: Generic construction of an atomic-message channel aChEtS = (aInit, aSend, aRecv) with message spaceM from any
stream-based channel Ch = (Init, Send, Recv) and an encoding scheme ES = (Encode, Decode) with word space W =M.

Proposition 7.6 (Correctness of aChEtS). If the stream-based channel Ch = (Init,Send,Recv) is correct
and the encoding scheme ES = (Encode,Decode) is instantaneously decodable then the atomic-message
channel aChEtS = (aInit, aSend, aRecv) is correct, too.

Proof. Let (stS,0, stR,0)←$ aInit(1λ), ` ∈ N, and m ∈ M` be arbitrary and let c ∈ ({0, 1}∗)` be such that
(stS,`, c) ←$ aSend(stS,0,m). Let `′ ∈ N and c′ ∈ ({0, 1}∗)`′ be arbitrary, and let m′ ∈ M`′ be such that
(stR,`′ ,m′) ← aRecv(stR,0, c′). Suppose that for some i ∈ [1, . . . , `] it holds ‖c[1 . . . i] 4 ‖c′ 4 c. Using a
similar notation let v ∈ ({0, 1}∗)` denote the vector of codewords v← Encode(m) and let v′ ∈ ({0, 1}∗)`′ be
such that (st′R,`′ ,v′) ← Recv(st′R,0, c′). Observe that c is generated by invoking the stream-based sending
algorithm Send on input the components of v and flush flags f = (1, . . . , 1). Then, by (stream-based)
correctness of Ch we have that for all j ∈ [1, . . . , `], and in particular for j = i, it holds ‖c[1, . . . , j] 4 ‖c′ 4
‖c =⇒ ‖v[1, . . . , j] 4 ‖v′ 4 ‖v. By construction we now have (m[1, . . . , i], ε) ← Decode(‖v[1, . . . , i]),
(m′, s)← Decode(‖v′) for some s ∈ {0, 1}∗, and (m, ε)← Decode(‖v). Using the property ID1 of encoding
schemes we derive from ‖v[1, . . . , i] 4 ‖v′ that m[1, . . . , i] 4 m′. Furthermore, m′ 4 m as property ID2
ensures that Decode only decodes full codewords in ‖v′ % ‖v[1, . . . , i] namely, by property ID1 and as
‖v′ 4 ‖v, those codewords v[i+ 1, . . . , `] corresponding to m[i+ 1, . . . , `] fully contained in ‖v′.

7.3 Security of Encode-then-Stream

Ideally we would like to show that confidentiality and integrity properties of the stream-based channel Ch
can be lifted to the corresponding security properties of the atomic-message channel aChEtS. Indeed, using
a specific encoding to identify message boundaries—as our generic construction aChEtS does—is a natural
approach to encode atomic messages within a stream of bits. This approach is pursued by numerous
application layer protocols including, among others, HTTP [FR14]. Surprisingly, not even the strongest
confidentiality and integrity properties of the underlying stream-based channel Ch (i.e., IND-CCFA and
INT-CST) suffice to make our atomic-message channel construction aChEtS aIND-CCFA- and aINT-CST-
secure.

As a particular (and admittedly artificial) counterexample consider the following variant Ch′AEAD =
(Init′, Send′,Recv′) of the AEAD-based streaming channel construction ChAEAD (see Construction 5.1): The
Send′ algorithm processes the input message as Send does, but additionally appends a 0-bit to each AEAD
ciphertext c′ computed by Send. On the receiver’s side, the AEAD ciphertext is processed as before and,

39

if the appended bit following the AEAD ciphertext (which is also allowed to arrive in a separate fragment)
equals 1, then after decrypting the ciphertext and adding the result to the output message m the failure
flag is set to fail← 1 and the error symbol ⊥ is appended to m.

Observe that construction Ch′AEAD preserves the IND-CCFA and INT-CST security properties of the
original stream-based channel ChAEAD (see Section 5) since, intuitively, the ability to flip the redundant
bit allows the adversary only to create an extra error symbol which harms neither confidentiality nor
integrity. The reason is that the message part from the unaltered ciphertext prefix, without the extra bit,
is still suppressed in the stream-based confidentiality experiment. Analogously, creating additional error
symbols in the stream-based integrity experiment does not violate security. However, as we show next,
using Ch′AEAD as the underlying stream-based channel results in the atomic-message construction aChEtS
being insecure with respect to both confidentiality and integrity, as we discuss next.

Let us consider confidentiality first: for any ciphertext c = len ‖ c′ ‖ 0 (where len ‖ c′ is the ciphertext
as generated by ChAEAD) output by the left-or-right oracle, an adversary against the aIND-CCFA security
of aChEtS can simply query the receiving oracle on c∗ = len ‖ c′ ‖ 1 and will obtain the input message m′b
used on the sender’s side. Indeed, as the AEAD ciphertext c′ is unmodified, the AEAD decryption will
yield the full codeword v′ = Encode(m′b). Therefore the (atomic-message) receiving oracle ORecv, treating
c∗ as an atomic (and hence differing) ciphertext, will return the pair (m′b,⊥) to the adversary, allowing it
to break confidentiality. However, since in the streaming setting the message m′b is already output upon
receiving the genuine part c̃∗ = len ‖ c′ of the ciphertext c∗, stream-based confidentiality of Ch′AEAD is not
affected by this attack.

A similar argument applies to the case of integrity: an adversary against the aINT-CST property of
aChEtS can, given a ciphertext c = len ‖ c′ ‖ 0, flip the last bit of c and make the receiving oracle rate the
resulting message m′ (where m′ = Decode(v′) and v′ is the codeword obtained by AEAD decrypting c′)
as a valid message output on a deviating ciphertext c∗. The latter breaks the atomic ciphertext integrity
of aChEtS without violating the notion of stream-based integrity of Ch′AEAD.

We stress that the modified construction Ch′AEAD certainly constitutes a particularly unnatural, yet
secure stream-based channel. It nevertheless indicates the need for an additional requirement on the
stream-based channel, ruling out such behavior, for proving the security of aChEtS generically.15 We
conjecture that this is not a limitation specific to our aChEtS construction but that indeed no generic
atomic-message channel construction working, from a protocol-layering perspective, on top of Ch′AEAD in
a black-box manner can satisfy confidentiality or integrity. As an attempt to formalize the additional
requirement just mentioned, we propose a new security notion that precludes a stream-based channel
from behaving like Ch′AEAD and prove it sufficient, together with INT-CST and IND-CCFA security, for the
security of the encode-then-stream paradigm.

7.3.1 Conciseness of ciphertext streams

Intuitively, we want to ensure that if one submits a strict prefix of the genuine ciphertext stream for
decryption then the complete message stream will not be output on the receiver’s side. This, in particular,
rules out those constructions for which Send appends redundant bits to the ciphertext fragment (as the
construction Ch′AEAD in our example above) that can be chopped without affecting the underlying message

15We note that Canetti et al. [CKN03] introduced a relaxed notion of confidentiality (for public-key encryption, but also
applicable to the secret-key setting), so-called indistinguishability under replayable chosen-ciphertext attacks (RCCA), cap-
turing that an encryption scheme is non-malleable beyond trivial ciphertext modifications (like our additional, flippable bit).
It is plausible that the channel ChAEAD achieves a similar, relaxed notion of confidentiality for stream-based channels (an
RCCA-style notion in the streaming setting is yet to be defined, though). Here we take a different route and, aiming at
a stronger, CCA-like confidentiality property, we rather make explicit an additional property for stream-based channels—
conciseness of ciphertexts—that enables lifting confidentiality and integrity of the underlying stream-based channel to the
constructed atomic-message channel.

40

ExptCON-CST
Ch,A (1λ):

1 (stS , stR)←$ Init(1λ)
2 i← 0, j ← 1
3 win← 0
4 MS ← (), CS ← ()
5 MR ← ε, CR ← ε
6 AOSend(·,·),ORecv(·)(1λ)
7 if CR ≺ ‖CS then
8 while ‖CS[1, . . . , j] 4 CR
9 do j ← j + 1

//CS[j] is first ciphertext not received completely
10 if ‖MS[1, . . . , j] 4 MR then
11 win← 1
12 return win

If A queries OSend(m, f):
13 (stS , c)←$ Send(stS , m, f)
14 i← i + 1
15 MS[i]← m
16 CS[i]← c
17 return c to A

If A queries ORecv(c):
18 (stR, m)← Recv(stR, c)
19 MR ←MR ‖ m
20 CR ← CR ‖ c
21 return m to A

Figure 14: Security experiment for conciseness of ciphertext streams (CON-CST) for stream-based channels.

fragment. Put differently, we require that accepted ciphertexts are concise. We thus name this new security
property conciseness of ciphertext streams (CON-CST).16 The intuition behind our definition is as follows.
The adversary’s goal is to deliver only a strict prefix CR of the sender’s output stream ‖CS of the atomic
ciphertexts to the receiver, but such that the receiver still obtains all message chunks. In other words,
the adversary wins if it manages to cut some bits in the ciphertext stream (such as a redundant bit in a
ciphertext) without affecting the message delivery. As we will see below, conciseness is naturally achievable
by stream-based channel constructions, including ours. Investigating the necessity of conciseness (or a
different notion) for sending atomic messages over a stream-based channel in a protocol-layered manner is
a possible avenue for future work.

Definition 7.7 (Conciseness of ciphertext streams (CON-CST)). Let Ch = (Init, Send,Recv) be a stream-
based channel and experiment ExptCON-CST

Ch,A (1λ) for an adversary A be defined as in Figure 14. Within the
experiment, the adversary A is given access to a sending oracle OSend and a receiving oracle ORecv. We
say Ch provides conciseness of ciphertext streams (CON-CST) if for all PPT adversaries A the following
advantage function is negligible:

AdvCON-CST
Ch,A (λ) := Pr

[
ExptCON-CST

Ch,A (1λ) = 1
]
.

Remark 7.8. It is easy to see that for a stream-based channel with concise ciphertext streams, the
Send algorithm can never output a non-empty ciphertext c 6= ε on input an empty message m = ε and
having no buffered message input from previous calls. Assume otherwise, i.e., a sequence of message
fragments MS[1], . . . ,MS[i− 1],MS[i] transformed by Send (with the flush flag always set to f = 1) into
a sequence of ciphertext fragments CS[1], . . . ,CS[i − 1],CS[i]; with MS[i] = ε while CS[i] 6= ε. Now,
an adversary can simply query ORecv on CS[1] ‖ . . . ‖ CS[i − 1] first, next query ORecv on the bit-wise
inverse of CS[i], and then stop. It wins the CON-CST experiment, as CS[i] is not contained in the received
ciphertext stream CR, yet all message fragments including MS[i] are contained in the received message
stream MR, as MS[1] ‖ . . . ‖MS[i− 1] ‖MS[i] = MS[1] ‖ . . . ‖MS[i− 1] (recall that MS[i] = ε) and the
latter is contained by correctness.

16The scope of conciseness for stream-based channels is somewhat similar in spirit to that of tidiness [NRS14] for nonce-
based encryption: it is a natural requirement to rule out schemes for which the receiving algorithm performs some useless
operation allowing an adversary to trivially break security.

41

We remark that in practice channel protocols including IPsec and TLS do specify the possibility to send
empty message fragments as a traffic analysis countermeasure; yet, popular libraries (e.g., OpenSSL [Ope])
do not allow this option. The common ‘encode-then-stream’ approach which we capture in our generic
aChEtS construction does not rely on the capability of sending empty message fragments. We hence do
consider the restriction to disallow empty message fragments as non-critical in this setting.

7.3.2 Integrity and Confidentiality of Encode-then-Stream

We now turn towards analyzing the security of our generic construction of an atomic-message chan-
nel aChEtS from a stream-based channel Ch and an encoding scheme ES. In brief, we prove that integrity
of ciphertext streams (INT-CST) of the stream-based channel Ch can be lifted to the analogous property
(aINT-CST) for the resulting atomic-message channel aChEtS, provided that Ch also offers conciseness of
ciphertexts (CON-CST). Due to the subtle difference between the synchronization mechanisms in the
streaming and the atomic-message setting, the proof of this result is quite involved. We also show that in-
distinguishability under chosen plaintext-fragment attacks (IND-CPFA) and error predictability (ERR-PRE)
of Ch can be lifted to the analogous properties (aIND-CPA and aERR-PRE) of aChEtS. These relations to-
gether with Theorem 6.6 imply that INT-CST, IND-CPFA, CON-CST and ERR-PRE of Ch are sufficient
conditions for the encode-then-stream paradigm to provide indistinguishability under chosen ciphertext-
fragment attacks (IND-CCFA).

It is worth noting that, while integrity of ciphertext streams (INT-CST), given CON-CST, directly
carries over from the stream-based channel Ch to the atomic-message channel aChEtS, the same does not
seem to hold for confidentiality against active adversaries (IND-CCFA). While our proof lifts aIND-CPA
to aIND-CCFA security by leveraging ciphertext-stream integrity and error predictability (via the compo-
sitional result from Theorem 6.6), one may wonder whether requiring INT-CST and ERR-PRE is indeed
necessary. A different route to achieve aIND-CCFA security of the encode-then-stream paradigm could be
used to lift confidentiality against an active adversary directly from the IND-CCFA security of Ch (recall
that CON-CST of Ch would be necessary also in this case, as explained at the beginning of Section 7.3). At
first glance, one might expect lifting IND-CCFA to its analog in the atomic-message setting, aIND-CCFA,
should not rely on integrity of the stream-based channel. We however conjecture that such integrity is in
fact necessary. Without going into details, the reason for this is that a non-integrous stream-based channel
may possibly allow an attacker to modify the sent message stream in an arbitrary manner from some point
on. In particular, the adversary might be able to modify the atomic-message encoding, e.g., by moving
an employed end-of-message symbol to some earlier position in the message stream. Such a modification
does not imply a stream-based confidentiality break, as the preceding challenge-message stream would
still be suppressed. In the atomic-message sense, however, the resulting received (challenge) message is
shortened, hence considered to be different and output to the adversary in the aIND-CCFA experiment.
We therefore expect that stream-based integrity is indeed necessary to bridge the gap from stream-based
IND-CCFA to atomic-message aIND-CCFA security. This, in particular, provides a glimpse into the formal
causes enabling the cookie cutter attack [BDF+14]: ultimately, atomic-message encodings need integrity
protection as otherwise an adversary can restructure application messages (in this case application-layer
HTTP messages) in a way that may not only violate their integrity, but also confidentiality.

In proving the theorem on integrity, the ideal target would be to build an efficient reduction that
turns any successful aINT-CST adversary against the atomic-message channel aChEtS into a successful
INT-CST adversary against the streaming channel Ch. Intuitively, the reduction can simply perform the
encoding and decoding operations of aChEtS by itself and realize the streaming operations using sending
and receiving oracles provided by the INT-CST experiment. The challenging part is to guarantee that
any success in the aINT-CST game translates to a success in the INT-CST game. In fact, because of the
different synchronization mechanisms adopted in the atomic-message setting and in the streaming setting,

42

it is not possible to exploit every aINT-CST break against aChEtS to violate the INT-CST property of Ch.
For stream-based channels, synchronization is lost starting from the first deviating bit in the ciphertext
stream. In contrast, for atomic-message channels we declare the entire ciphertext to be out-of-sync as soon
as a deviation in the ciphertext sequence or in the message sequence is detected. Therefore, the receiving
oracle in the atomic-message setting may lose synchronization ‘earlier’ than in the streaming setting. As
we will see explicitly in the proof, CON-CST ensures that the oracle provided to the reduction from the
INT-CST experiment and the one that A is presented with from the emulated aINT-CST experiment are
consistent.

Theorem 7.9 (aINT-CST security of aChEtS). Let Ch = (Init, Send,Recv) be a stream-based channel and
let aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via the encode-then-
stream construction (see Construction 7.5). If Ch provides integrity and conciseness of ciphertext streams
(INT-CST and CON-CST) then aChEtS provides atomic-message integrity of ciphertexts (aINT-CST). For-
mally, for every efficient aINT-CST adversary A there exist an efficient CON-CST adversary B and an
INT-CST adversary C such that

AdvaINT-CST
aChEtS,A (λ) ≤ AdvCON-CST

Ch,B (λ) + AdvINT-CST
Ch,C (λ).

Proof. We will show that if A wins the aINT-CST game against aChEtS then we can either violate the
CON-CST or the INT-CST properties of the underlying stream-based channel Ch. We start with an intuitive
explanation and then give explicit reductions. Assume that A wins the aINT-CST game (from Figure 11).
Then there are four possibilities for the win flag win← 1 to be set the first time—as we sketch below and
explore in detail in the course of the proof—depending on whether win ← 1 is set in line 23 (option #1
below) or in line 34 (options #2, #3, and #4).

#1. Synchronization has been lost before. Then CR must be deviating from ‖CS and a (fully) deviating
fragment causes aRecv to output some valid message.17 As we will see, this leads to violating the
INT-CST property of Ch.

#2. The stream CR goes ahead of ‖CS (the loop of lines 25–26 terminates because j > i) and the
exceeding part produces some valid message when processed by aRecv. This violates the INT-CST
property of Ch, too.

#3. The stream CR deviates from ‖CS after the first j − 1 sent ciphertexts and messages are received
entirely (the loop terminates because j ≤ i but ‖CS[1, . . . , j] 64 CR). Here the fact that A wins the
aINT-CST game does not necessarily lead to violating the INT-CST property of Ch but, if not, it
infringes its CON-CST property.

#4. The sequence MR deviates from MS after the first j − 1 sent messages are received completely (the
loop terminates because j ≤ i and ‖CS[1, . . . , j] 4 CR but MS[1, . . . , j] 64 MR[1, . . . , j]). Also in
this case we can leverage A’s strategy in aINT-CST to break the INT-CST security of Ch.

In the rest of the proof we first isolate the conditions causing A to be successful in the aINT-CST game
without violating the INT-CST security of Ch—note that this can only happen for option #3. We then
define a new game which penalizes A if the latter occurs, and bound the difference in probability between
the modified game and the original one with the CON-CST advantage of an efficient adversary B. Finally,
we show that the modified game can be simulated by an efficient adversary C which breaks the INT-CST
property whenever A wins the aINT-CST game.

17 In principle, CR could also be ahead of ‖CS. However, in this case we can have sync = 0 only if a valid message was
already output upon processing some previous (ahead) fragment; but then win ← 1 would have been already set. Note that
once aChEtS output the first error symbol, by construction it only outputs errors from that point on. Hence, win← 1 cannot
be set after the first error output occurred.

43

E0
A(1λ), E1

A(1λ):
1 (st′S,0, st′R,0)←$ Init(1λ)
2 buf ← ε, fail← 0
3 stS ← st′S,0
4 stR ← (st′R,0, buf, fail)
5 sync← 1, win← 0
6 i← 0
7 MS ← (), CS ← ()
8 MR ← (), CR ← ε

9 VS ← (), VR ← ε

10 AOSend(·),ORecv(·)(1λ)
11 if bad = 1 then win← 0
12 return win

If A queries OSend(m):
13 v ← Encode(m)
14 (stS , c)←$ Send(stS , v, 1)
15 i← i + 1
16 MS[i]← m
17 CS[i]← c
18 VS[i]← v
19 return c to A

If A queries ORecv(c):
20 parse stR as (st′R, buf, fail)
21 s̃t′R ← st′R // copy of current state
22 if fail = 1 then
23 m← (⊥)
24 else
25 (st′R, v)← Recv(st′R, c)
26 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
27 v′ ← v[1..`] // v′ is the longest error-free prefix of v
28 buf ← buf ‖ v′

29 (m, buf)← Decode(buf)
30 if v′ 6= v then
31 fail← 1, m←m ‖ (⊥)
32 stR ← (st′R, buf, fail)
33 C′R ← CR
34 CR ← CR ‖ c
35 MR ←MR ‖m
36 V ′R ← VR
37 VR ← VR ‖ v
38 if sync = 0 then
39 if m /∈ E∗ then
40 win← 1
41 else if CR 64 ‖CS then
42 j ← 1
43 while j ≤ i and ‖CS[1, . . . , j] 4 CR

and MS[1, . . . , j] 4 MR
44 do j ← j + 1
45 if ‖CS 64 CR then
46 c̃← [CR, ‖CS] % C′R

47 (s̃t′R, ṽ)← Recv(s̃t′R, c̃)
48 if ‖VS[1, . . . , j] 4 V ′R ‖ ṽ then
49 bad← 1
50 if j ≤ i or |MR| > i then
51 sync← 0
52 m′ ←MR[j, . . . , |MR|]
53 if m′ /∈ E∗ then
54 win← 1
55 return m to A

Figure 15: Security experiments E0
A = ExptaINT-CST

aChEtS,A and E1
A, derived from E0

A by including the framed instructions, described
in the proof of Theorem 7.9.

44

We first set some notation. Let E0 denote the aINT-CST experiment with the algorithms of aChEtS
plugged-in, as depicted in Figure 15 (ignore the framed instructions for now). Now we define a new
experiment E1 starting from E0 by including the framed instructions (lines 9, 11, 18, 21, 33, 36–37,
and 45–49). The resulting game essentially works as E0 but it resets win← 0 if, although CR contains only
up to the first j − 1 genuine ciphertexts and then deviates from CS, Recv produces a stream V ′R ‖ ṽ which
contains the first j genuine codewords upon processing the longest genuine prefix c̃ of the first deviating
query c. Informally, this change isolates the event that A wins the aINT-CST experiment against aChEtS
without causing a violation of the INT-CST property of Ch (i.e., a deviation from CS does not translate
to a deviation from the underlying message stream), and prevents A from winning the game in such a
case. In more detail, through lines 9, 18, and 36 the new game additionally maintains a sequence VS
for bookkeeping the codewords input to Send as well as a string VR for the fragments output by Recv.
Instruction 21 makes a copy s̃t′R of the current state st′R (of the streaming algorithm) as well as copies C ′R
and V ′R of the current strings CR and VR before the current query is processed by Recv. Instructions 45–47
identify the first deviating query c and perform an auxiliary call to Recv (with state s̃t′R, i.e., prior to
processing c) on the longest genuine prefix c̃ of c. Finally, instructions 48–49 detect whether processing
the longest genuine prefix of VR through Recv yields the first j codewords entirely, and, if so, set the
flag bad. In what follows we denote by bad the event that bad ← 1 is triggered. Finally, instruction 11
penalizes the adversary if it triggers event bad. Since the experiments E0 and E1 returns the same outcome
as long as bad does not occur, we can bound their difference in probability by∣∣∣AdvE0

aChEtS,A(λ)− AdvE1

aChEtS,A(λ)
∣∣∣ ≤ Pr[bad].

We now show that the occurring of event bad translates to a violation of the CON-CST property of the
stream-based channel Ch. To this end, we build an explicit reduction B which simulates the game for A
using the oracles provided by the CON-CST experiment (from Figure 14). The reduction B emulates the
steps of the aChEtS construction (cf. Figure 13) and uses its sending and receiving oracles from the CON-CST
game to perform Send and Recv operations. However, when A queries the first deviating fragment c, B
queries to its ORecv oracle the longest genuine prefix c̃ of c and halts (terminating the simulation). We
give the explicit code of algorithm B in Figure 16.

To see that B perfectly simulates the oracles of the aINT-CST experiment for A up to the bad event
occurring, note that B essentially uses its OSend and ORecv oracles as a drop-in replacement for the Send
and Recv operations performed by the channel aChEtS, and executes the (public) encoding and decoding
operations by itself.

It remains to argue that if bad occurs then B violates the CON-CST property of Ch. To this end,
recall that the instructions specified in lines 45–47 identify the first deviating query c and perform an
auxiliary invocation of Recv on input the longest genuine prefix c̃, the latter yielding a (potentially empty)
string ṽ. Now, in the CON-CST experiment (see Figure 14 for reference) for B, once B has posed its
last query we have that the sequence of sent ciphertexts and the strings of received ciphertext fragments,
sent stream message fragments, and received stream message fragments coincide with CS, CR ‖ c̃, ‖VS,
and VR ‖ ṽ, respectively, from the experiment E1. By definition of bad, B’s receiving queries cause Recv
to output the full stream message string ‖VS[1, . . . , j] although only a strict prefix of the corresponding
ciphertext sequence CS[1, . . . , j] has been submitted for decryption, i.e., ‖CS[1, . . . , j] 64 CR ‖ c̃ and
‖VS[1, . . . , j] 4 VR ‖ ṽ. This precisely violates the CON-CST property of Ch and hence we have

Pr[bad] ≤ AdvCON-CST
Ch,B (λ).

We finally note that any A which is successful in experiment E1 (from Figure 15) can be turned into
an efficient adversary C that breaks the INT-CST property of Ch. Similarly to B, algorithm C simulates

45

BA,OSend(·,·),ORecv(·)(1λ):
1 buf ← ε, fail← 0
2 sync← 1
3 i← 0
4 MS ← CS ← ()
5 MR ← (), CR ← ε
6 AO

∗
Send(·),O∗

Recv(·)(1λ)

If A queries O∗Send(m):
7 v ← Encode(m)
8 c← OSend(v, 1)
9 i← i + 1

10 MS[i]← m
11 CS[i]← c
12 return c to A

If A queries O∗Recv(c):
13 if fail = 1 then return ⊥ to A
14 if sync = 1 and CR ‖ c 64 ‖CS and ‖CS 64 CR ‖ c then
15 c̃← [CR ‖ c, ‖CS] % CR
16 ṽ ← ORecv(c̃)
17 halt
18 v ← ORecv(c)
19 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
20 v′ ← s[1..`]
21 buf ← buf ‖ v′

22 (m, buf)← Decode(buf)
23 if v′ 6= v then
24 fail← 1, m←m ‖ (⊥)
25 CR ← CR ‖ c
26 MR ←MR ‖m
27 return m to A

Figure 16: Reduction B from the aINT-CST of aChEtS to the CON-CST of Ch used in the proof of Theorem 7.9. Note that B
does nothing more than emulating the construction (see Figure 13) until the first deviating query. Specifically, it deviates
from emulating the construction only with instructions 14–17.

the aChEtS operations using the oracles provided by the INT-CST experiment to perform Send and Recv on
message fragments. In contrast to B (which halts when A poses the first deviating query), C’s simulation
goes on until A stops.

As for B, it is immediate to see that C perfectly emulates the oracles for A. The more challenging
part of the proof is to show that if A is successful, so is C. More specifically, we show that if A wins, by
triggering lines 40 or 54 in game E1 (from Figure 15) but not the bad event (lines 49 and 11), then C wins
through triggering lines 18 or 35 in the INT-CST game (from Figure 5).

In the rest of the proof we will use the properties of the aChEtS construction. First, aSend always
invokes Send with flush flag set to f = 1: this induces a natural correspondence between MS, VS and CS.
Second, upon processing a receiving query c and the corresponding string v output by Recv in experi-
ment E1, the sequence MR is updated by first appending the message vector m obtained by decoding
the valid part v′ of fragment v and then, if v contains any error, by also appending the symbol ⊥ (see
lines 26–29 in Figure 15). Moreover, once the first error occurs, MR is only further augmented with errors
(see line 23), so A cannot win after this point.

We already saw that there are essentially four possibilities for A to win the aINT-CST experiment
(and so in game E1). We next show that, assuming that A is successful, in each of these cases C violates
the INT-CST property of Ch. Let c denote the receiving query (input) that causes win ← 1 to be set the
first time.

We consider first the case in which sync ← 0 is set with some query prior to c (A wins by triggering
instruction 40).

Case #1. Synchronization has been lost before. Then CR must be deviating from ‖CS (see footnote 17).
Note that for A to win, aRecv on input the (fully deviating) fragment c must output some message
sequence m 6= (⊥). That is, if buf denotes the buffer kept by aRecv prior to processing c, we have that Recv
on input c returns a string v such that Decode(buf ‖ v′) = (m, buf ′), where v′ is the longest error-free
prefix of v. In other words, processing c augments the buffer to contain (at least) a full codeword v∗ that
was not completed before receiving c (otherwise win← 1 would have been set with some previous query).

In more detail, let c′1 denote the first deviating query, let c′2, . . . , c′` be the subsequent decryption

46

queries prior to c, and let v′1, . . . , v′` be the output of Recv on input these queries. Since win ← 1 is only
set when A queries ORecv on c, the sequence of messages received after processing each of c′1, . . . , c′` must
be a prefix of MS, i.e., MR = MS[1, . . . , k] for some 1 ≤ k < i, and moreover v′1, . . . , v′` ∈ {0, 1}∗ do not
contain an error symbol. Prior to receiving c we must have that ‖VS[1, . . . , k] 4 VR and the remainder
VR % ‖VS[1, . . . , k] = v′′1 ‖ v′2 ‖ · · · ‖ v′`, where v′′1 is a suffix of v′1 (some genuine prefix of v′1 may complete
the codeword VS[k]), does not contain any full codeword (again, otherwise win← 1 would be set earlier).
Only when c is processed and its output v′ appended to the current buffer can we isolate a full codeword v∗,
i.e., v∗ 4 buf = v′′1 ‖ · · · ‖ v′` ‖ v′ such that Decode(v∗) = (MR[k + 1], ε). In particular, v∗ /∈ E∗. Thus,
some among the deviating queries c′1, . . . , c′`, c that C forwards to its own receiving oracle will make C win
in the INT-CST experiment by triggering line 18 or line 35 in Figure 5.

The next three cases are those induced by the clauses defining the predicate of line 25 in the aINT-CST
experiment (Figure 11). Here win ← 1 and sync ← 0 are set within the same ORecv call in E1 (in lines 51
and 54). Note that for the aINT-CST experiment to enter the loop of lines 25–26 the current query c must
cause CR 64 ‖CS. The three cases to consider are the following.

Case #2. CR goes ahead of ‖CS (the loop terminates because j > i). Then after c is processed we
have j = i + 1, ‖CS ≺ CR and MS 4 MR. Assuming that A wins the game we must additionally
have MS[1, . . . , i] ≺ MR and in particular MR[j] 6= ⊥. It follows from the conditions above that VR =
‖VS[1, . . . , i] ‖ v∗ ‖ s such that Decode(v∗) = (MR[j], ε).18 That is, Recv outputs on input c a string v′ ‖
v∗ ‖ s /∈ E∗, where v′ might complete previous fragments. Hence, this triggers instruction 35 (in Figure 5),
making C violate the INT-CST property of Ch.

Case #3. The stream CR deviates from ‖CS after the first j − 1 sent ciphertexts and messages are
received entirely (the loop terminates because j ≤ i but ‖CS[1, . . . , j] 64 CR). In this case we have
‖CS[1, . . . , j − 1] ≺ CR and MS[1, . . . , j − 1] 4 MR, but ‖CS[1, . . . , j] 64 CR. Again assuming that
win ← 1 is set with the current query we have MS[1, . . . , j − 1] ≺ MR and MR[j] 6= ⊥. Then VR =
‖VS[1, . . . , j − 1] ‖ v∗ ‖ s with v∗ ∈ {0, 1}∗, s ∈ ({0, 1} ∪ E)∗ and Decode(v∗) = (MR[j], ε). This
means that on processing the current (deviating) query the stream-based algorithm Recv returns (beyond
a potential genuine prefix) a non-error output v = v∗ ‖ s, i.e., v /∈ E∗. Now, if MR[j] 6= MS[j] we
have v∗ 6= VS[j] and, because of the prefix-freeness of the set of codewords, that v∗ 64 VS[j], which is
an evident violation of the INT-CST property. The case MR[j] = MS[j] requires more care. Indeed,
since v∗ = VS[j], we cannot directly argue that having v∗ ∈ {0, 1}∗ violates the INT-CST property of Ch,
as v∗ may be also output by Recv when processing the genuine prefix c̃ of c. However, the latter would
imply v∗ = VS[j] 4 ṽ, hence triggering the bad event (instructions 49 and 11 in Figure 15), meaning that
A loses the game, against our assumption. That is, Recv only outputs the full v∗ after processing the
deviating part of c, hence violating the INT-CST security of Ch.

Case #4. The sequence MR deviates from MS after the first j−1 sent messages are received completely
(the loop terminates because j ≤ i and ‖CS[1, . . . , j] 4 CR but MS[1, . . . , j] 64 MR[1, . . . , j]). As win← 1
is set with the current query we have MS[1, . . . , j − 1] 4 MR, MS[1, . . . , j] 64 MR and MR[j] 6= ⊥. Then
VR = ‖VS[1, . . . , j − 1] ‖ v∗ ‖ s for some v∗ ∈ {0, 1}∗ and s ∈ ({0, 1} ∪ E)∗ such that Decode(v∗) =
(MR[j], ε), where v∗ 6= VS[j] and, for the prefix-freenes, v∗ 64 VS[j], which again violates the INT-CST
of Ch.

18In fact, the implication MS 4 MR =⇒ ‖VS 4 VR holds under the assumption that only codewords are decoded to valid
messages (i.e., there exists no string x ∈ {0, 1}∗ \ V such that Decode(x) = (m, s) with m ∈ M∗). For the argument to go
through, however, we do not need such an assumption, as having ‖VS 64 VR here would immediately lead to a violation of
the INT-CST property of Ch. A similar argument also applies to cases #3 and #4.

47

The analysis above proves that

AdvE1

aChEtS,A(λ) ≤ AdvINT-CST
Ch,A (λ).

Overall, we hence obtain the final bound

AdvaINT-CST
aChEtS,A (λ) ≤ AdvCON-CST

Ch,B (λ) + AdvINT-CST
Ch,C (λ).

We saw in Theorem 7.9 that the encode-then-stream paradigm allows us to leverage integrity and
conciseness of ciphertext streams for stream-based channels (INT-CST and CON-CST) to integrity of ci-
phertexts for atomic-message channels (aINT-CST). In the following theorems we prove a similar result for
confidentiality. First, we show in Theorem 7.10 that the encode-then-stream paradigm lifts confidentiality
against chosen plaintext-fragment attacks (IND-CPFA) to confidentiality against (atomic) chosen-plaintext
attacks (aIND-CPA). Then, we prove in Theorem 7.11 that aChEtS maintains (in the atomic setting) the
error predictability of the underlying stream-based channel. Finally, as a corollary of the above results
together with Theorem 6.6, we conclude that CON-CST, INT-CST, IND-CPFA, and ERR-PRE of Ch imply
aIND-CCFA security of aChEtS.

Theorem 7.10 (aIND-CPA security of aChEtS). Let Ch = (Init,Send,Recv) be a stream-based channel
and let aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via the encode-
then-stream construction (see Construction 7.5). If Ch provides and indistinguishability under chosen
plaintext-fragment attacks (IND-CPFA) then aChEtS provides indistinguishability under chosen-plaintext
attacks in the atomic-message setting (aIND-CPA). Formally, for every efficient aIND-CPA adversary A
there exist an efficient IND-CPFA adversary B such that

AdvaIND-CPA
aChEtS,A ≤ AdvIND-CPFA

Ch,B .

Proof. Given a left-or-right oracle from the IND-CPFA experiment against Ch it is immediate to simulate
the aIND-CPA experiment. Whenever A queries (m0,m1), algorithm B computes v0 = Encode(m0), v1 =
Encode(m1), queries(v0, v1, 1) to its own oracle OLoR, and gives the result c to A. Observe that |v0| = |v1|
due to the length-regularity of ES, so the queries made by B to its oracle are valid. As soon as A stops and
returns a bit b′, so does B. Hence, analogously to the reductions described in the proof of Theorem 7.9,
B perfectly emulates the oracle for A, executing the streaming Send operation via its oracle. Thus, B has
the same advantage as A.

Theorem 7.11 (aERR-PRE security of aChEtS). Let Ch = (Init, Send,Recv) be a stream-based channel and
let aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via the encode-then-
stream construction (see Construction 7.5). If Ch provides error predictability (ERR-PRE) with respect to
some efficient predictor Pred then there exists an efficient predictor Pred′ (described in the proof) such
that aChEtS is error predictable (aERR-PRE) with respect to Pred′. Formally, for every efficient aERR-PRE
adversary A there exists an efficient ERR-PRE adversary B such that

AdvaERR-PRE
aChEtS,Pred′,A ≤ AdvERR-PRE

Ch,Pred,B.

Proof. Let Pred′ be an algorithm that on input CS, CR, and c (as described in the experiment from
Figure 12) invokes Pred as a subroutine on input ‖CS, CR, and c. Then, depending on the output e
of Pred, Pred′ returns an empty vector () if e = ε is the empty string, otherwise it returns (⊥).

To see that Pred′ is a valid error predictor for aChEtS, notice first that by construction algorithm aRecv
always outputs an element m in M∗ ∪ (M∗ × ⊥), i.e., a vector of messages possibly followed by the
error symbol ⊥. Thus, for the projection 〈m〉E there are only two possibilities: it is either the empty

48

vector () or the singleton (⊥). Now let A be a successful adversary in the aERR-PRE experiment (from
Figure 12) against the error predictor Pred′. Then we can build an algorithm B, to be run in the ERR-PRE
experiment (from Figure 6) against Pred, similarly to the reductions described in Theorems 7.9 and 7.10,
i.e., by letting B emulate the oracles for A by performing the public encoding and decoding operations
of aChEtS and using its sending and receiving oracles for the streaming operations.

There are only two possibilities for A to be successful (in line 13 of Figure 12): either (i) Pred′ returns ()
while aRecv outputs an error, thus 〈m〉E = (⊥), or (ii) Pred′ returns (⊥) but aRecv only produces valid
messages, thus 〈m〉E = (). Observe that by construction Pred′ returns an empty vector if and only if Pred
returns an empty string. Similarly, aRecv outputs ⊥ if and only if Recv also returns some error symbols.
We hence deduce that, in the first case, Recv on input c returns error symbols but Pred erroneously predicts
that no error occurred, causing the execution of line 11. The second case is analogous: Recv on input c
only produces valid message bits, while Pred falsely predicts errors. In either case, B wins by causing the
execution of line 11 in Figure 6.

Corollary 7.12 (aIND-CCFA security of aChEtS). Let Ch = (Init,Send,Recv) be a stream-based channel
and let aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via the encode-
then-stream construction (see Construction 7.5). If Ch provides integrity and conciseness of ciphertext
streams (INT-CST and CON-CST), error predictability (ERR-PRE), and indistinguishability under a chosen
plaintext-fragment attack (IND-CPFA), then aChEtS provides indistinguishability under a chosen-ciphertext
attack in the atomic-message setting (aIND-CCFA).

7.3.3 Secure Instantiation from AEAD-based Streaming Channel Construction

The results of the previous section establish sufficient security requirements on the underlying stream-
based channel to obtain a secure atomic-message channel via the encode-then-stream paradigm. One of
these requirements is conciseness of ciphertext streams (CON-CST), which essentially says that ciphertext
fragments produced by the streaming sending algorithm contain no redundant bits that can be chopped
or modified without altering the underlying message fragment. It is not difficult to achieve this property.
Indeed, as we show in the next theorem, our AEAD-based streaming channel ChAEAD from Construction 5.1
provides conciseness of ciphertext streams. This result holds unconditionally in an information-theoretic
sense; even an unbounded adversary cannot violate CON-CST of ChAEAD.

Theorem 7.13 (CON-CST of ChAEAD). The stream-based channel ChAEAD from Construction 5.1 uncon-
ditionally provides conciseness of ciphertext streams (CON-CST). Formally, for any (even unbounded)
CON-CST adversary A against ChAEAD it holds that

AdvCON-CST
ChAEAD,A = 0.

Proof. Observe that a genuine ciphertext fragment c produced by Send on input some message frag-
ment m ∈ {0, 1}∗ is, by construction, the concatenation of a number of blocks B1, B2, . . . , each containing
an AEAD ciphertext c′i preceded by (the bit representation of) its length leni. Importantly, Recv identifies
these blocks in the received ciphertext stream and only upon receiving a full block Bi = leni ‖ c′i does it
invoke the AEAD decryption algorithm on ciphertext c′i. Thus, it is impossible to violate conciseness of
ciphertexts. Indeed, recall from the CON-CST game (see Figure 14) that in order to win the adversary
can only submit to ORecv a strict prefix of the genuine ciphertext stream. However, in the case of ChAEAD
not even an unbounded adversary can make Recv output one of the sent message fragments entirely by
submitting a truncation of the corresponding ciphertext fragment: chopping the ciphertext prevents the
AEAD decryption from being invoked on some block Bi and, consequently, causes a truncation of the
genuine message stream.

49

Remark 7.14. The TLS record protocol in both versions 1.2 and 1.3 [DR08, Res17] also provides con-
ciseness of its ciphertext stream when using an AEAD scheme and omitting the option to send zero-length
message fragments. As in our construction, TLS records are data structures clearly marked-out via a
length header, forming blocks within the ciphertext fragments output by the sender. Hence, for reasons
similar to those in Theorem 7.13, even an unbounded adversary cannot force entire message fragments to
be output when receiving truncated ciphertext fragments.

Theorem 7.13 together with the already established INT-CST and IND-CCFA security of ChAEAD under
the mild assumption that the authenticated encryption scheme with associated data AEAD provides AUTH
and IND-CPA security suggests that ChAEAD is a ‘good’ stream-based channel to start with for building
secure atomic-message channels using the encode-then-stream transform. Moreover, the atomic-message
channel construction aChEtS applied to ChAEAD yields a secure atomic-message channel from AEAD.

Corollary 7.15 (Atomic-message channels from AEAD). Let AEAD be an authenticated encryption scheme
with associated data, let ChAEAD be the streaming channel obtained from AEAD via Construction 5.1,
and let aChEtS be the atomic-message channel construction from Construction 7.5 applied to ChAEAD. If
AEAD provides authenticity (AUTH) and indistinguishability under chosen-plaintext attacks (IND-CPA)
then aChEtS provides atomic integrity of ciphertext streams (aINT-CST) and atomic indistinguishability
under chosen ciphertext-fragment attacks (aIND-CCFA).

8 Conclusion and Open Problems
In this work we studied the security of channels designed to (securely) convey a stream of data from one
party to another, narrowing the gap between real-world transport layer security protocols (like TLS or
SSH) and our theoretical understanding of them. For this purpose, we formalized the syntax of such
stream-based channels, explored strong security notions, and demonstrated their feasibility by providing
a natural and secure construction which closely mimics the operation of the TLS record protocol. We
furthermore analyzed how applications can securely transport atomic messages over a stream-based channel
by providing a provably secure ‘encode-then-stream’ paradigm.

Our approach sheds a formal light on recent attacks, in particular concerning the use of HTTP over
TLS, confirming a disjunction between applications’ expectations on the one hand and the guarantees
that secure streaming channels provide on the other. This highlights that there is a need for detailed
specifications of APIs and security guarantees for such protocols.

Our work also raises new research questions. Naturally, exploring the exact relation between stream-
based and atomic-message channels is an avenue that should be pursued, with the development of detailed
relations between security notions in our work and those by Boldyreva et al. [BDPS12] as a specific task.
Considering established techniques, the open question remains whether the well-accepted concept of length-
hiding encryption can be incorporated in the stream-based setting despite being intrinsically connected
to atomic messages. It also seems worthwhile to extend our stream-based model to encompass channel
protocol designs (such as TLS and QUIC) that allow multiplexing of several data streams within a single
channel.

Some technical questions arise from our analysis of the encode-then-stream paradigm to build atomic-
message channels from stream-based channels generically. Our security proofs for integrity and confiden-
tiality against active adversaries both rely on the conciseness of ciphertext streams (CON-CST) of the
underlying stream-based channel. A natural question is whether CON-CST is necessary for proving secu-
rity of the encode-then-stream construction and, more generally, whether it is necessary for the security
of any black-box construction of an atomic-message channel running on top of a stream-based channel in
a network-layer sense.

50

As we explain in Appendix B, there exists a class of stream-based channels that do not provide integrity
protection but are intuitively confidential, yet are declared insecure in our model. This raises the challeng-
ing question whether a weaker, yet reasonable, notion of confidentiality can be formalized for stream-based
channels which is met by the above-mentioned class of channels.

Finally, our work raises an important conceptual question for the practical design of secure channels:
Which type of interface should a channel provide in practice? A streaming one, following the historic
tradition of TCP and the de-facto standard socket interface for network protocols, or an atomic-message
interface, ensuring strong cryptographic protection of message boundaries? In the very end, the most
versatile approach might be to provide both interfaces, one for streaming data and one for distinct-message
data, and allow the application to select the one that best suits its specific needs.

Acknowledgments
The authors thank Jean Paul Degabriele for communicating the class of trivial attacks that both [BDPS12]
and the proceedings version of this work [FGMP15] failed to capture, and Bertram Poettering for informing
us about an instance of an intuitively confidential scheme that is declared insecure in our model; we thank
both for helpful discussions. Further, the authors thank the anonymous reviewers for their valuable
comments.

Marc Fischlin was supported by the Heisenberg grant Fi 940/3-2 of the German Research Foundation
(DFG). Kenneth Paterson was supported by EPSRC Leadership Fellowship EP/H005455/1, by EPSRC
grants EP/M013472/1, EP/K035584/1 and EP/P009301/1, and by a research programme funded by
Huawei Technologies and delivered through the Institute for Cyber Security Innovation at Royal Holloway.
This work has been co-funded by the DFG as part of projects P2 and S4 within the CRC 1119 CROSSING
and as part of the priority program 1736 Algorithms for Big Data, as well as by the EU COST Action
IC 1306.

Most of the work on this paper was done while Giorgia Azzurra Marson was at TU Darmstadt and at
Ruhr University Bochum.

References
[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G. Paterson.

A surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer
and Communications Security, pages 1480–1491, Vienna, Austria, October 24–28, 2016. ACM
Press. (Cited on pages 4, 5, 16, 17, 31, 32, and 34.)

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks
against SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–26, Oakland, CA,
USA, May 17–20, 2009. IEEE Computer Society Press. (Cited on page 4.)

[Bar07] Gregory V. Bard. Blockwise-adaptive chosen-plaintext attack and online modes of encryption.
In Steven D. Galbraith, editor, 11th IMA International Conference on Cryptography and
Coding, volume 4887 of Lecture Notes in Computer Science, pages 129–151, Cirencester, UK,
December 18–20, 2007. Springer, Heidelberg, Germany. (Cited on page 7.)

[BBKN01] Mihir Bellare, Alexandra Boldyreva, Lars R. Knudsen, and Chanathip Namprempre. Online
ciphers and the hash-CBC construction. In Joe Kilian, editor, Advances in Cryptology –

51

CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 292–309, Santa
Barbara, CA, USA, August 19–23, 2001. Springer, Heidelberg, Germany. (Cited on page 7.)

[BDF+14] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo Pironti, and
Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking and fixing authentica-
tion over TLS. In 2014 IEEE Symposium on Security and Privacy, pages 98–113, Berkeley,
CA, USA, May 18–21, 2014. IEEE Computer Society Press. (Cited on pages 4, 6, 19, 31, 37, and 42.)

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. Security
of symmetric encryption in the presence of ciphertext fragmentation. In David Pointcheval
and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237
of Lecture Notes in Computer Science, pages 682–699, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany. (Cited on pages 4, 5, 7, 11, 12, 13, 16, 17, 19, 31, 32, 33, 37, 50, 51,
and 57.)

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. On
symmetric encryption with distinguishable decryption failures. In Shiho Moriai, editor, Fast
Software Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer Science, pages
367–390, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany. (Cited on pages 6, 19,
20, 30, and 31.)

[Ber] Dan Bernstein. Cryptographic competitions: CAESAR. http://competitions.cr.yp.to/
caesar.html. (Cited on page 7.)

[BFK+13] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and Pierre-Yves
Strub. Implementing TLS with verified cryptographic security. In 2013 IEEE Symposium on
Security and Privacy, pages 445–459, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer
Society Press. (Cited on page 6.)

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated encryption in
SSH: Provably fixing the SSH binary packet protocol. In Vijayalakshmi Atluri, editor, ACM
CCS 02: 9th Conference on Computer and Communications Security, pages 1–11, Washington
D.C., USA, November 18–22, 2002. ACM Press. (Cited on page 3.)

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repair-
ing the SSH authenticated encryption scheme: A case study of the encode-then-encrypt-and-
MAC paradigm. ACM Trans. Inf. Syst. Secur., 7(2):206–241, 2004. (Cited on pages 3, 4, 5, 11,
12, 17, 19, 24, 31, and 57.)

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and Björn Tackmann.
Augmented secure channels and the goal of the TLS 1.3 record layer. In Man Ho Au and Atsuko
Miyaji, editors, ProvSec 2015: 9th International Conference on Provable Security, volume
9451 of Lecture Notes in Computer Science, pages 85–104, Kanazawa, Japan, November 24–
26, 2015. Springer, Heidelberg, Germany. (Cited on page 3.)

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Ad-
vances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science,
pages 531–545, Kyoto, Japan, December 3–7, 2000. Springer, Heidelberg, Germany. (Cited on
pages 6 and 19.)

52

http://competitions.cr.yp.to/caesar.html
http://competitions.cr.yp.to/caesar.html

[BPS15a] Guy Barwell, Dan Page, and Martijn Stam. Rogue decryption failures: Reconciling AE
robustness notions. Cryptology ePrint Archive, Report 2015/895, 2015. http://eprint.
iacr.org/2015/895. (Cited on page 24.)

[BPS15b] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Reconciling AE ro-
bustness notions. In Jens Groth, editor, 15th IMA International Conference on Cryptography
and Coding, volume 9496 of Lecture Notes in Computer Science, pages 94–111, Oxford, UK,
December 15–17, 2015. Springer, Heidelberg, Germany. (Cited on pages 24 and 30.)

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for
code-based game-playing proofs. In Serge Vaudenay, editor, Advances in Cryptology – EU-
ROCRYPT 2006, volume 4004 of Lecture Notes in Computer Science, pages 409–426, St.
Petersburg, Russia, May 28 – June 1, 2006. Springer, Heidelberg, Germany. (Cited on page 21.)

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An analysis of
the EMV channel establishment protocol. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti
Yung, editors, ACM CCS 13: 20th Conference on Computer and Communications Security,
pages 373–386, Berlin, Germany, November 4–8, 2013. ACM Press. (Cited on page 31.)

[BT04] Alexandra Boldyreva and Nut Taesombut. Online encryption schemes: New security notions
and constructions. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT-RSA 2004,
volume 2964 of Lecture Notes in Computer Science, pages 1–14, San Francisco, CA, USA,
February 23–27, 2004. Springer, Heidelberg, Germany. (Cited on page 7.)

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.iacr.org/2000/067.
(Cited on page 3.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 453–474, Innsbruck, Austria, May 6–
10, 2001. Springer, Heidelberg, Germany. (Cited on page 3.)

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext security.
In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume 2729 of Lecture
Notes in Computer Science, pages 565–582, Santa Barbara, CA, USA, August 17–21, 2003.
Springer, Heidelberg, Germany. (Cited on pages 16 and 40.)

[Deg16] Jean Paul Degabriele. Personal communication, May 2016. (Cited on pages 13 and 16.)

[DLFK+17] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko, Aseem
Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, Karthikeyan Bhargavan, Jianyang Pan,
and Jean Karim Zinzindohoue. Implementing and proving the TLS 1.3 record layer. In 2017
IEEE Symposium on Security and Privacy, pages 463–482, San Jose, CA, USA, May 22–26,
2017. IEEE Computer Society Press. (Cited on page 7.)

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec in MAC-then-
encrypt configurations. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov,
editors, ACM CCS 10: 17th Conference on Computer and Communications Security, pages
493–504, Chicago, Illinois, USA, October 4–8, 2010. ACM Press. (Cited on page 4.)

53

http://eprint.iacr.org/2015/895
http://eprint.iacr.org/2015/895
http://eprint.iacr.org/2000/067

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176. (Cited on pages 3,
4, 8, 25, 30, and 50.)

[FFL12] Ewan Fleischmann, Christian Forler, and Stefan Lucks. McOE: A family of almost foolproof
on-line authenticated encryption schemes. In Anne Canteaut, editor, Fast Software Encryption
– FSE 2012, volume 7549 of Lecture Notes in Computer Science, pages 196–215, Washington,
DC, USA, March 19–21, 2012. Springer, Heidelberg, Germany. (Cited on page 7.)

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data is a
stream: Security of stream-based channels. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 545–564, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany. (Cited on pages 7, 13, 16, 18, and 51.)

[FJMV04] Pierre-Alain Fouque, Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Authenticated
on-line encryption. In Mitsuru Matsui and Robert J. Zuccherato, editors, SAC 2003: 10th
Annual International Workshop on Selected Areas in Cryptography, volume 3006 of Lecture
Notes in Computer Science, pages 145–159, Ottawa, Ontario, Canada, August 14–15, 2004.
Springer, Heidelberg, Germany. (Cited on page 7.)

[FJP04] Pierre-Alain Fouque, Antoine Joux, and Guillaume Poupard. Blockwise adversarial model for
on-line ciphers and symmetric encryption schemes. In Helena Handschuh and Anwar Hasan,
editors, SAC 2004: 11th Annual International Workshop on Selected Areas in Cryptogra-
phy, volume 3357 of Lecture Notes in Computer Science, pages 212–226, Waterloo, Ontario,
Canada, August 9–10, 2004. Springer, Heidelberg, Germany. (Cited on page 7.)

[FR14] R. Fielding and J. Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and
Routing. RFC 7230 (Proposed Standard), June 2014. (Cited on pages 37 and 39.)

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
authenticated-encryption and its nonce-reuse misuse-resistance. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015, Part I, vol-
ume 9215 of Lecture Notes in Computer Science, pages 493–517, Santa Barbara, CA, USA,
August 16–20, 2015. Springer, Heidelberg, Germany. (Cited on page 7.)

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 273–
293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany. (Cited on
pages 3, 15, and 31.)

[JMV02] Antoine Joux, Gwenaëlle Martinet, and Frédéric Valette. Blockwise-adaptive attackers: Re-
visiting the (in)security of some provably secure encryption models: CBC, GEM, IACBC. In
Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of Lecture Notes
in Computer Science, pages 17–30, Santa Barbara, CA, USA, August 18–22, 2002. Springer,
Heidelberg, Germany. (Cited on page 7.)

[KPB03] Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure cryptographic trans-
forms, or how to encrypt and MAC. Cryptology ePrint Archive, Report 2003/177, 2003.
http://eprint.iacr.org/2003/177. (Cited on pages 3 and 31.)

54

http://eprint.iacr.org/2003/177

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS protocol:
A systematic analysis. In Ran Canetti and Juan A. Garay, editors, Advances in Cryptology –
CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science, pages 429–448,
Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg, Germany. (Cited on pages 3
and 15.)

[KS05] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC 4301 (Proposed
Standard), December 2005. Updated by RFC 6040. (Cited on page 3.)

[MT10] Ueli Maurer and Björn Tackmann. On the soundness of authenticate-then-encrypt: formaliz-
ing the malleability of symmetric encryption. In Ehab Al-Shaer, Angelos D. Keromytis, and
Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Computer and Communica-
tions Security, pages 505–515, Chicago, Illinois, USA, October 4–8, 2010. ACM Press. (Cited
on page 3.)

[Nam02] Chanathip Namprempre. Secure channels based on authenticated encryption schemes: A sim-
ple characterization. In Yuliang Zheng, editor, Advances in Cryptology – ASIACRYPT 2002,
volume 2501 of Lecture Notes in Computer Science, pages 515–532, Queenstown, New Zealand,
December 1–5, 2002. Springer, Heidelberg, Germany. (Cited on page 3.)

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering generic
composition. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances in Cryptology
– EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer Science, pages 257–274,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany. (Cited on pages 19
and 41.)

[oEEE] IEEE (Institute of Electrical and Inc.) Electronics Engineers. IEEE Standard 801.11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (Cited on
page 3.)

[Ope] The OpenSSL Project. https://www.openssl.org. (Cited on page 42.)

[OS05] Rafail Ostrovsky and William E. Skeith III. Private searching on streaming data. In Victor
Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 223–240, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany. (Cited on page 7.)

[Poe16] Bertram Poettering. Personal communication, July 2016. (Cited on pages 16 and 60.)

[Pos80] J. Postel. User Datagram Protocol. RFC 768 (INTERNET STANDARD), August 1980. (Cited
on pages 3 and 8.)

[Pos81] J. Postel. Transmission Control Protocol. RFC 793 (INTERNET STANDARD), September
1981. Updated by RFCs 1122, 3168, 6093, 6528. (Cited on pages 3 and 8.)

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does matter:
Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and Xiaoyun Wang,
editors, Advances in Cryptology – ASIACRYPT 2011, volume 7073 of Lecture Notes in Com-
puter Science, pages 372–389, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg,
Germany. (Cited on pages 3, 6, 15, and 31.)

55

https://www.openssl.org

[PW10] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption: A formal se-
curity treatment of SSH-CTR. In Henri Gilbert, editor, Advances in Cryptology – EURO-
CRYPT 2010, volume 6110 of Lecture Notes in Computer Science, pages 345–361, French
Riviera, May 30 – June 3, 2010. Springer, Heidelberg, Germany. (Cited on page 4.)

[PY14] Periklis A. Papakonstantinou and Guang Yang. Cryptography with streaming algorithms.
In Juan A. Garay and Rosario Gennaro, editors, Advances in Cryptology – CRYPTO 2014,
Part II, volume 8617 of Lecture Notes in Computer Science, pages 55–70, Santa Barbara, CA,
USA, August 17–21, 2014. Springer, Heidelberg, Germany. (Cited on page 7.)

[QUI] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic. Re-
trieved on 2017-04-21. (Cited on pages 3 and 8.)

[Res15] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
11. https://tools.ietf.org/html/draft-ietf-tls-tls13-11, December 2015. (Cited on
page 25.)

[Res17] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
22. https://tools.ietf.org/html/draft-ietf-tls-tls13-22, November 2017. (Cited on
pages 30 and 50.)

[rGPP] 3GPP (3rd Generation Partnership Project). GSM, UMTS, and LTE standards. http:
//www.3gpp.org. (Cited on page 3.)

[RM12] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Version 1.2. RFC 6347
(Proposed Standard), January 2012. (Cited on page 3.)

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi Atluri,
editor, ACM CCS 02: 9th Conference on Computer and Communications Security, pages 98–
107, Washington D.C., USA, November 18–22, 2002. ACM Press. (Cited on pages 3, 5, 24, 25,
and 30.)

[Sho99] Victor Shoup. On formal models for secure key exchange. Cryptology ePrint Archive, Report
1999/012, 1999. http://eprint.iacr.org/1999/012. (Cited on page 3.)

[Sho06] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs, 2006.
Manuscript. (Cited on page 21.)

[SP13] Ben Smyth and Alfredo Pironti. Truncating TLS connections to violate beliefs in web applica-
tions. In WOOT’13: 7th USENIX Workshop on Offensive Technologies. USENIX Association,
2013. (first appeared at Black Hat USA 2013). (Cited on pages 4, 6, 19, and 31.)

[TSS09] Patrick P. Tsang, Rouslan V. Solomakhin, and Sean W. Smith. Authenticated streamwise on-
line encryption. Technical Report TR2009-640, Department of Computer Science, Dartmouth
College, 2009. (Cited on page 7.)

[YL06a] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251 (Pro-
posed Standard), January 2006. (Cited on page 3.)

[YL06b] T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253
(Proposed Standard), January 2006. Updated by RFC 6668. (Cited on page 8.)

56

https://www.chromium.org/quic
https://tools.ietf.org/html/draft-ietf-tls-tls13-11
https://tools.ietf.org/html/draft-ietf-tls-tls13-22
http://www.3gpp.org
http://www.3gpp.org
http://eprint.iacr.org/1999/012

A Alternative Confidentiality Definition
While the confidentiality notions for stateful encryption schemes with atomic algorithms defined by Bellare
et al. [BKN04, Section 6.2], introducing the concept of the decryption oracle being in or out of sync, are
well-established today, defining confidentiality in case of fragmented inputs is less obvious. Considering
fragmented delivery of atomic ciphertexts, Boldyreva et al. [BDPS12, Section 3.2] decided to stay close to
the original definitions by Bellare et al. and conservatively defined synchronization to be lost at ciphertext
boundaries (thereby potentially suppressing less output, resulting in a stronger security definition). This
approach however is too strong if fragmentation is also to be considered on the sender’s side of a channel,
as revealing the whole message input corresponding to a ciphertext output by the Send algorithm renders
channels that (like, e.g., TLS) do some internal refragmentation generically insecure (see the discussion in
Section 4.1).

During the process of formalizing a notion of confidentiality for stream-based channels which is reason-
ably strong but permissive enough to cover ‘naturally secure’ constructions, a second variant of confiden-
tiality emerged beyond the one we provide in Section 4.1. Although we consider Definition 4.1 to be more
attractive, to make our choice transparent we will present the alternative definition here. We then clarify
why Definition 4.1 is superior by highlighting that the alternative notion is only applicable to a restricted
class of channels and by formally proving equivalence of the two notions for all channels of that class. A
similar reasoning also applies for integrity notions.

Confidentiality definition with split Recv calls. The only difference between the two variants in
question is the behavior of the oracle ORecv upon processing a ciphertext fragment c that causes CR to
deviate from or go ahead of CS , but also contains a genuine prefix c̃ to be stripped off. In the second
variant, that we name ‘confidentiality with split Recv calls’ for differentiation, the receiving oracle O′Recv
is defined as shown in Figure 17. Concretely, all changes occur within lines 37–40 of the oracle O′Recv.
Essentially, while c̃ remains the longest genuine prefix of c, here the O′Recv oracle first Recv on input c̃ and
suppresses its output, then it invokes Recv a second time on the now updated state on input the remaining
part of c, namely c% c̃, and this time gives the resulting message fragment m′ to the adversary.

Since the modified O′Recv oracle only affects the CCFA version of our confidentiality notion, we ignore
the IND-CPFA case here.

Definition A.1 (IND-CCFA′ Security). Let Ch = (Init,Send,Recv) be a stream-based channel and exper-
iment ExptIND-CCFA′,b

Ch,A (1λ) for an adversary A and a bit b be defined as in Figure 3 but with the receiving
oracle O′Recv from Figure 17. We say Ch provides indistinguishability under split-call chosen ciphertext-
fragment attacks (IND-CCFA′) if for all PPT adversaries A the following advantage function is negligible
in the security parameter:

AdvIND-CCFA′,b
Ch,A (λ) := Pr

[
ExptIND-CCFA′,1

Ch,A (1λ) = 1
]
− Pr

[
ExptIND-CCFA′,0

Ch,A (1λ) = 1
]
.

Fragmentation-independent behavior. The most important difference between the confidentiality
experiments in Figure 3 and the one using the modified oracle O′Recv from Figure 17 with split calls to Recv
is that the latter implicitly assumes that splitting up the ciphertext fragment c into its genuine part c̃ and
the rest c′ = c % c̃, and hence processing sequentially the two parts, does not affect the behavior (i.e.,
output) of the Recv algorithm. We call this property fragmentation-independent behavior of a stream-based
channel, and formalize it next.

Definition A.2 (Fragmentation-independent behavior). We say that a channel Ch exhibits fragmentation-
independent behavior if for all stR ∈ SR, all choices of the randomness for algorithm Recv and ciphertext

57

If A queries ORecv(c):
28 if sync = 0 then // already out-of-sync
29 (stR, m)← Recv(stR, c)
30 return m to A
31 else if CR ‖ c 4 CS then // still in-sync
32 (stR, m)← Recv(stR, c)
33 CR ← CR ‖ c
34 return ε to A
35 else
36 if CR ≺ [CR ‖ c, CS] then

// c deviates or exceeds, contains genuine part
37 c̃← [CR ‖ c, CS] % CR
38 c′ ← c % c̃
39 (stR, m̃)← Recv(stR, c̃)
40 (stR, m′)← Recv(stR, c′)
41 else // c deviates or exceeds, contains no genuine part
42 (stR, m′)← Recv(stR, c)
43 if CS 64 CR ‖ c or m′ 6= ε then

// deviation, or exceeding portion produces output
44 sync← 0
45 CR ← CR ‖ c
46 return m′ to A

Figure 17: Alternative definition O′Recv of the receiving oracle from the security experiment for confidentiality of stream-based
channels (see Figure 3) using split calls to Recv.

fragments c, c′ ∈ ({0, 1}∗)∗, it holds ‖c 4 ‖c′ =⇒ ‖m 4 ‖m′, where m is output by Recv(stR, c) and m′
is output by Recv(stR, c′).

Remark A.3. By symmetry, Definition A.2 also guarantees that ‖c = ‖c′ implies ‖m = ‖m′.

Intuitively, the Recv algorithm of a channel with fragmentation-independent behavior always generates
the same output sequence for some fixed input ciphertext stream, independently of how the ciphertext
stream is fragmented. Note that this property is not guaranteed by the correctness of the stream-based
channel, which only concerns the processing by Recv of streams generated by Send. While fragmentation-
independent behavior is a characteristic that many real-world protocols exhibit (e.g., TLS), a scheme could
potentially process received fragments in a way which is not fragmentation-independent. Consider, e.g., a
variant of TLS which, when given some ciphertext stream fragment c, first decodes all contained records
and, if any of them contains an error, it outputs the empty string.19

More importantly, without fragmentation-independent behavior the IND-CCFA′ split-call variant of the
confidentiality definition in general fails to correctly identify insecure channels. As an illustrative example,
consider a blatantly insecure variant of TLS which outputs the encryption keys when given a ciphertext
stream fragment c which contains two records of which the first can be authenticated correctly and the
second fails the MAC verification (i.e., was adversarially modified). While such a construction should
obviously be considered insecure, the IND-CCFA′ definition fails to do so as, within the O′Recv oracle, the
Recv algorithm is artificially called separately first on the genuine record and then on the modified one,
thereby avoiding the scheme’s vulnerability if the second record deviates from the first bit on.

We stress that, in contrast, the actual confidentiality notion IND-CCFA we defined for stream-based
channels in Section 4.1 correctly identifies the described example above as insecure. This problem in the

19Most commonly, TLS implementations decode only one record at a time and output the resulting message, independently
of whether there is an error message contained in a later packet in the queue or not.

58

IND-CCFA′ case disappears if we assume fragment-independent behavior, as the split processing is now
identical to the monolithic treatment.

Equivalence of confidentiality notions under fragmentation-independent behavior. We com-
plete this section by showing that if one only considers channels with fragmentation-independent behavior,
then the IND-CCFA notion from Definition 4.1 is actually equivalent to its split-call variant IND-CCFA′.
However, as the IND-CCFA notion also captures the security of channels which do not exhibit fragmentation-
independent behavior (i.e., a larger class of channels), we conclude that the IND-CCFA option is a sound
choice even for fragmentation-independent channels.

Theorem A.4 (Equivalence of IND-CCFA′ and IND-CCFA under fragmentation-independent behavior).
Let Ch = (Init,Send,Recv) be a stream-based channel which exhibits fragmentation-independent behavior.
Then Ch is IND-CCFA′-secure if and only if it is IND-CCFA-secure.

Proof. It suffices to show that, assuming fragmentation-independent behavior of Ch, for every input ci-
phertext the oracles ORecv (from Figure 3) and O′Recv (from Figure 17) return the same output to A in a
concrete execution. Note that for a synchronized receiver and valid prefix CR‖c 4 CS both oracles indeed
output ε. Consider next any input ciphertext c and consider the case that synchronization is lost for c.
Fix the following notation:

• In Figure 3, the IND-CCFA experiment: denote bym1, respectively,m2 the message fragments derived
in lines 22, resp., 24 of oracle ORecv (i.e., m1 = m̃ and m2 = m% [m, m̃] in the experiment).

• In Figure 17, the IND-CCFA′ experiment: denote by c′1, resp., c′2 the ciphertext fragments derived in
lines 37, resp., 38 by O′Recv (i.e, c′1 = c̃ and c′2 = c% c̃ in the experiment), and let m′1 and m′2 be the
corresponding message fragments output by Recv.

Notice that by definition m′1 = m1 (indeed, the same pair of state stR and ciphertext c̃ are processed
by Recv within ORecv and O′Recv). However, since oracle ORecv returns message fragment m2 to A while
O′Recv returns m′2, to prove the equivalence of the two notions we must also prove that m′2 = m2. For the
assumed fragmentation-independent behavior of Ch it holds that c′1 ‖ c′2 = c =⇒ m′1 ‖ m′2 = m and that
c1 4 c =⇒ m1 4 m, hence [m,m1] = m1. Now it is immediate to derive the chain of equalities

m′2 = m%m′1 = m%m1 = m% [m,m1] = m% [m, m̃] = m2,

where the relations hold, from left to right, by fragmentation-independent behavior, by construction, by
fragment-independent behavior, and (twice) by construction.

Once synchronization is lost (sync = 0), note that both oracles will continue to output identical
message fragments. This holds as both start at the same initial receiver state, and fragment-independence
in particular then guarantees that ‖c = ‖c′ implies ‖m = ‖m′ (due to the symmetry in the definition).
Since this even holds for invalid ciphertext sequences it must also be true here, when synchronization has
already been lost.

IND-CCFA implies IND-CCFA′. While under fragmentation-independent behavior the IND-CCFA and
IND-CCFA′ notions are equivalent, we saw already that these notions are not equivalent (there exists
schemes which are secure according to the IND-CCFA′ but insecure according to the IND-CCFA notion). In
what follows we will prove that the IND-CCFA notion is strictly stronger than the IND-CCFA′ notion, that
is, every scheme that is provably IND-CCFA-secure is also IND-CCFA′-secure.

59

Theorem A.5 (IND-CCFA =⇒ IND-CCFA′). Let Ch be a stream-based channel. If Ch provides IND-CCFA
security, then it also provides IND-CCFA′ security. Formally, for every efficient A attacking the IND-CCFA′
property there exists an efficient B attacking the IND-CCFA property such that

AdvIND-CCFA′
Ch,A ≤ AdvIND-CCFA

Ch,B .

Proof. Given a receiving oracle ORecv from the IND-CCFA game, to emulate the oracle ORecv algorithm B
simply splits every queried fragment c that contains a non-empty genuine prefix into c̃ and c′ = c % c̃,
ask ORecv for decryption of the two fragments in this order, hence give to A only the output of ORecv on
input the second fragment c′. The effect of this pre-processing of A’s queries is that B’s receiving query
will always be either genuine or fully deviating or ahead (i.e., the deviation starts from the very first bit).
Thus, the oracle ORecv always processes these queries by executing either lines 11–13, or lines 14–17, or
line 26, and hence it never has to perform the ‘auxiliary call’ to Recv, which does not occur in O′Recv.

Beyond that, B forwards all other receiving queries to the ORecv oracle and all the sending queries
to its left-or-right oracle OLoR. Given this, it is immediate to see that B’s simulation of the IND-CCFA′
experiment is perfect, and hence

AdvIND-CCFA′
Ch,A ≤ AdvIND-CCFA

Ch,B .

B IND-CCFA Attack Against Intuitively Confidential Scheme
Poettering [Poe16] in July 2016 pointed out a class of stream-based channels that are intuitively confidential
but deemed insecure within our model, the construction Chzeros from [Poe16] given in Figure 18 being an
instance of that class. The Chzeros construction uses an AEAD scheme as a building block and works as
follows. The Send algorithm chops the input message fragment m into fixed-length blocks m1, . . . ,ml (with
|mi| = 1 for simplicity), AEAD-encrypts these blocks sequentially using a running counter as associated
data, and outputs the concatenation c = c1 ‖ · · · ‖ cl of the corresponding ciphertexts (which also have
fixed length, |ci| = clen). The Recv algorithm appends the input ciphertext fragment c to its buffer buf,
extracts from the updated buffer the longest sequence of ciphertext blocks c1 . . . cl and keeps the remaining
fragment in the buffer. It then AEAD-decrypts each block ci and outputs the concatenation of the resulting
message blocks m1 ‖ · · · ‖ ml as long as no AEAD decryption fails, otherwise it return an l-bit string of 0’s.

By construction, Recv outputs non-error message bits (i.e., the fixed zero-string 0l) on modified ci-
phertext input and hence Chzeros provides no integrity protection. As this output is independent of the
encrypted messages, this however should not harm confidentiality. Indeed, by confidentiality of the AEAD
scheme, the left-or-right sending oracle should reveal no information about the challenge messages, while
AEAD integrity should guarantee that the receiving oracle only returns a string of 0’s when queried on
out-of-sync ciphertext fragments. Thus, one would expect Chzeros to provide confidentiality against chosen
ciphertext-fragment attacks (IND-CCFA).

The attack. The stream-based channel Chzeros however is not confidential in the sense of IND-CCFA.
Consider an adversary A that proceeds as follows: it choosesm0 = 00, m1 = 10 and queries c←$ OLoR(m0,
m1, 0). Let c = c1c2 with |c1| = |c2| = clen. The adversary then derives c′ = c1c2 from c by inverting
the bits of c2 but leaving c1 unmodified, and requests the decryption m′ ← ORecv(c′). Within the ORecv
oracle we obtain sync = 0, c̃ = c1, and m̃ = b. Furthermore, due to integrity of the AEAD scheme, with
high probability decrypting c2 yields an AEAD error ⊥, and we thus have m = 00. Now, if b = 0, we
have [m, m̃] = 0 and thus m′ = 0, and if b = 1 we have [m, m̃] = ε and thus m′ = 00. The adversary
outputs b′ = |m′| − 1 and hence achieves a distinguishing advantage negligibly close to 1.

60

Init(1λ):
1 K ←$ K
2 stS,0 = (K, 0)
3 stR,0 = (K, 0, ε, 0)
4 return (stS,0, stR,0)

Send(stS , m, f):
1 parse stS as (K, seqno)
2 l← |m|
3 m1 ‖ . . . ‖ ml ← m

s.t. |mi| = 1 for i = 1, . . . , l
4 c← ε
5 for j ← 1 to l do
6 cj ← Enc(K, seqno, mj)
7 c← c ‖ cj
8 seqno← seqno + 1
9 stS ← (K, seqno)

10 return (stS , c)

Recv(stR, c):
1 parse stR as (K, seqno, buf, fail)
2 buf ← buf ‖ c
3 l← b|buf|/clenc
4 c1 ‖ . . . ‖ cl ‖ buf ← buf

s.t. |ci| = clen for i = 1, . . . , l
5 m← ε
6 for j ← 1 to l do
7 mj ← Dec(K, seqno, cj)
8 if mj = ⊥ then
9 fail← 1

10 seqno← seqno + 1
11 if fail = 1 then
12 m← 0l
13 stR ← (K, seqno, buf, fail)
14 return (stR, m)

Figure 18: A stream-based channel Chzeros = (Init, Send, Recv) that uses an AEAD scheme AEAD = (Enc, Dec) as a building
block. We assume the length of ciphertexts output by Enc on 1-bit messages to be constant, clen bits. As we explain in
Appendix B, Chzeros is an intuitively confidential channel but is declared insecure according to our IND-CCFA notion.

Discussion. The receiving algorithm of channel Chzeros returns a valid message fragment even if the
AEAD decryption internally rejects, in which case it outputs a string of 0’s. On the one hand, this channel
construction is artificial as it explicitly hides decryption errors, neglecting integrity. On the other hand, it
does constitute a reasonable scheme in a setting where only confidentiality matters and should be treated
as such. This exemplifies that our IND-CCFA notion excludes some schemes that are intuitively confidential
and hence might be considered too strong.

Let us see which part of the IND-CCFA definition is responsible for this. As discussed, AEAD security
should ensure that the decryption m of the out-of-sync ciphertext c′ = c1c2 reveals nothing about the
challenge message mb. However, within the IND-CCFA experiment, when answering query c′ the receiving
oracle does leak information about mb: it reveals whether m = 00 has a non-empty common prefix
with m̃ = b or, equivalently, whether b = 0 or not. So, while m does not yield any information about mb,
the oracle ORecv artificially does. It thereby enables an attack that intuitively would not be feasible in
practice.

C INT-CST Implies INT-PST
Proposition C.1. Let Ch = (Init, Send,Recv) be a correct stream-based channel which is INT-CST se-
cure. Then the channel is also INT-PST secure. Furthermore, AdvINT-PST

Ch,A (λ) ≤ AdvINT-CST
Ch,A (λ) for any

algorithm A.

Proof. Assume that A attacks the INT-PST property of the channel. First note that A has the same
interfaces as if attacking INT-CST such that we can think of running both experiments simultaneously. It
then suffices to show that, if we set win← 1 in Line 14 of the INT-PST experiment, then we would also set
win ← 1 (in Line 18 or 35) in the simultaneous execution of the INT-CST experiment (both in Figure 5).
Note that as long as sync = 1 and the ciphertext stream submitted to ORecv is a prefix of the one created
by OSend, then the receiver’s oracle in experiment INT-CST would indeed return the recovered message
fragment, as in the INT-PST experiment.

Suppose that A triggers win← 1 in the INT-PST experiment. If at this point CR 4 CS then, because

61

of correctness of the channel, we must also have MR 4MS , implying that win would not have been set. It
follows that there must exist some CR ‖ c 64 CS where c is the first call to ORecv where the concatenation
of the receiver strings deviate from or exceed the ciphertext stream of the sender. At this point we must
also have sync = 1 and win = 0 in the INT-CST experiment and we enter the third case in Line 22.

If in this case c contains some non-deviating prefix c̃ 4 c, we compute c̃ such that CR ‖ c̃ 4 CS is
maximal. It again follows from correctness that for the processed c̃ we get a message fragment m̃ such
that MR ‖ m̃ 4 MS . But in order to set win ← 1 in the INT-PST experiment, we must have that the
full fragment c makes Recv output a message fragment m such that m contains message bits beyond the
common prefix withMS . It follows that m′ ← m%[m, m̃], the fragment of m beyond m̃, too, must contain
some non-trivial entries, different from error symbols. But then we also set win ← 1 in the INT-CST
experiment run.

If c contains only deviating (or exceeding) bits or in the case that synchronization was lost before, the
full resulting message fragment (m′ resp. m) is considered for the winning condition, i.e., whenever A in
this case wins in the INT-PST experiment, it also does in the INT-CST experiment.

D aINT-CST Implies aINT-PTXT
Proposition D.1 (aINT-CST =⇒ aINT-PTXT). Let aCh = (aInit, aSend, aRecv) be a correct atomic-
message channel. If aCh provides integrity of ciphertext streams then it also provides integrity of plaintexts
and, in particular, AdvaINT-PTXT

aCh,A (λ) ≤ AdvaINT-CST
aCh,A (λ) for any adversary A.

Proof. Consider an execution of the aINT-PTXT experiment with an adversary A against the channel aCh.
Since the aINT-PTXT and aINT-CST experiments both provide interfaces to a sending oracle OSend and a
receiving oracle ORecv we can imagine to run the two experiments simultaneously and show that if A is
successful in the former, so is in the latter. More specifically, we show that if the aINT-PTXT experiment
sets win← 1 in line 16 then the aINT-CST experiment sets win← 1 in lines 23 or 34.

Observe that A triggers the execution of line 16 (setting win to 1) if it submits some ciphertext
fragments to ORecv in experiment aINT-PTXT that result in a message sequence MR deviating from the
genuine message sequence MS, beyond errors. By correctness, a deviation in the message sequence can
only originate from a deviation in the ciphertext sequence and, thus, we know that A submits at least one
out-of-sync ciphertext. Suppose that A triggers the execution of line 16 of the aINT-PTXT experiment
already when it submits the first out-of-sync ciphertext: then such ciphertext causes the execution of
instruction 28 and the following loop in the aINT-CST experiment, yielding a vector m′ that contains all
messages received so far but the longest common prefix with the sequence of sent messages. It follows
from the assumptions made that m′ contains some valid message and, thus, win ← 1 is set in line 34 in
the aINT-CST experiment, too. Suppose now that A enforces the execution of line 16 of the aINT-PTXT
experiment after the first out-of-sync ciphertext has been submitted. Then we have two possibilities: either
the deviating part of the first out-of-sync ciphertext fragment produces some valid messages and, thus, in
the aINT-CST experiment sets win ← 1 in line 34, or some of the following ciphertext fragments that A
submits cause aRecv to output valid messages, hence causing aINT-CST to set win← 1 in line 23.

62

	Introduction
	Preliminaries
	Stream-Based Channels
	Security for Stream-Based Channels
	Confidentiality
	Integrity
	Relations Amongst Notions and Generic Composition Theorem

	Stream-Based Channels from AEAD
	Authenticated Encryption with Associated Data
	Construction Based on Authenticated Encryption with Associated Data
	Security Analysis
	A Note on the TLS Record Protocol

	Atomic-Message Channels Supporting Fragmentation
	Syntax and Functionality
	Security
	Relations Amongst Notions

	Generic Construction of Atomic-Message Channels from Stream-Based Channels
	Length-Regular Instantaneously Decodable Encoding Schemes
	The Encode-then-Stream Construction
	Security of Encode-then-Stream
	Conciseness of ciphertext streams
	Integrity and Confidentiality of Encode-then-Stream
	Secure Instantiation from AEAD-based Streaming Channel Construction

	Conclusion and Open Problems
	Alternative Confidentiality Definition
	IND-CCFA Attack Against Intuitively Confidential Scheme
	INT-CST Implies INT-PST
	aINT-CST Implies aINT-PTXT

