
978-1-4577-0351-5/11/$26.00 c©2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional
purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Key Management in Distributed Online Social Networks

Felix Günther Mark Manulis Thorsten Strufe
TU Darmstadt CASED Uni Mannheim

Email: {guenther,strufe}@cs.tu-darmstadt.de, mark@manulis.eu

Abstract—Decentralized approaches for online social net-
works (OSNs) have been of recent research interest, enabling
users to create profiles and share data like in other OSNs
as, e.g., Facebook. Since the decentralized architecture does
not contain a central authority that is able perform access
control, encryption is needed to ensure the confidentiality
of published data. This paper outlines strict requirements
and weak constraints for the encryption of data attributes
in decentralized OSNs. Subsequently, an overview of possible
cryptographic solutions is given and their suitability according
to these requirements is analyzed. As a result, the differences
and trade-offs between and within the given approaches are
expounded. The outcome of this paper can be used as a
foundation for further investigations on this topic.

I. INTRODUCTION

Recently, many different decentralized approaches for
online social networks (OSNs) have been proposed [1], [3]
in an attempt to avoid the centralized control and omnipotent
access of commercial service providers.

Due to their decentralized nature, those approaches lack a
central authority enforcing access control on all user profiles
which is possible on centralized OSNs like Facebook or
LinkedIn that are accessed through a single web interface.
In contrast to these systems, the profile of a user in decen-
tralized OSNs is usually stored on her system itself, all user
systems forming a peer-to-peer network. As the profile of a
user may be replicated on the systems of her friends (i.e.,
her contacts) for accessibility reasons, she may not be able
to enforce live access control on her profile either.

These constraints yield the need of encryption of user
profile data in decentralized OSNs to guarantee its con-
fidentiality. In addition to that, users shall be enabled to
restrict access to their profiles in a fine-grained manner on
atomic attributes. Thus, the encryption scheme has to offer
a possibility to encrypt a multitude of single attributes each
for a single user or a group of users.

Aside of these hard constraints there exist some weaker
constraints. As all operations have to be executable on
devices with restricted resources – as, e.g., users should be
able to log in via their mobile phone – and with affected
users being offline, storage space requirements and the req-
uisite interaction between group members in the particular
encryption scheme have to be taken into account.

In order to be able to evaluate the weaker constraints in a
concrete setting and extract the trade-off between them, we
focus the analysis of the proposed key management schemes
to Safebook, a decentralized approach for an online social
network proposed by Cutillo et al. [3]. This course of action
allows for an exact examination of the different schemes –

e.g., regarding the storage overhead they impose – without
loosing the general applicability of the presented schemes.

After presenting architectural structures of Safebook that
are relevant for key management, this paper points out
the significant requirements demanded from the encryption
scheme and outlines weaker constraints leading to varying
focuses among the investigated approaches. Based on these
requirements and constraints, an overview of different en-
cryption schemes is given, reflecting different approaches to
distribute and manage group keys. Thereupon, these schemes
are analyzed regarding the weak constraints by developing
abstract formulas for several interesting properties of the
presented approaches which are evaluated later on using
reasonable system parameters.

As a result, it is shown that the examined schemes
differ heavily in terms of the given constraints, whereas
an approach based on broadcast encryption performs best
regarding the outlined properties.

The rest of this paper is organized as follows. First, bene-
ficial architectural structures of Safebook are pointed out in
section II. In section III, requirements for suitable encryption
schemes are discussed and weaker constraints identified.
A survey of applicable approaches is given thereafter in
section IV, followed by an evaluation of these in section V.
In section VI, approaches related to the described ones are
discussed and their drawbacks regarding the given require-
ments are pointed out. The paper concludes in section VII
with a short summary and gives an outlook on future work.

II. BENEFICIAL STRUCTURE OF SAFEBOOK

The architecture of Safebook includes a Trusted Identifi-
cation Service (TIS) that provides each user joining the net-
work with an unambiguous node identifier and pseudonym.
Along with this, each user generates two public/private key
pairs for the peer-to-peer and OSN levels for which she
receives certificates from the TIS.

Furthermore, the peer-to-peer substrate of Safebook al-
lows to resolve the public key belonging to a user or to a
user’s pseudonym. That way, encryption schemes can utilize
the global availability of keying material (i.e., distributed
public/private key pairs) for their purpose. The existence
of keying material eases the communication and key dis-
tribution needed for key management and renders more
complex approaches (as they are needed in, e.g., ad-hoc
networks, where no preliminary keying material is available)
unnecessary.

Beyond that, the user groups who shall be allowed to
access certain attributes are – in contrast to members in,
e.g., ad-hoc networks or interest groups in Facebook – both
relatively stable and more likely increasing than decreasing.
Thus, member exclusions will occur only rarely, which can
be advantageous for some encryption schemes.

III. REQUIREMENTS AND CONSTRAINTS

In this section, the mandatory requirements for encryp-
tion schemes solving the given problem are defined first,
followed by weaker constraints, whose degree of fulfillment
can be quantified for each approach.

A. Mandatory Requirements

The following requirements have to be met by an ap-
proach to be suitable at all:

1) Confidentiality: If an attribute a is encrypted for a
certain group of users Ua = {Ua,1, Ua,2, . . . , Ua,n}, it has
to be computationally infeasible for any user U 6∈ Ua to
decrypt the attribute a.

2) Access Control: Only the owner of a profile can
change the access rules to its attributes, defining who is
allowed to access a certain attribute and who is not. In
particular, the mirroring peers (in case of Safebook, a peer
mirrors the profiles of all her contacts for accessibility
reasons) must not be able to manipulate the access rules,
neither of attributes they are allowed to decrypt nor of these
that they are not allowed to decrypt.

3) Privacy: It has to be infeasible for any user to discover
the identity of an authorized user (except for herself) of an
attribute as well as to decide whether any other user is or is
not authorized to access an attribute.

4) Key Independence: If the encryption schemes use
group keys K = {K0,K1, . . . ,Kn} (i.e., a secret share is
published to and known by all users having access to a given
attribute), it has to be guaranteed that a passive adversary
knowing an arbitrary subset K̂ ⊂ K of group keys is not able
to discover any other group key K̄ ∈ (K\K̂) (cf. [11]). Key
independence implies forward and backward secrecy; i.e., an
attacker knowing a contiguous subset of group keys cannot
discover subsequent or preceding keys.

B. Weaker Constraints

Besides the hard requirements given above, there are
weaker constraints posed by the architecture of Safebook,
which allow for an evaluation of different approaches ap-
plying to the requirements. These are:

1) Storage Space: The keys used by encryption schemes
in the given setting are duplicated in two ways: On the one
hand, the keys the owner has to store in her profile (e.g.,
encrypted shared keys for authorized users) are replicated
on the systems of all her contacts. On the other hand, the
keys needed for accessing an attribute have to be stored by
the client user (regarding the access to a profile) for every

attribute she has access to and that for any contact’s profile
in her contact list.

It is obvious that especially the client-side storage needs
can become very large. Therefore, storing keys on clients
should be avoided if possible, or at least used on a limited
scale.

Keeping the replication of user profiles in mind, the
amount of storage overhead imposed in the profile should
be kept as low as possible. It should be noted that not all
data stored at the owner of a profile necessarily has to be
stored in the profile itself, e.g., the private key of the owner
clearly has to be stored on her system but – needless to say
– not in her profile, replicated on other systems. Encryption
schemes may introduce similar keys or other data, which
have to be stored on the owner’s system only, not directly
in the profile.

2) Interaction with group users: Since Safebook is based
on a peer-to-peer system, its users’ systems apparently are
not permanently online, which makes direct communication
difficult. Therefore, live interaction needed between the
owner of a profile and users in an access group for a certain
attribute should be reduced to a minimum. Otherwise, e.g.,
establishment of keys would slow down dramatically, since
delayed channels would have to be used.

3) Expenditure of resources needed for computations: As
Safebook clients should be able to run on mobile devices
with limited computing power, access control management
has to be feasible also on these clients. Thus, the computa-
tion of keys is demanded not to be too expensive regarding
the resources needed.

IV. ENCRYPTION SCHEMES

In this section, different approaches suiting the require-
ments are described. First, a simple and intuitive scheme
in two variants is described. Thereafter, a more complex
approach is outlined based on the One-way Function Tree
(OFT) scheme [2], [12], [14], which itself bases on the
Logical Key Hierarchy approach (LKH) [18], [19]. The
third scheme – presented in [8] – uses bilinear pairings for
broadcast encryption (BE) to achieve adaptive security (the
scheme is subsequently referred to as “Gentry-Waters BE”).

A. Simple Shared Key

The intuitive approach to encrypt attributes for a group of
users is the following: The profile owner creates a new at-
tribute a and defines the group Ua = {Ua,1, Ua,2, . . . , Ua,n}
of users authorized to access it. She then chooses a secret
key Ka for this attribute at random, encrypts the attribute a
as EncKa(a) and adds the encrypted attribute to her profile.
Finally, the key Ka has to be distributed to all users in
Ua. Regarding the architecture of Safebook, there are two
possibilities to distribute the key Ka, forming the two shapes
of this approach:

1) Client-side Key Storage: The first variant is to send
every user Ua,i the secret key Ka for the new attribute
using the respective public key pki for encryption; i.e., send
Encpki(Ka) to each Ua,i ∈ Ua.

In this case, the owner of the profile only has to store
the current attribute key Ka (which does not have to – and
should not – be stored in the profile), but this key needs to
be stored also on the system of every user in Ua.

When creating an attribute, Ka has to be sent to each
user Ua,i, resulting in n messages. If a new user Ua,n+1

is added to the group of authorized users Ua, the attribute
key Ka needs to be changed and the new key K ′a has to
be transmitted to all users Ua,i ∈ U ′a = Ua ∪ {Ua,n+1}
as Encpki(K

′
a), thus resulting in n + 1 messages and

encryptions. The owner of the profile then encrypts the
attribute with the new key as EncK′

a
(a) replacing the old

encryption in the profile. On exclusion of a user Ua,j out
of Ua, the owner of the profile also has to choose a new
secret key K ′a and replace the encrypted attribute in the
profile. The key has to be distributed to all users in the new
group of authorized users U ′a = Ua \ {Ua,j}, resulting in
n − 1 messages and encryptions. It should be noted that
this approach also supports the addition or exclusion of
a subgroup of multiple users Ūa = {Ūa,j1 , . . . , Ūa,jm} at
once: Addition and exclusion of this group can be carried
out like the addition or exclusion of a single user, publishing
the new key K ′a to U ′a = Ua ∪ Ūa in case of user addition
respectively U ′a = Ua\Ūa in case of user exclusion, resulting
in n+m respectively n−m messages.

2) Profile-side Key Storage: The second variant of this
approach is to store the secret key in the profile rather than
distributing it to all authorized users. For this purpose, the
owner of the profile computes Encpki(Ka) for each Ua,i;
i.e., she encrypts the secret key Ka for each authorized user
Ua,i using the respective public key pki. These encodings
of Ka are then stored in the owners profile, accessible for
all Safebook users, thus also the authorized ones.

This way, the authorized users do not need to store
anything: To access a an authorized user Ua,i decrypts the
encryption of Ka destined for him using his private key ski
and receives Ka enabling him to decrypt the attribute. This
zero-storage at client-side is traded in for greater storage
needs at profile-side, since the owner of the profile in this
variant has to store not only Ka (outside the profile), but
also n encryptions of Ka in the profile that are replicated
on the systems of her contacts.

Since no information has to be transferred to the autho-
rized users in this variant, there is no group interaction at
all; i.e., no messages need to be sent. Member addition and
exclusion (also of multiple users) are done analogously to
the first variant, storing the new encrypted keys in the profile
rather than sending them to the users.

B. OFT-based Approach

The approach based on the One-way Function Tree (OFT)
uses a binary tree, containing the shared secret key Ka for
the attribute a at its root and associating the leafs with the
n authorized users Ua,1, . . . , Ua,n (see Figure 1).

The key tree is of height log n and is initialized as follows
(cf. [2]): The profile owner associates every node v with a
randomly chosen key Ka,v and sends each user all keys
associated to nodes on the path from the user to the root
encrypted with the respective user’s public key. In the tree
of Figure 1 for example, Ua,1 would receive Ka,00, Ka,0

and Ka. Thus, each user receives at most log n + 1 keys,
transmitted with n messages. As all users know Ka, the
encrypted attribute EncKa

(a) can be stored in the profile
with all authorized users able to decrypt it.

Ka

Ka,0 Ka,1

Ka,00 Ka,01 Ka,10 Ka,11

Ua,1 Ua,2 Ua,3 Ua,4

Figure 1. Exemplary OFT key tree

On user removal, all keys associated to nodes on the path
from the removed user Ū to the root have to be changed
to assure forward secrecy. As an enhancement of the LKH
approach, OFT does not choose all new keys on the path to
the root at random, but only assigns the parent node p(Ū)
of the removed user Ū a randomly chosen value r. Then, a
pseudo-random generator [9] G which doubles the size of
its input (L(x) and R(x) denoting the left and right halves
of the output of G(x)) is used to determine the new keys on
the path to the root. Every other node v on the path to the
root is assigned a value rv computed as rp(v) = R(rv) =

R|Ū |−|v|(r) (where p(v) denotes the parent and |v| the height
of v). Based on these values the new key of a node v is
defined as K ′a,v = L(rv) = L(R|Ū |−|v|−1(r)). Finally, each
value rp(v) is encrypted with the key Ka,s(v) (s(v) denoting
the sibling of v) and sent to the users in the subtree of s(v),
thus enabling all users to compute the new attribute key K ′a.
For example, if user Ua,2 is removed in the tree of figure 2,
EncKa,011(r) has to be sent to Ua,3, EncKa,00(R(r)) to
Ua,1 and EncKa,1(R(R(r))) to Ua,4 and Ua,5, thus dlog ne
encryptions are needed and n−1 messages sent. Now, each
user is able to compute the new keys K ′a,01 = L(r), K ′a,0 =
L(R(r)) and K ′a = L(R(R(r))).

User addition is accomplished similar to user removal. To
guarantee backward secrecy, all keys on the path from the
new user to the root have to be changed the same way as if
the new user would have been removed. Thus, the addition
of Ua,2 to the tree of figure 2 results in the same encryptions

and n + 1 messages sent (of course, r is chosen newly at
each addition or removal). If user Ua,3 is moved down in
the tree in order to add Ua,2, she keeps her old key Ka,01

as the new key Ka,011.

KǮa KǮa,0 Ka,1

Ka,00 KǮa,01 Ka,10 Ka,11

Ua,1 Ua,2 Ua,3 Ua,4

Ka,010 Ka,011

Ua,5

EncKa,1
(R(R(r)))

EncKa,00
(R(r))

EncKa,011
(r)

Figure 2. OFT user removal or addition

The owner of the profile has to store the whole key tree
(not in the profile itself), whereas the authorized users have
to retain at most dlog ne+ 1 keys each.

C. Gentry-Waters broadcast encryption (BE) approach

The Gentry-Waters BE scheme presented in [8], which is
a very novel approach in the field of broadcast encryption
[4], [5], [7], [13] (especially regarding adaptive security),
can be used for the encryption of multiple attributes at the
same time and with low overhead in our setting. Due to
its complexity, we will only sketch the approach at this
point (cf. [8], section 3.1 for more details). The construction
contains the four algorithms Setup, KeyGen, Enc and Dec
which we will draft subsequently:

Setup generates the basis groups G,GT of prime order p
and the bilinear map e. Moreover, it chooses α ∈ Zp and
g, h1, . . . , hn ∈ G at random and computes a public and a
private key PK and SK. Using the private key, KeyGen is
called for each of n users (where n constitutes the upper
bound for the number of users which can be granted access
to an attribute), resulting in a secret key di for each user.
These secret keys can be stored in the profile, encrypted
with the public key of the respective user. This concludes
the initialization.

Thereafter, a secret share for each group of authorized
users can be computed by providing SK and the group of
authorized users to Enc, which outputs a header Hdr and
the secret key K. Using this secret key, the owner of the
profile can now encrypt the attribute, the group shall have
access to and store it in the profile together with the header
Hdr. Each authorized user is then able to decrypt the shared
key K using Dec with her secret key di1, which she is able

1The Dec algorithm also has to be provided with the indices of the
users that are allowed to access a certain attribute. It is arguable how much
information about the users with the respective indices can be deduced. We
assume that meaningful linking becomes (statistically) impossible if the
attribute is encrypted for a certain percentage of additional dummy indices
not related to any user.

to decrypt with her private key ski.
User addition and removal requires a new execution of

Enc, since the group of authorized users has changed. A
regeneration of the secret keys di is not needed.

The authorized users have to store nothing in this ap-
proach. The owner of the profile has to retain the private
key SK whereas the public key PK and the encrypted
secret keys di for each user as well as the header Hdr and
symmetric encryption EncK(a) for each attribute have to
be stored in the profile.

V. EVALUATION

We will now evaluate the encryption schemes described
in the previous section according to the requirements and
weaker constraints presented in section III. First, the relevant
metrics (as storage space, numbers of encryptions needed,
etc.) for analysis are defined. Then, abstract formulas are
determined for all properties and encryption schemes. In
a third step, we apply concrete values for the parameters
of the properties to explore the trade-offs imposed by the
approaches. Finally, the differences between the approaches
are discussed.

A. Property definitions

We will study the following abstract properties on each
scheme:

1) Storage requirements at the profile owner outside the
profile: The amount of storage in bytes needed for a single
attribute on the system of the profile owner, which is not
stored in the profile, is denoted by So.

2) Storage requirements in the profile and its replica-
tions: The amount of storage in bytes needed for a single
attribute in the profile is denoted by Sp. This value includes
the storage needed on the systems of the profile owner’s
contacts (remember that Safebook profiles are replicated at
their owner’s contacts for accessibility reasons). It does not
include the storage needed for the symmetric encryption of
the attribute itself.

3) Storage requirements at the authorized users: The
amount of storage in bytes needed for a single attribute on
the systems of all users authorized to access the attribute is
denoted by Su.

4) Number of encryptions on initialization: The number
of encryptions needed on initialization of the encryption
scheme is denoted by Ei, not including the encryption of
the attribute itself.

5) Number of encryptions on user addition: The number
of encryptions needed when a user is added to the group
of authorized users is denoted by Ea, not including the
encryption of the attribute itself.

6) Number of encryptions on user removal: The number
of encryptions needed if a user is excluded from the group
of authorized users is denoted by Er, not including the
encryption of the attribute itself.

Table I
ABSTRACT PROPERTY FORMULAS

Scheme Storage Encryptions Messages
So Sp Su Ei Ea Er Mi Ma Mr

S. Shared Key (1) bs 0 Nbs N N + 1 N − 1 N N + 1 N − 1
S. Shared Key (2) bs (C + 1)Nba 0 N N + 1 N − 1 0 0 0
OFT (2N − 1)bs 0 N(dlogNe+ 1)bs N dlogNe dlogNe N N + 1 N − 1

Gentry-Waters BE
bg
A

(
|PK|+Cba

A + 2bg
)

(C + 1) 0 1 1 1 0 0 0

7) Number of messages on initialization: The overall
number of messages sent on initialization of the encryption
scheme is denoted by Mi.

8) Number of messages on user addition: The overall
number of messages sent when a user is added to the group
of authorized users is denoted by Ma.

9) Number of messages on user removal: The overall
number of messages sent if a user is excluded from the
group of authorized users is denoted by Mr.

B. Abstract property formulas

Table I shows the abstract formulas for all properties and
encryption schemes using the notation shown in table II. We
will now develop these formulas:

1) Simple Shared Key: In both variants the owner has to
store the shared symmetric key Ka, thus So = bs. Sp = 0
for the variant of client-side key storage (since the profile is
not needed for storage here) and Sp = (C+1) ·N ·ba for the
profile-side storage, as we have to store the (asymmetrically)
encrypted Ka for N users (N is the number of users
authorized to access attribute a, cf. table II) and this storage
is replicated to the C contacts of the profile’s owner. Each
authorized user has to store Ka in the client-side variant,
thus Su = N · bs here. In the profile-side variant, the users
have to store nothing.

The number of needed encryptions is identical for both
variants: On initialization, the shared key Ka has to be
encrypted for each user, resulting in N encryptions. When
adding or removing a user, Ka has to be encrypted for all
members of the new group of authorized users, thus N + 1
respectively N − 1 encryptions have to be performed.

Whilst the profile-side variant does not need any messages
to be sent, each encrypted key has to be transmitted to the
appropriate user in the client-side variant.

2) OFT-based Approach: In the OFT-based scheme, the
owner of the profile has store the key tree outside of the
repository which contains 2N − 1 nodes, each associated
with a symmetric key bs. The N users in the tree have to
retain the keys on the path to the root (at most dlogNe+ 1
symmetric keys of size bs), thus Su = N · (dlogNe+1) ·bs.
Nothing has to be stored in the profile.

During the initialization, all keys on the path from a
user’s leaf node to the root have to be sent encrypted to the
respective user, resulting in N encryptions and N messages
sent. Since user addition and removal are quite similar, they
both need the same number of encryptions: For each subtree
under a sibling of a node on the path from the removed or

Table II
NOTATION USED IN THE PROPERTY FORMULAS

A the number of attributes in the profile
N the number of users authorized to access an attribute
C the number of contacts of the profile’s owner
nBE the maximum number of users chosen for the Setup algorithm
bs the size of a symmetric key in bytes
ba the size of an asymmetric key in bytes
bg the size of a pairing-based group element (g ∈ G) in bytes
bp the size of a pairing (e(g, g)) in bytes

added node to the root, a value rv is encrypted, resulting in
at most dlogNe (and at least logN) encryptions. All nodes
in the tree have an ancestor changing its associated key, thus
all N + 1 respectivley N − 1 nodes have to receive a key
updating message.

3) Gentry-Waters BE scheme: The owner of the profile
has to store the private key SK of size bg in the Gentry-
Waters BE scheme. As this key has to be stored only once, its
size has to be distributed over the number of attributes; i.e.,
divided by the number of attributes A, resulting in So =

bg
A .

The authorized users need not retain anything. The profile
has to provide the public key PK (consisting of nBE +
1 elements of the group G and one pairing e(g, g)α) of
size |PK| = (nBE + 1) · bg + bp and the encrypted secret
keys di for all of the profile user’s contacts (C · ba). This
storage – like the private key – is required only once and
therefore divided by A. Further, the header Hdr of size 2·bg
has to be stored in the profile for each attribute. Finally, all
this is replicated on the C systems of the user’s contacts.
Summarized, Sp =

(
|PK|+C·ba

A + 2 · bg
)
· (C + 1).

Concerning the number of encryptions, we only consider
needed executions of the algorithm Enc, since Setup and
KeyGen have to be processed only at the initialization of
the scheme, not at each initialization of an attribute. Thus,
we have a single encryption for initialization as well as for
user addition and removal.

No active messaging is needed in this approach.

C. Analysis of the proposed schemes

Figure 3 shows the plots of all properties over the number
of authorized users for an attribute.

For A, C, nBE , ba, bs, bg and bp, we have used the fol-
lowing reasonable values: We have assumed a high average
of C = 250 contacts and a medium average of A = 300
attributes in a profile. A maximum of 250 users for a group
of authorized users used in the Setup algorithm of the BE
approach seems reasonable. Furthermore, we have chosen a

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

S
o
 [
K

B
y
te

s
]

N

Simple Shared Key (1)
Simple Shared Key (2)

OFT
Gentry-Waters BE

(a) Storage at the owner

 10

 100

 1000

 10000

 100000

 50 100 150 200 250

S
p
 [
K

B
y
te

s
]

N

S. Shared Key (1) (= 0)
Simple Shared Key (2)

OFT (= 0)
Gentry-Waters BE

(b) Storage in the profile

 0.01

 0.1

 1

 10

 100

 1000

 50 100 150 200 250

S
u
 [
K

B
y
te

s
]

N

Simple Shared Key (1)
Simple Shared Key (2) (= 0)

OFT
Gentry-Waters BE (= 0)

(c) Storage at the users

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

E
i

N

Simple Shared Key (1)
Simple Shared Key (2)

OFT
Gentry-Waters BE

(d) Encryptions during initialization

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

E
a

N

Simple Shared Key (1)
Simple Shared Key (2)

OFT
Gentry-Waters BE

(e) Encryptions on user addition

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

E
r

N

Simple Shared Key (1)
Simple Shared Key (2)

OFT
Gentry-Waters BE

(f) Encryptions on user removal

 1

 10

 100

 1000

 10000

 50 100 150 200 250

M
i

N

Simple Shared Key (1)
Simple Shared Key (2) (= 0)

OFT
Gentry-Waters BE (= 0)

(g) Messages during initialization

 1

 10

 100

 1000

 10000

 50 100 150 200 250

M
i

N

Simple Shared Key (1)
Simple Shared Key (2) (= 0)

OFT
Gentry-Waters BE (= 0)

(h) Messages on user addition

 1

 10

 100

 1000

 10000

 50 100 150 200 250

M
i

N

Simple Shared Key (1)
Simple Shared Key (2) (= 0)

OFT
Gentry-Waters BE (= 0)

(i) Messages on user removal

Figure 3. Plots of all properties over the number of authorized users N (logscale, properties of constant 0 are marked accordingly)

bit length of 1024 for asymmetric keys and pairings each
(ba = 128, bp = 128) and a bit length of 192 for symmetric
keys and pairing-based group elements each (bs = 24,
bg = 24).

D. Discussion

The two variants of the Simple Shared Key approach
require a considerable amount of storage either in the profile
or at client-side, which is rather problematic since storage in
the range of megabytes at profile-side respectively kilobytes
at client-side is needed just for a single attribute. Keeping in
mind that a user may have thousands of attributes and clients
have to store attribute keys for each attribute of all of their
contacts, the Simple Shared Key approach gets infeasible
rapidly.

Without doubt, the great advantage of the approach based
on the One-way Function Tree scheme is the ease of access
revocation; i.e., user removal in our case. However, this
scheme requires a comparatively high amount of group
interaction in form of messages to the authorized users and
depends on an amount of client-side key storage that is
even higher than the one needed by the Simple Shared Key
approach. As stated before, the amount of client-side storage
is multiplied by the number of attributes the user has access
to at the profiles of all her contacts. Thus, this approach

results in large overall storage needs.
It is obvious that the Gentry-Waters BE approach based

is most suitable regarding the given constraints. Especially
the important storage requirements are met as the Gentry-
Waters BE scheme performs very well at each of the three
related properties. Even if it is considered that pairing
based cryptography is more expensive than symmetric or
public key cryptography, the Gentry-Waters BE approach
requires a tolerable amount of computing power. Moreover,
the avoidance of group interaction in form of messages is
an advantage of this scheme.

Given the presented evaluation, the Gentry-Waters BE
approach turns out to be the best fitting approach, worthy of
further investigation.

VI. RELATED APPROACHES

Steiner, Tsudik and Waidner proposed an approach that
extends Diffie-Hellman key exchange to groups in [15], [16].
This scheme provides cheap member addition but is based on
the contribution of all group members to compute the group
key, which poses two problems regarding the requirements
and constraints: It requires direct interaction between the
authorized users, which is infeasible regarding the peer-
to-peer architecture. Moreover, the key exchange happens
directly between the members of the authorized user group,

which violates the privacy requirements as the authorized
users have to know each other.

A recent encryption scheme proposed by Eskeland and
Oleshchuk [6] uses fractional public keys to compute a
shared group key. If Safebook users could be provided with a
private key based on this scheme, neither they nor the owner
of the profile would have to store any further keys. However,
the private keys are generated by a central trusted authority
like Safebook’s Trusted Information Service, which would
then be able to decrypt any communication in Safebook.
The authorized users also need to know the other authorized
users, conflicting with the privacy requirements.

In [10], Jin and Lotspiech present a broadcast encryption
scheme with differently privileged users. They introduce “se-
curity classes” to provide different data sets for differently
privileged user groups. Even though Safebook attribute user
groups could be arranged in a hierarchy like in role-based
systems, the proposed approach – since it is designed for a
linear hierarchy (i.e., group A > group B > group C, etc.) –
imposes conflicts regarding overlapping attribute user groups
and key distribution.

Multiple approaches exist to establish group keys in
(mobile) ad hoc networks (cf. [17]) that could generally be
used to set up attribute group keys in Safebook. However,
these approaches assume that no preliminary keying material
is available and therefore impose much useless overhead in
a system like Safebook having public/private key pairs at
hand for bilateral communication.

VII. CONCLUSION AND FUTURE WORK

The architecture of decentralized online social networks
leads to the need for different encryption schemes as they
are used in centralized networks. Private data has to be
encrypted in user profiles to guarantee its confidentiality.

The peer-to-peer structure of those networks raises dif-
ferent requirements and constraints that we have presented
in this paper, subdivided into strict and weaker ones. Af-
terwards, different encryption schemes have been described
that base upon distinct approaches.

To evaluate the given schemes, interesting properties
stemming from the outlined requirements and constraints
are defined first. As a second step, abstract formulas for
the computation of these properties are developed for each
encryption scheme using varying system parameters. All
properties are plotted afterwards with reasonable values
applied for the abstract parameters, constituting a basic
overview over the trade-offs imposed between and within
different approaches. For the sake of concrete results and
without loss of general applicability, the evaluation of the
proposed schemes has been performed in the setting of a
concrete distributed online social network, namely Safebook.

Though there is evidence that the broadcast encryption
based approach performs best in the present setting, further
investigations and simulations – especially simulations based
upon real data sets – are needed to provide more insight
into the characteristics of the presented approaches. These

as well as an elaborate security analysis of the proposed
schemes from the cryptographic point of view remain for
future work.

REFERENCES

[1] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta. Peer-
SoN: P2P social networking: early experiences and insights.
In EuroSys/SNS, 2009.

[2] R. Canetti, J. A. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas. Multicast security: A taxonomy and some efficient
constructions. In INFOCOM, 1999.

[3] L. A. Cutillo, R. Molva, and T. Strufe. Safebook: A privacy-
preserving online social network leveraging on real-life trust.
"IEEE Communications Magazine", 2009.

[4] Y. Dodis and N. Fazio. Public key broadcast encryption for
stateless receivers. In Digital Rights Management Workshop,
2002.

[5] Y. Dodis and N. Fazio. Public key trace and revoke scheme
secure against adaptive chosen ciphertext attack. In Public
Key Cryptography, 2003.

[6] S. Eskeland and V. A. Oleshchuk. Secure group communica-
tion using fractional public keys. In ARES, 2010.

[7] A. Fiat and M. Naor. Broadcast encryption. In CRYPTO,
1993.

[8] C. Gentry and B. Waters. Adaptive security in broadcast
encryption systems (with short ciphertexts). In EUROCRYPT,
2009.

[9] O. Goldreich, S. Goldwasser, and S. Micali. How to construct
random functions. J. ACM, 1986.

[10] H. Jin and J. Lotspiech. Broadcast encryption for differently
privileged. In SEC, 2009.

[11] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant
key agreement for dynamic collaborative groups. In ACM
CCS, 2000.

[12] D. A. McGrew and A. T. Sherman. Key establishment in
large dynamic groups using one-way function trees. Technical
report, TIS Labs at Network Associates, Inc., 1998.

[13] D. Naor, M. Naor, and J. Lotspiech. Revocation and tracing
schemes for stateless receivers. In CRYPTO, 2001.

[14] A. T. Sherman and D. A. McGrew. Key establishment in large
dynamic groups using one-way function trees. IEEE Trans.
Software Eng., 2003.

[15] M. Steiner, G. Tsudik, and M. Waidner. Diffie-hellman key
distribution extended to group communication. In ACM CCS,
1996.

[16] M. Steiner, G. Tsudik, and M. Waidner. Cliques: A new
approach to group key agreement. In ICDCS, 1998.

[17] J. van der Merwe, D. S. Dawoud, and S. McDonald. A survey
on peer-to-peer key management for mobile ad hoc networks.
ACM Comput. Surv., 2007.

[18] D. Wallner, E. Harder, and R. Agee. Key management for
multicast: Issues and architectures. RFC 2627 (Informa-
tional), 1999.

[19] C. K. Wong, M. G. Gouda, and S. S. Lam. Secure group
communications using key graphs. In SIGCOMM, 1998.

