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“The right to be let alone is indeed the beginning of all freedom.”
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Abstract

The publication of private data in user profiles in a both secure and private way is a rising problem and of special interest
in, e.g., online social networks that become more and more popular. Current approaches, especially for decentralized
networks, often do not address this issue or impose large storage overhead.

In this work, we present a cryptographic approach to private profile management that is seen as a building block for
applications in which users maintain their own profiles, publish and retrieve data, and authorize other users to access
different portions of data in their profiles. We formalize confidentiality and unlinkability as two main security and privacy
goals for the data which is kept in profiles and users who are authorized to retrieve this data.

Based on the formal model, we present two distinct constructions leveraging different encryption techniques and
analyze their characteristics as well as their applicability to real-world online social networks, discussing the imposed
overhead in multiple scenarios.




Zusammenfassung

Die Veroffentlichung von privaten Daten in Benutzerprofilen in einer sicheren und privaten Art und Weise, insbesondere
im Hinblick auf soziale Netzwerke im Internet (Online Social Networks), ist ein Problem von stark wachsender Bedeu-
tung. Bisherige Ansétze, gerade im Bereich von dezentralen Netzwerken, blenden diese Fragestellung héufig aus oder
16sen sie mit unzufriedenstellendem zusétzlichem Speicherbedarf.

In dieser Arbeit présentieren wir einen kryptographischen Ansatz zur Verwaltung von privaten Benutzerprofilen, der
als Baustein in Systemen eingesetzt werden kann, in denen Benutzer eigene Profile verwalten, Daten veroffentlichen und
aus Profilen abrufen sowie anderen Benutzern Zugriff auf bestimmte Daten in ihrem eigenen Profil gewahren kénnen.
Wir formalisieren in diesem Zusammenhang Confidentiality (Vertraulichkeit) und Unlinkability (Unverbindbarkeit) als
zwei zentrale Ziele im Bezug auf Sicherheit von Daten in Profilen und Privatsphére von Benutzern, denen der Zugriff auf
bestimmte Daten erlaubt ist.

Basierend auf diesem formalen Model prasentieren wir zwei verschiedene Konstruktionen, die unterschiedliche kryp-
tographische Verfahren einsetzen, und analysieren ihre Eigenschaften sowie ihre Verwendbarkeit in realen Online Social
Networks im Hinblick auf den durch sie hervorgerufenen, zusétzlichen Ressourcenbedarf.
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1 Introduction

Publishing personal profiles and other means of sharing private data are increasingly popular on the web. Online social
networks (OSNs) arguably are the most accepted networked service, today. Facebook alone, serving a claimed base of
over 500 Million active users!, surpassed Google and currently enjoys the highest utilization duration by their users and
one of the highest access frequencies of all web sites since January 20102. Its users share 90 pieces of content per month
on average, mainly consisting of personally identifiable information. Protecting this data against unauthorized access is
of utmost importance, since users store private and sensitive data in their OSN profiles.

The confidentiality of published data, meant to be shared with only a chosen group of users, is already important
in centralized services. Yet, it becomes even more pressing when establishing decentralized OSNs, which have been
proposed recently [9, 4, 15] in an attempt to avoid the centralized control and omnipotent access of commercial service
providers. Unlinkability is the more subtle requirement of protecting the identity of users who interact with or access
certain chunks of published data. It is frequently missed and only few general solutions achieve this privacy goal [2].

A serious corpus of solutions has been proposed to address these issues in the past. Yet, there so far exist no appropriate
definitions for secure and private management of user profiles, even from the cryptographic point of view, as we show in
Section 2.

This work hence takes a cryptographic approach to address the management of user profiles in a secure and privacy-
friendly way. To this end, its goal is to come up with a well-defined model and provably secure solutions, both to ensure
the confidentiality of data, which individually is published by users in their social profiles, as well as the privacy of the
users who are allowed to access this data. For this purpose we formally define confidentiality and privacy in the given
context, first. Our model further addresses several fundamental properties of a profile management scheme (PMS). They
comprise the ability of users (profile owners) to publish and remove data and their ability to grant, modify, and revoke
access rights to the published data as well as to retrieve data published in other users’ profiles. In particular, we consider
PMS as an independent building block, without relying on the higher-level application or any other parties to perform
these tasks.

After the specification of the model, we describe two provably secure solutions that use different techniques: our first
solution, called PMS-SK, combines symmetric encryption with shared keys that are distributed amongst the authorized
users. Our second solution, called PMS-BE, involves broadcast encryption techniques to reduce the number of keys that
have to be distributed. Both solutions have their advantages and disadvantages with respect to the key overhead they
impose and the level of privacy they guarantee, as we show in our subsequent analysis. In particular, PMS-SK provides
confidentiality and perfect unlinkability, but imposes an overhead of keys linear in the number of attributes a user is
allowed to access, which results in equivalent storage overhead. PMS-BE reduces the key overhead to a constant value at
the cost of lower privacy, expressed through the requirement of anonymity, which we also model and formally relate to
the stronger notion of unlinkability. We further discuss the trade-off between privacy and efficiency by evaluating some
complexity characteristics of both approaches and suggest several optimizations that could enhance their performance,
while preserving their security and privacy guarantees.

Finally, we give a short idea of how both constructions perform in real-world OSN settings, analyzing the concrete
overhead they impose based on current statistics and research. We discuss the results with a view to the advantages and
disadvantages of both constructions.

1.1 Organization

The rest of this work is organized as follows. First, we discuss previous cryptographic and non-cryptographic work on
private management of user profiles in the following Section. In Section 3, we introduce our formal model of a profile
management scheme and define two requirements upon this model: confidentiality and unlinkability. Subsequently, we
present our shared-key construction PMS-SK in Section 4, evaluate its complexity, and formally address its security and
privacy properties. There, we also present ideas on how to optimize the scheme using further cryptographic techniques.
The second construction, PMS-BE, which bases on broadcast encryption, is introduced in Section 5, where we discuss
its complexity and relate it to that of PMS-SK. Moreover, we analyze the confidentiality and privacy of the scheme,
introduce the weaker privacy notion of anonymity, and show its separation from unlinkability. In Section 6, we analyze
the behavior of both constructions in real-world OSNs, discuss the overhead they impose and relate it to advantages and
disadvantages of the approaches. Finally, we conclude in Section 7.

http://www.facebook.com/press/info.php?statistics, October 2010

2 http://blog.nielsen.com/nielsenwire/, October 2010
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2 Related Work

Substantial amount of work has been carried out in the field of secure and private publication of sensitive data in online
social networks (OSNs), demonstrating threats and proposing countermeasures. For example, Gross et al. [16] and
Zheleva et al. [27] studied how access patterns of users to the information stored in user profiles and membership of
users in different social groups can be exploited for the disclosure of private data.

Amongst the non-cryptographic solutions is the approach proposed by Carminati et al. [7, 8], where access to private
data is modeled using semantic rules taking into account the depth of social relationships and the amount of trust
amongst the users. In addition to being semi-centralized, this approach requires synchronous communication — a
significant limitation in our case.

Several cryptographic approaches to improve confidentiality and privacy in existing, mostly centralized online social
networks have been suggested in the past: Lucas et. al [18] presented flyByNight, an application to encrypt sensitive data
in Facebook. Tootoonchian [24] proposed a system called Lockr to improve privacy in both centralized and decentralized
social networks. Yet, both approaches are not able to keep security and/or privacy up under certain attacks: flyByNight
relies on the Facebook servers as middlemen and thus enables them to introduce malicious code or keys whilst in Lockr
malicious users are able to reveal relationship keys or disclose relationship metadata for access control, compromising
privacy properties of the system. Another cryptographic approach is Scramble! [21], a Firefox plugin that uses the
OpenPGP standard [5] to encrypt data relying on its public-key infrastructure. Moreover, Scramble! tries to achieve
recipient anonymity by omitting the public identifiers of recipients in the ciphertext and allows for data storage on third-
party systems using “tiny URLs”, thus reducing the size of ciphertexts. Nevertheless, the approach implies linear storage
overhead and, as it relies on OpenPGR is vulnerable to active attacks as shown by Barth et al. [2].

A number of solutions aim at binding the access to private data with some fine-grained access policies. For example,
Graffi et al. [14] implemented an approach based on symmetric encryption of profile items with independent shared
keys, yet without actually specifying or formally analyzing the desired security and privacy properties. The OSN Persona,
presented by Baden et al. [1], implements ciphertext-policy attribute-based encryption (CP-ABE) [3] for the enforcement
of access rules to the encrypted profile data (e.g., “ 'neighbor’ AND ’football fan’ ”). Their approach aims at confidentiality
of attributes but does not guarantee privacy.

Recently, Zhu et al. [28] proposed a collaborative framework to enforce access control in OSNs by the use of a new
group-oriented convergence cryptosystem. Their scheme is centralized and focuses on the joint publication of data within
the communities, less on the individual users and protection of their own profiles and data.

A somewhat more general construct for privacy-preserving distribution of an encrypted content was proposed by
Barth et al. [2] using public-key broadcast encryption. Of particular interest is their notion of recipient privacy, which is
supposed to hide the identities of recipients of the broadcast content and can be applied for the private distribution of
shared keys in our PMS-SK approach (cf. Remark 1 in Section 4) at the cost of linear storage overhead in the number
of recipients. Their scheme could also be used as a building block for a private profile management scheme that would,
however, require linear storage overhead for the distribution of ciphertexts.




3 Private User Profiles: Model and Definitions

In this Section, we formally model our scheme for user profile management based on previously introduced notions
of users, profiles, and the like. We then define an adversarial model which we use to formally specify the security
requirements of confidentiality and unlinkability.

3.1 Management of User Profiles

Subsequently, we introduce our notions of users and profiles, followed by the formal definition of our profile management
scheme.

3.1.1 Users

Let U denote a set of at most N users. We do not distinguish between users and their identities but assume that each
identity U € U is unique. Furthermore, we assume that users can create authentic and, if necessary, confidential commu-
nication channels. This assumption is motivated by the fact that the profile management scheme will likely be deployed
as a building block within an application like an online social network, where users typically have other means of authen-
tication. In this way we can focus on the core functionality of the profile management scheme, namely the management
of and access to the profile data.

3.1.2 Profiles

A profile P is modeled as a set of pairs (a,d) € Z x {0,1}* where Z C {0, 1}* is the set of possible attribute indices a and
d are corresponding values stored in P. We assume that within a profile P attribute indices are unique. Furthermore,
we assume that each profile P is publicly accessible but is distributed in an authentic manner by its owner Up € U. Also,
every user U owns at most one profile and the profile owned by U is denoted by P;. The authenticity of profiles means,
that their content can only be manipulated by their respective owner who is in possession of the corresponding profile
management key pmk. Since one of the goals will be to ensure confidentiality of attributes, we assume that for each
publicly accessible value d there exists the actual attribute d and that for any pair (a,d) € P the profile owner Up can
implicitly retrieve the corresponding d as well as the group G € U of users who are currently authorized to access d. By
QZ’P we denote the set of users that have ever been authorized to access the attribute indexed by a within the profile P
(we assume that Up € QZ’P for all attributes in P).

3.1.3 Profile Management Scheme

We are now ready to define the syntax of the profile management scheme.

Definition 1 (Profile Management Scheme). A profile management scheme PMS consists of the five algorithms Init,
Publish, Retrieve, Delete and ModifyAccess defined as follows:

Init(x): On input the security parameter K, this probabilistic algorithm intializes the scheme and outputs an empty profile
P together with the private profile management key pmk. Init is executed by the owner Up.

Publish(pmk,P,(a,d),G): On input a profile management key pmk, a profile P, a pair (a,d) € Z x {0,1}* (such that a
is not yet in the profile), and a group of users G, this probabilistic algorithm transforms the attribute d into value d,
adds (a,d) to P, and G to Q;,P. It outputs the modified P and a retrieval key rky for each U € G (that may be newly
generated or modified). Optionally, it updates pmk. Publish is executed by the owner Up.

Retrieve(rky,Pa): Oninputaretrieval key rky, a profile P, and an attribute index a, this deterministic algorithm checks
whether (a,d) € P, and either outputs d or rejects with L. Retrieve can be executed by any user U € U being in
possession of the key for a in rky.




Delete(pmk,P,a): On input a profile management key pmk, a profile P, and an attribute index a, this possibly proba-
bilistic algorithm checks whether (a,d) € P, and if so outputs modified profile P = P \ (a,d). Optionally, it updates
pmk and rky of all U € G where G denotes the set of users authorized to access the pair with index a at the end of the
execution. Delete is executed by the owner Up.

ModifyAccess(pmk,P,a,U): On input a profile management key pmk, a profile P, an attribute index a, and some user
U € U this probabilistic algorithm checks whether (a,d) € P for some d, and if so finds the set G of users that are
authorized to access the attribute d. The algorithm then proceeds according to the one of the following two cases:

e IfU € G then it updates G = G\ {U} (i.e., user U is removed from G).
e IfU &G then it updates G = GU {U} and QZ’P = Q’;"P U{U} (i.e., U is added to both G and QZ’P).

Finally, the algorithm outputs the modified profile P. Optionally, it updates pmk and the retrieval keys rky of all
U e GU{U}. ModifyAccess is executed by the owner Up.

We remark that some profile management schemes may include an additional algorithm ModifyAttribute allowing
U, to modify the attribute d behind some pair (a,d) € P in a more efficient way than by consecutive execution of
Delete and Publish. However, for the security treatment of profile management schemes it is sufficient to consider
only Delete and Publish that make the modification of attributes possible.

3.2 Adversarial Model

In order to define security and privacy of a profile management scheme PMS, we consider a probabilistic polynomial-time
(PPT) adversary A that knows all users in the system, i.e., the set I{ is assumed to be public, and interacts with them via
the following set of queries:

Corrupt(U) : This corruption query gives A all secret keys known to U, including the profile management key pmk and
all retrieval keys rk;; (with which U can access other users’ profiles).

U is added to the set of corrupted users that we denote by C C U{.

Publish(P,(a,d),G) : Inresponse, Publish(pmk,P,(a,d),G) is executed using pmk of Up. A is then given the modified
profile P and all updated keys of corrupted users U € C.

Retrieve(Ba,U) : In response, Retrieve(rky, P, a) is executed using rk; of U and its output is given back to A.

Delete(P.a) : In response, Delete(pmk, P,a) is executed using pmk of Up. A is then given the modified profile P and
all updated keys belonging to corrupted users U € C.

ModifyAccess(Pa,U) : In response, ModifyAccess(pmk,Pa,U) is executed using pmk of U,. A is then given the
modified profile P and all updated keys belonging to corrupted users U € C.

3.3 Security and Privacy Requirements

Subsequently, we define two security requirements for a profile management scheme. Our first requirement, called
confidentiality, aims to protect attributes d stored in a profile from unauthorized access. Our second requirement, called
unlinkability aims at protecting the privacy of users in the following sense: a profile management scheme should hide
information on whether a user U has been authorized to access some attribute in a profile of another user Up, and,
moreover, it should not leak information whether different attributes within a profile can be accessed by the same user,
even if the adversary has access to these attributes as well.

3.3.1 Confidentiality

We model confidentiality in Definition 2 using the standard indistinguishability approach, similar to the one used in
definitions of secure encryption, i.e., it should be computationally infeasible for an adversary .A to decide which attribute
d is referenced by an index a.

Definition 2 (Confidentiality). Let PMS be a profile management scheme from Definition 1 and A be a PPT adversary

interacting with users via queries from Section 3.2 within the following game Ga mef:"l‘,;/ls:




1. Init(k) is executed for all users U € U.

2. A can execute arbitrary operations and ask queries. At some point it outputs (a,d,),(a,d;) € Z x {0,1}*, G, C U,
and Up € U \ G, such that neither Up nor any U € G, is corrupted (i.e., ({Up} UG, )NC =0) and |d,| = |d;]| (ie., dy
and d, have the same length).

3. Abit b € {0,1} is chosen uniformly, Publish(pmk, P,(a,d}), G,) with pmk of Up is executed, and the modified P is
given to A.

4. A can execute arbitrary operations and ask queries. At some point it outputs a bit b’ € {0,1}.
5. A wins, denoted by Gamef,?,i,ls =1, if all of the following holds:

* b'=h.

* Up &C.

* Adid not query Retrieve(Pa,U) with U € G .

. ;‘ pNC= 0 (users that have ever been authorized to access the attribute indexed by a in P are not corrupted).

The advantage probability of A in winning the game Gamej’"f,';vls is defined as

f
Adv by () := |Pr [Gamei”’;;ﬂs = 1} -3

conf

We say that PMS provides confidentiality if for any PPT adversary A the advantage Adv_, b (k) is negligible.

3.3.2 Unlinkability

We model unlinkability of a profile management scheme in Definition 3 using the indistinguishability approach as
well, but this time A has to decide which user has been authorized to access the attribute, either via Publish or
ModifyAccess queries.

Definition 3 (Unlinkability). Let PMS be a profile management scheme from Definition 1 and A be a PPT adversary

interacting with users via queries from Section 3.2 within the following game Ga met"{"P',"Mks:

1. Init(k) is executed for all users U € U.

2. A can execute arbitrary operations and ask queries. At some point it outputs Uy, Uy, (a,d), and Up (owner of some
profile P).

3. Abit b € {0,1} is chosen uniformly and
* if (a,*) & P, then Publish(pmk,P,(a,d), {U,}) with pmk of U, is executed.
* if (a,*) € P, then ModifyAccess(pmk, B a, {Uy}) with pmk of Up is executed.
In both cases A is given the modified profile P and the possibly updated retrieval keys rky for all U € C.

4. A can execute arbitrary operations and ask queries. At some point it outputs a bit b’ € {0,1}.

unlink

5. A wins, denoted by Game Apms = 1 if all of the following holds:
s b'=h.
e {Uy, Uy, Up}NC =0.
* A neither queried Retrieve(P,a, U,) nor Retrieve(B a, U;).

The advantage probability of A in winning the game Gamei{"li"MkS is defined as

1

link .
Adv' pus () = |Pr [Gamet‘é{"g"MkS = 1} -3

unlink

We say that PMS provides unlinkability if for any PPT adversary A the advantage Adv’, pyis(x) is negligible.
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4 Private Profiles with Shared Keys

Our first construction, called PMS-SK, is simple and uses shared keys to encrypt profile attributes for a group of authorized
users. An independent symmetric key K, is chosen by the owner of a profile P for each pair (a,d) and distributed
to the group G of users that are authorized to access d. The key is updated on each modification of G. We use a
symmetric encryption scheme SE = (SE.KGen,SE.Enc,SE.Dec) (cf. for example [17, p. 60]) for which we assume
classical indistinguishability against chosen-plaintext attacks (IND-CPA) and denote by Adviz"?g CPA(K) the corresponding
advantage of the adversary (cf. for example [17, p. 82]).

The distribution of K, may be performed in two ways: K, can be communicated to the authorized users online (over
secure channels) or offline, e.g., by storing K, securely (possibly using asymmetric encryption) either within the profile or
at some centralized server. Our specification of PMS-SK leaves open how distribution of shared keys is done. In particular,
the use of one or another technique may be constrained by the application that will use the scheme.

4.1 Specification of PMS-SK

The construction of PMS-SK is as follows.

Init(x): Output P «— @ and pmk « 0.

Publish(pmk,P(a,d),G): K, < SE.KGen(1¥), add (a,SE.Enc(K,,d)) to P, K, to rk;; for each U € G, and K, to pmk.
Retrieve(rky,Pa): Extract K, from rky. If (a,d) € P for some d then output SE.Dec(K,,d), else L.
Delete(pmk,Pa): Delete (a,d) from P. Delete K, from pmk.

ModifyAccess(pmk,Ba,U): If U € G then remove U from G, otherwise add U to G. Execute Delete(pmk, P a)
followed by Publish(pmk, P,(a,d),G) where d is the attribute indexed by a.

The description of ModifyAccess is kept general in the sense that it does not specify how the profile owner Up
reveals an attribute d indexed by a. Our scheme allows for different realizations: d can be stored by U, locally (not as
part of P) or it can be obtained through decryption of d using K, which is part of pmk.

We assume in our constructions that the uniqueness of indices a in a profile P is implicitly ensured or checked by
corresponding algorithms.

4.2 Complexity Analysis

PMS-SK requires each profile owner Uy to store one key per attribute (a,d) currently published in P. Additionally, each
user has to store one key per attribute she is allowed to access in any profile. Therefore, assuming the worst case where
all users in U have profiles containing |P| attributes that can be accessed by all other users, PMS-SK requires each U € U
to store N -|P| keys from which |P| keys are stored in its pmk and (N —1)-|P| in the retrieval keys rk for all others users’
profiles. For each Publish or ModifyAccess operation the profile owner needs further to perform one symmetric
encryption.

4.3 Security and Privacy Analysis

In this section we prove that PMS-SK ensures confidentiality of attributes and provides unlinkability for the authorized
users.

Theorem 1 (Confidentiality of PMS-SK). If SE is IND-CPA secure, then PMS-SK provides confidentiality from Definition 2,
and

Adv R si() < (1+9) - Adv 307 ()

with q being the number of invoked ModifyAccess operations per attribute.

1



Proof. Assume a PPT adversary A against the confidentiality of PMS-SK. We construct a PPT adversary .A* against IND-
CPA security of SE which simulates the execution of PMS-SK operations and interacts with A as specified in Gamefﬂ,&dsz

After initializing PMS-SK for all users in U, .A* responds to the queries issued by A, acting on behalf of the respective
profile owners as specified for the scheme (e.g., choosing attribute keys K, changing profiles, etc.).

At some point in time, A outputs its challenge (a, d,), (a,d;),G;, Up. A* then forwards (my, m;) = (dy,d;) as its own
IND-CPA challenge and obtains the ciphertext ¢ (for m;). A* picks i € [1,q+ 1] at random. If i = 1 then .A* adds (a,c)
to P as part of corresponding Publish operation and outputs P to .A. Otherwise, (a,c) is added to P by .A* as part of
the i ModifyAccess operation on a. In all other operations on a the IND-CPA adversary .A* proceeds according to the
specification of PMS-SK by choosing corresponding keys K, on its own.

A* continues responding to the queries issued by .A. At some point in time, A outputs a bit b’, which A* forwards as
its own bit b’ to the IND-CPA challenger. Assuming that .4 breaks the confidentiality of PMS-SK the bit b’ forwarded by
A* is equal to the bit b chosen by the IND-CPA challenger with probability ﬁ, which is due to the independence of keys

K, chosen by A* in all but the i operation on a and the successful guess of .A* with regard to i. In this way we obtain
conf

the desired upper-bound for Adv Apms.sk(K) which is negligible assuming the IND-CPA security of SE. O

Theorem 2 (Unlinkability of PMS-SK). PMS-SK provides perfect unlinkability as defined in Definition 3, ie.,
Advi{]I}LrI]\/I[(S—SK(K) =0.

Proof. The attribute keys K, are statistically independent of the identities of users in G who have been authorized to

access the attribute indexed by a. Therefore, A cannot win in Gamej‘gﬁ‘s better than by a random guess, i.e., with

probability % O

Remark 1. The perfect unlinkability property of our PMS-SK construction proven in the above theorem should be enjoyed
with caution when it comes to the deployment of the scheme in practice. The reason is that PMS-SK does not specify how
shared keys are distributed, leaving this to the application that will use the scheme. One approach to distribute keys in a
privacy-preserving manner is given by Barth, Boneh, and Waters [2] and the CCA recipient privacy of their scheme, which
however comes with storage overhead linear in the number of recipients and may be undesirable when encrypting small-sized
attributes in user profiles. In any case it is clear that the distribution process will eventually have impact on the unlinkability
property of the scheme, maybe to the point of ruling out its perfectness.

4.4 Further Optimizations

Regardless of the question, whether shared keys K, are distributed by the application in an online or an offline fashion,
there is a way to further optimize and improve the actual management of these keys. In our specification of PMS-SK,
these keys are currently chosen fresh for each modification of the authorized group G. However, by using group key
management schemes that allow efficient update of group keys such as LKH [26, 25] or OFT [6, 22, 19] with all the
resulting efficiency differences, the overhead for the distribution can be further reduced.

Another optimization concerns generation of shared keys K, in case a profile owner U, does not wish to store corre-
sponding attributes d (outside of the profile). Instead of storing linear (in the number of attributes in P) many shared
keys in pmk, the profile owner can derive each K, using some pseudorandom function [13] f;(a, i) where s is a seed used
for all attributes, a is the unique attribute index, and i is a counter that is updated on each execution of ModifyAccess
on a to account for possible repetitions of the authorized group G over the life time of the profile. This optimization
allows to trade in the storage costs for pmk for the computation overhead for deriving K,,.

We do not analyze the efficiency effects of the proposed optimizations in detail here, as the construction based on
broadcast encryption presented in the next section has only a constant overhead of retrieval keys.
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5 Private Profiles with Broadcast Encryption

Our second generic construction of a profile management scheme, called PMS-BE, is based on an adaptively secure
(identity-based) broadcast encryption scheme, e.g. [10], whose syntax and requirements we recall in the following.

Definition 4 (Broadcast Encryption Scheme [10]). A broadcast encryption scheme BE = (BE.Setup,BE.KGen,
BE.Enc,BE.Dec) consists of the following algorithms:

BE.Setup(x,n,): Oninput the security parameter k, the number of receivers n, and the maximal size £ < n of the recipient
group, this probabilistic algorithm outputs a public/secret key pair (PK,SK).

BE.KGen(i,SK): On input an index i € {1,...,n} and the secret key SK, this probabilistic algorithm outputs a private
(user) key sk;.

BE.Enc(S,PK): On input a subset S C {1,...,n} with |S| < £ and a public key PK, this probabilistic algorithm outputs a
pair (Hdr,K) where Hdr is called the header and K € K is a message encryption key.

BE.Dec(S,i,sk;,Hdr,PK): On input a subset S € {1,...,n} with |S| < ¢, an index i € {1,...,n}, a private key sk;, a
header Hdr, and the public key PK, this deterministic algorithm outputs the message encryption key K € K.

Correctness of BE requires that for all S € {1,...,n} and all i € S, if (PK,SK) <5 BE.Setup(x,n,t), sk; <
BE.KGen(i,SK), and (Hdr,K) < BE.Enc(S, PK), then BE.Dec(S,i,sk;,Hdr, PK) =K.

The adaptive security of BE against chosen plaintext attacks as defined in [10] can be extended to chosen-ciphertext
attacks as follows.

Definition 5 (Adaptive CCA-Security of BE). Let BE be a broadcast encryption scheme from Definition 4 and A be a PPT

adversary in the following game, denoted Gamef’;g’i’?(x):

1. (PK,SK) <5 BE.Setup(k,n,£). A is given PK (together with n and {).

2. A adaptively issues private key queries BE.KGen(i) for i € {1,...,n} and obtains corresponding sk;. In addition, A
is allowed to query BE.Dec(S,i,Hdr, PK) to obtain message encryption keys K.

3. A outputs a challenge set of indices S*, such that no BE.KGen(i) with i € S* was asked. Let (Hdr*,K,) <
BE.Enc(S*,PK) and K; € K. A bit b € {0, 1} is chosen uniformly and A is given (Hdr*,K*) with K* = K.

4. Ais allowed to query BE.Dec(S,i,Hdr, PK), except on inputs of the form (S*,i,Hdr*,PK), i € S*.

5. A outputs a bit b’ € {0, 1} and wins the game, denoted Gamei’fggg?(@ =1,ifb'=b.

We define A’s advantage against the adaptive CCA-security of BE as
1
d-CCA _
AV, 00) = o [Game 80 =1] - 5

We say that BE is adaptively CCA-secure if for all PPT adversaries A the advantage Adviﬂ;gﬁj(x) is negligible.

5.1 Specification of PMS-BE

The main idea behind PMS-BE is that each profile owner U, manages independently its own instance of the BE scheme in
the following way: U, assigns fresh indices i, which we call pseudonyms, to the users from &/ (upon their first admission
to P) and gives them corresponding private (user) keys sk;. In order to publish an attribute d for some authorized
group G, the owner encrypts d using the BE scheme and the set of indices assigned to the users in G. This process
allows for very efficient modification of the authorized group G: In order to admit or remove a member U with regard
to d the profile owner simply adjusts G and re-encrypts d. In particular, there is no need to distribute new decryption
keys. However, this flexibility comes at the price of a somewhat weaker privacy, since BE schemes include indices i into
ciphertext headers, which in turn allows for linkability of an authorized user U across multiple attributes within P. Yet,
the use of pseudonyms still allows us to show that PMS-BE satisfies the weaker requirement of anonymity, which we
introduce and formally relate to unlinkability in Section 5.4.
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Init(x): Execute (PK,SK) « BE.Setup(x,n,£) withn =£ =N . Output P « @ and pmk < {PK,SK}. Additionally,
PK is made public.

Publish(pmk,P,(a,d),G): For every U € G without pseudonym for P pick an unused pseudonym i at random from
[1,n], extract sk; < BE.KGen(i,SK), and define new rk; <« (i,sk;). For every U € G add the corresponding
pseudonyms to the set S. Compute (Hdr,K,) « BE.Enc(S,PK), d < SE.Enc(K,,d), and d «— (Hdr,S,d). Add
(a,d) to P and K, to pmk. Output P, all new rk;;, and pmk.

Retrieve(rky,Ba): Extract (a,d) from P. Parse d as (Hdr,S,d). Extract (i,sk;) from rky. Set K, «
BE.Dec(S,i,sk;, Hdr, PK) and output SE.Dec(K,,d).

Delete(pmk,Ba): Delete (a,d) from P. Delete K, from pmk.

ModifyAccess(pmk,Ba,U): If U € G remove U from G; otherwise add U to G. Execute Delete(pmk, B a) followed
by Publish(pmk,P,(a,d),G), where d is the attribute indexed by a.

5.2 Complexity Analysis

PMS-BE requires each profile owner U, to store one key per index-attribute pair (a,d) currently published in P as well
as the key pair (PK,SK). For each profile containing at least one attribute a user is allowed to access, this user has to
store its secret key (i,sk;) contained in rk;. Assuming the worst case where all users in U/ have profiles containing |P|
attributes that can be accessed by all other users, PMS-BE requires each U € U to store |P| + N + 1 keys from which
|P|+2 keys are stored in pmk and N — 1 secret keys (i, sk;) are stored in the retrieval keys rk;; of all others users’ profiles.
For each Publish or ModifyAccess operation the profile owner needs further to perform one broadcast encryption
BE.Enc and one symmetric encryption.

The storage overhead may be reduced by omitting the storage of attribute keys K, in pmk as the profile owner is able
to reconstruct K, by executing sk; < BE.KGen(i,SK) for any index i in the set of authorized indices S for a. With the
authorized user’s secret key sk;, the profile owner is able to execute BE.Dec, receiving K,. That way, the total number of
stored keys is reduced by |P| to N + 1, traded in for a higher computation overhead when executing ModifyAccess.

Obviously, the main advantage of the PMS-BE construction over the PMS-SK approach is the number of keys that
have to be stored in rk;;, which is only one in PMS-BE whereas PMS-SK imposes key overhead linear in the number of
attributes. However, this efficiency benefit comes at the cost of a weaker privacy, as we discuss below.

5.3 Confidentiality of PMS-BE

We first analyze the confidentiality property of the PMS-BE scheme.

Theorem 3 (Confidentiality of PMS-BE). If SE is IND-CPA secure and BE is adaptively CCA-secure, PMS-BE provides
confidentiality from Definition 2, and

AV s e () < (14 )« (Advp %P0+ N - Advis 551 ()

with q being the number of invoked ModifyAccess operations per attribute.

Proof. Assume an PPT adversary A against the confidentiality of PMS-BE. We show how to construct an adversary 53,
against the IND-CPA security of SE and an adversary B, against adaptive CCA-security of BE.

Construction of B;. This is similar to the adversary .A* against IND-CPA of SE in the proof of Theorem 1. While
responding to queries issued by A in Gamei‘f’gv[s on behalf of the respective profile owners (by executing all operations
honestly as specified for PMS-BE), I3; upon receiving the challenge ((a, d,), (a,d,), G;, Up) from A, forwards (my, m;) =
(dy,d,) as its own challenge to the IND-CPA challenger and obtains a ciphertext c. It then picks j € [1,q + 1] at random,
and adds (a,d) as (Hdr,S,c) to the challenge profile P either as part of the Publish (if j = 1) or as part of the j®
ModifyAccess operation on a (if j # 1). At the end, B, forwards the output bit of 4 as its own bit in the IND-CPA
game.

Construction of B,. B, receives PK as part of Game%‘:BCE?&(K). B, now picks a user Up € U at random, i.e., it guesses
the profile owner that 4 will use as target in its attack. For all other users BB, generates all PMS-BE parameters and
performs operations on their behalf honestly by itself. Only for the profile P of selected U, it responds to the queries of
A using own oracle access to the underlying BE scheme, i.e.,

1 We use this upper bound for simplicity here. One may cut down both on n and £ to improve the efficiency of BE.
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* B, answers Publish(P,(a,d),G) queries using its own BE.Enc(S, PK) oracle with the set of pseudonyms S which
correspond to the users in G. From the obtained (Hdr,K,) it then uses K, to encrypt d as specified in Publish
operation. Note that the assignment of pseudonyms i to users U is done by B, and that B, does not know the
private keys sk;.

* B, answers Retrieve(P,a, U) queries using its own oracle BE.Dec(S, i, Hdr, PK) oracle where i is the pseudonym
of U within the profile P, and S and Hdr is part of the ciphertext d indexed with a.

* B, answers Corrupt(U) queries by identifying all indices i that U has in all other profiles P’ # P and returning
corresponding sk; to A. For the profile P it queries the oracle BE.KGen(i) to obtain sk; of U in that profile and
gives sk; to A. In addition it gives A all retrieval keys rk;; of U.

* B, answers ModifyAccess(P,a, U) queries similarly to Publish queries above using its BE.Enc(S, PK) oracle.

At some point in time, A outputs (a,d,),(a,d;),G,, Up. Up matches the target user guessed by 5, with probability
zlv‘ Then, B, assigns to each U € G, an unused pseudonym i (unless U already has a pseudonym for P). Next, B, picks
je€[1,q+ 1] at random.

If j =1, B, queries its BE.KGen(i) oracle with all so-far unassigned pseudonyms i to obtain private keys sk;. (Note
that B, does not obtain private keys of users in G, but can still answer Corrupt queries of A regarding other users

later.) Finally, B, outputs set S* containing pseudonyms of users in G, as part of Game%‘l_B%CnAz(K), receives the challenge

(Hdr*,K*), and uses K* to encrypt the attribute d, for a random bit b of its choice, i.e. B, adds (a,d) where d =
(Hdr*,S*,SE.Enc(K*,d;)) to P.

However, if j # 1 then B3, replies to the challenge by computing (a,d) still with the help of its BE.Enc oracle. Later,
in response to the j ModifyAccess(Ba,U) query of A that leads to the j™ update of the target group G,, it queries
its BE.K Gen(i) oracle with all so-far unassigned pseudonyms i to obtain private keys sk; and outputs set S* containing

pseudonyms of users in the updated G, as part of Game%‘:B%&(K) to receive the challenge (Hdr*,K*), and adds (a,d)

where d = (Hdr*,S*,SE.Enc(K*,d,)) to P. Note that the updated group G, never included corrupted users.
In both cases B, continues answering queries of .4 as described in the beginning until A outputs its bit b’. If b’ = b,

meaning that A was successful, then B, outputs 0 in Game2d=CCA (k¢ , indicating that the received key K* was real,;
g 2 P Bo,BE,n,l 8 y
1

otherwise B, outputs 1. If A wins then B, wins with probability oD

to account for the correct guess of the profile

owner Up and j.

By combining the advantages of 3; and 3, that both use the confidentiality adversary .4 in their respective games we

can give an upper-bound Advf:,r;’];\/IS-BE(K)’ which is negligible assuming the security of SE and BE. O

5.4 Privacy of PMS-BE

Our PMS-BE construction does not provide unlinkability as defined in Definition 3 since the indices of users are linkable
across different published attributes. Consider the following construction of a PPT adversary A against the unlinkability
of PMS-BE:

After initialization of PMS-BE, A outputs two arbitrary users Uy, U;, some pair (a,d) and a profile owner Up. Then,
A executes Publish(B,(a’,d"),{U,}) for an arbitrary pair (a’,d’) and extracts the two pairs (a,d) and (a’,d’) from P
(parsing d as (Hdr,S,d) and d’ as (Hdr’,S’,d’)). If S = S’, A outputs 0, otherwise 1.

A always wins, thus

Advtléalfl’?\;S—BE(K) = |Pr [Gamei{‘,"r','j‘;s_BE = 1] --|=
which is non-negligible.

Since PMS-BE has simpler management and distribution of retrieval keys it would be nice to see whether it can satisfy
some weaker, yet still meaningful privacy property. It turns out that PMS-BE is still able to provide anonymity of users
that are members of different authorized groups G within the same profile, even in the presence of an adversary in these
groups.

We formalize anonymity in Definition 6 based on the following intuition: An adversary shall not be able to decide the
identity of some user U, € {U,, U;} in the setting where the adversary is restricted to publish attributes or modify access
to them either by simultaneously including both U, and U; into the authorized group or none of them. This definition
rules out linkability of users based on their pseudonyms, while keeping all other privacy properties of the unlinkability
definition.

Definition 6 (Anonymity). Let PMS be a profile management scheme from Definition 1 and A be a PPT adversary interacting

with users via queries from Section 3.2 within the following game Game®'3%c:
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1. Init(k) is executed for all users U € U.

2. A can execute arbitrary operations and ask queries. At some point it outputs Uy, Uy, (a,d), and Up (owner of some
profile P).

3. Abit b € {0,1} is chosen uniformly and:

* If(a,*) & P then Publish(pmk,P,(a,d), {U,}) with pmk of Up is executed.
* If (a,*) € P then ModifyAccess(pmk, B,a, {U,}) with pmk of Up is executed.

In both cases A is given the modified profile P and the possibly updated retrieval keys rky for all U € C.

4. A can execute arbitrary operations and ask queries. At some point it outputs a bit b’ € {0,1}.

anon

5. A wins, denoted by Game Apms = L If all of the following holds:

* b'=h.

« {U,, Uy, Up}NC =0.

* A neither queried Retrieve(P,a, Uy) nor Retrieve(B, a, U;).
Publish(P,(a, %), G) has not been executed with Uy € G but U, & G or with U; € G but Uy € G for any a.
ModifyAccess(P,a, U) has not been executed with U = U, or U = U, for any a.

The advantage probability of A in winning the game Gamei{‘,‘l’,"MS is defined as

1
Advy s () = |Pr [Gamej‘;"Ms = 1} -3

anon

We say that PMS provides anonymity if for any PPT adversary A the advantage Adv “Apms (k) is negligible.

We prove that PMS-BE provides perfect anonymity using similar arguments as we used for the perfect unlinkability of
the PMS-SK scheme. Nevertheless, we observe that our discussion in Remark 1 regarding the potential loss of perfect-
ness for the unlinkability of PMS-SK when deployed in the concrete application applies to PMS-BE as well, due to the
distribution of private user keys sk;.

Theorem 4 (Anonymity of PMS-BE). The PMS-BE scheme provides perfect anonymity as defined in Definition 6, i.e.,
Advj‘;"MS_BE(K) =0.

Proof. The pseudonym i of a user U € U for a profile P is chosen uniformly by the owner U, from [1,N] and remains
independent of the user identity U and other pseudonyms that U may have in other profiles. As long as the adversary
A does not corrupt Uy, U;, or the profile owner U, (which is prohibited by Definition 6) and since the bit b chosen in

Gamei{‘f,gﬂs is statistically independent of the identities U, and U;, .A cannot infer any information about U, by invoking

publishing and modification operations due to the final two restrictions of Gamei{‘ggﬂs. Therefore, A cannot break the

anonymity of PMS-BE better than by a random guess, i.e., Pr [Gamej‘fl’,ﬁﬂs = 1] = % O

We complete our security analysis by showing that the unlinkability requirement for a profile management scheme is
strictly stronger than the anonymity requirement. Our separation result holds unconditionally in that it preserves the
properties of the starting scheme.

Theorem 5 (Unlinkability = Anonymity). Let PMS be a profile management scheme from Definition 1 providing unlinka-
bility from Definition 3. Then PMS also provides anonymity from Definition 6.

Proof. The construction of an unlinkability adversary A* that is given black-box access to an anonymity adversary A is
straightforward. A" answers all queries of A by relaying them as queries to its own challenger and outputs whatever .4

. : fink
outputs. If A wins then so does A%, i.e., Adv'y'pr(x) = AdvE'oh (). O

Theorem 6 (Unlinkability < Anonymity). Let PMS be a profile management scheme from Definition 1. Then there exists
a profile management scheme PMS’ such that for any adversary A’ against anonymity of PMS' there exists an adversary A
against anonymity of PMS. Furthermore, there exists an adversary BB against the unlinkability of PMS’.

Proof. Take any PMS scheme which provides anonymity. PMS can be modified to PMS’ as follows:
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* Use identic algorithms PMS’.Init = PMS.Init and PMS’.Delete = PMS.Delete.

* The algorithms PMS’.Publish and PMS.Publish as well as PMS'.ModifyAccess and PMS.ModifyAccess
differ in that PMS’ operations update a profile P with pairs of the form (a,d’) € P with d’ = d||S, where a and
d are computed using corresponding PMS operations, and the appended set S contains profile-specific indices i
of users U from the authorized group G (for the attribute d), such that unique i is chosen at random from [1,N]
within these operations for each U € U upon the first admission of U to P.

* PMS’.Retrieve and PMS.Retrieve differ in that PMS’.Ret_rieve first computes d by removing S from d’ and
then invoking PMS.Retrieve on the corresponding pair (a, d).

The PMS’ scheme remains anonymous, as the additional indices in S do not leak any information about the corre-
sponding identities of users G. The PMS’ scheme clearly does not provide unlinkability since the indices of users are
linkable across different published attributes within the profile. O
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6 Taking the Model to Reality

In the following, we will provide a short idea of how the presented constructions of profile management schemes behave
in settings of different online social networks. Therefore, we first recall and adjust the general key overhead of both
presented schemes and subsequently discuss the overhead in specific settings.

6.1 Key Overhead in general

Recalling the complexity analyses of PMS-SK in Section 4.2 and PMS-BE in Section 5.2, each user has to store N - |P| keys
in the PMS-SK construction, whereas in the PMS-BE construction, each user has to store N + |P| + 1 keys (N being the
total number of users and |P| the number of attributes stored in each profile), assuming the worst case, where each user
stores |P| attributes in her profile and allows every other user in the system to access all attributes.

Obviously, this worst case is very unlikely in real settings. Both constructions however behave quite similar in a setting
where each user has on average n contacts and shares on average |P| attributes with all of them:

* PMS-SK requires each profile owner to store one key per attribute currently published in her profile and each user
to store one (retrieval) key per attribute she is allowed to access in any profile. We thus have |P| keys of the own
profile and |P| keys for each of the n contacts, so each user has to store (n+ 1) - |P| keys.

* PMS-BE requires each user to store one key per attribute currently published in her profile and the key pair
(PK,SK). Additionally, one (retrieval) key for each profile containing at least one attribute a user is allowed to
access has to be stored by this user. Thus, each user has to store n + |P| + 2 keys in this scheme.

Figure 6.1 shows the number of keys each user has to store in both constructions, depending on n and |P|. The
number of keys in PMS-SK exceeds the number of keys in PMS-BEif N > 1 or P > 1 and (n, |P|) # (2,2). Although this is
obviously the case in most applications, it is an interesting question how both constructions perform in different settings
of common online social networks.

When analyzing the key overhead of both constructions, it has to be kept in mind that the smaller number of keys that
have to be stored in PMS-BE comes at the cost of a lower privacy, as discussed in Section 5.
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Figure 6.1: Plots of the number of keys each user has to store in PMS-SK respectively PMS-BE, depending on the average
number of contacts n and the average number of attributes per profile |P|.
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6.2 Key Overhead in real-world Settings

We will now discuss the key overhead of both proposed profile management schemes in real-world online social networks
of different kind, namely Facebook!, Twitter?, XING®, and Flickr®.

6.2.1 Facebook

Being a very general platform for social networking, Facebook users share data with a quite high amount of contacts.
Facebook’s own statistics® state an average of 130 contacts per user, Golder et al. [12] found a mean of about 180
contacts per user in their analysis. According to Facebook’s statistics, about 500 million active users share more than 30
billion pieces of content (e.g., web links, blog posts, photo albums, etc.) each month. Assuming a rather short lifetime
of only three month per item, each user stores on average about 180 pieces of content, which would be attributes in our
profile management scheme.

Obviously, the key overhead is much lower when applying PMS-BE to Facebook: Assuming an average of 150 contacts
and 180 attributes, 332 keys have to be stored by each user in this scheme in contrast to over 27,000 keys in PMS-SK.
Taking a key length of 192 bits for a symmetric or broadcast encryption key as a basis, this results in a storage overhead
of about 8 Kilobytes (for PMS-BE) compared to about 650 Kilobytes (for PMS-SK).

6.2.2 Twitter

In contrast to Facebook, users of the microblogging service Twitter have on average approximately 50 contacts (“follow-
ers”) and publish about 60 attributes (“tweets”) per month.® Assuming again an attribute lifetime of three months, the
number of stored keys per user is 232 in PMS-BE and over 9,000 in PMS-SK, resulting in about 6 Kilobytes respectively
220 Kilobytes storage overhead.

6.2.3 XING

XING is an online social network with currently over 10 million members’ that focuses business contacts. It comes
along with a set of 36 default attributes that is extended by on average 13.4 attributes individual for each user [23].
Furthermore, each user has on average 168 contacts. Thus, the overhead imposed by PMS-BE is about 220 keys (5
Kilobytes) and the one imposed by PMS-SK is about 8350 keys (200 Kilobytes).

6.2.4 Flickr

Flickr, an online community for image and video hosting, has a very low average of only 12 contacts (“friends”) per
user according to a study of Mislove et al. [20] in 2007. Assuming the limit of 200 images for a Free Account® as
average number of attributes per profile, the number of keys each Flickr user has to store would be 214 in the PMS-BE
construction and 2600 in PMS-SK, which yields a storage overhead of about 5 Kilobytes respectively 62 Kilobytes.

6.3 Discussion

As already shown in the analysis of both constructions, they differ notably in the complexity of the imposed overhead:
Whilst PMS-SK requires about n - |P| keys to be stored by each user, PMS-BE reduces this to about n +|P|. However, since
n and |P| are relatively small values — at least concerning the online social networks we examined in this section —, the
absolute difference between the storage overhead of both approaches is not very high. Although they differ relatively by
a factor of 10 to 100, the absolute storage overhead is always below 1 Megabyte.

http://www.facebook.com, October 2010

http://twitter.com, October 2010

http://www.xing.com, October 2010

http://www.flickr.com, October 2010

http://www.facebook.com/press/info.php?statistics, October 2010
http://www.website-monitoring.com/blog/2010/05/04/twitter-facts-and-figures-history-statistics/, October 2010
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572/0d089bab50da33acf74565b3eb5711c0/, October 2010
8 http://www.flickr.com/help/limits/, October 2010
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Thus, the two constructions allow for a trade-off between minimization of the storage overhead and maximization
of privacy (as PMS-BE only provides anonymity, but not unlinkability). Applied to large profiles that may occuy, e.g.,
in Facebook, the difference in storage overhead however increases rapidly. A user profile with 300 contacts® and 2,000
attributes leads to a key overhead of about 15 Megabytes in PMS-SK compared to 55 Kilobytes in PMS-BE.

An interesting question remaining for future work is how concrete implementations of both schemes behave both
regarding the imposed storage overhead and especially the overhead in computation. The latter may be influenced
heavily by the distribution of retrieval keys to the users allowed to access some attribute, which, based on the underlying
encryption scheme, is significantly more complex in PMS-SK than in PMS-BE.

9 More than 10% of the Facebook users have more than 300 contacts according to Gjoka et al. [11].
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7 Conclusion and Outlook

Privacy preserving publication of personal data in user profiles is a valuable building block that can be used to boot-
strap various collaborative and social data sharing applications. So far, security and privacy of user profiles have been
addressed in a rather informal way, resulting in several proprietary implementations with unclear requirements.

In this work, we gave a rigorous security model for private user profiles, capturing the confidentiality of profile data
and privacy of users that are allowed to retrieve this data. Our model allows for the construction of private profile
management schemes, independently of the social application that will use them. It aims at local schemes, which can be
used both in centralized and distributed environments.

Furthermore, we gave two concrete constructions of profile management schemes, one using symmetric and the other
using broadcast encryption techniques. Our analysis showed that these constructions differ in the privacy guarantees
they provide. While one offers strong privacy with the notion of unlinkability, the other represents a trade-off for better
efficiency and key management, yet consequently offers only anonymity of the users.

Beyond that, we provided an insight into how the proposed schemes may behave in real-world settings, analyzing and
discussing the imposed overhead. Interestingly, even though the broadcast encryption approach performs better in orders
of magnitude, the absolute storage overhead of both schemes is quite low in multiple average settings.

An interesting open question remaining from this work is, whether unlinkability of users being authorized to access
different attributes within a profile can be achieved with a sub-linear overhead.
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