
Modeling Advanced Security Aspects of
Key Exchange and Secure Channel Protocols

Vom Fachbereich Informatik der
Technischen Universität Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doctor rerum naturalium (Dr. rer. nat.)

von

Felix Günther, M.Sc. M.Sc.
geboren in Heppenheim

Referenten: Prof. Dr. Marc Fischlin
Prof. Dr. Kenneth G. Paterson

Tag der Einreichung: 12. Dezember 2017
Tag der mündlichen Prüfung: 6. Februar 2018

Darmstadt, 2018
D 17

Dieses Dokument wird bereitgestellt von tuprints, E-Publishing-Service der TU Darmstadt.
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-71621
URL: http://tuprints.ulb.tu-darmstadt.de/id/eprint/7162

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Attribution – NonCommercial – NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
http://creativecommons.org/licenses/by-nc-nd/4.0/

http://tuprints.ulb.tu-darmstadt.de
mailto:tuprints@ulb.tu-darmstadt.de
urn:nbn:de:tuda-tuprints-71621
http://tuprints.ulb.tu-darmstadt.de/id/eprint/7162
http://creativecommons.org/licenses/by-nc-nd/4.0/

Erklärung

Hiermit erkläre ich, dass ich die vorliegende Arbeit – abgesehen von den in ihr ausdrücklich
genannten Hilfen – selbständig verfasst habe.

Wissenschaftlicher Werdegang

Oktober 2007 – November 2010

Studium der Informatik an der Technischen Universität Darmstadt,
Bachelor of Science, Note: mit Auszeichnung.

November 2010 – März 2013

Studium der Informatik an der Technischen Universität Darmstadt,
Master of Science, Note: mit Auszeichnung.

November 2010 – März 2013

Studium der Informatik - IT Security an der Technischen Universität Darmstadt,
Master of Science, Note: mit Auszeichnung.

seit Juni 2013

Doktorand der Informatik an der Technischen Universität Darmstadt.

iii

List of Publications

Journal Articles

[1] Felix Günther and Bertram Poettering. Linkable Message Tagging: Solving the Key
Distribution Problem of Signature Schemes. International Journal of Information Security
(IJIS), 16(3):281–297, 2017. Also available as Cryptology ePrint Archive Report 2014/014,
https://eprint.iacr.org/2014/014.

[2] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Günther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID:
a cryptographic analysis of an ISO-standards-track authentication protocol. International
Journal of Information Security (IJIS), 15(6):637–657, 2016. Also available as Cryptology
ePrint Archive Report 2014/728, https://eprint.iacr.org/2014/728.

Papers in Conferences and Workshops with Proceedings

[3] Stefan Krüger, Sarah Nadi, Michael Reif, Karim Ali, Mira Mezini, Eric Bodden, Florian
Göpfert, Felix Günther, Christian Weinert, Daniel Demmler, and Ram Kamath. Cog-
niCrypt: Supporting Developers in using Cryptography. In 32nd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2017), pages 931–936. IEEE Press,
October 2017.

[4] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-ODH:
Relations, Instantiations, and Impossibility Results. In 37th International Cryptology
Conference (CRYPTO 2017, Part III), volume 10403 of Lecture Notes in Computer Science,
pages 651–681. Springer, August 2017. Also available as Cryptology ePrint Archive Report
2017/517, https://eprint.iacr.org/2017/517.

[5] Felix Günther and Sogol Mazaheri. A Formal Treatment of Multi-key Channels. In 37th
International Cryptology Conference (CRYPTO 2017, Part III), volume 10403 of Lecture
Notes in Computer Science, pages 587–618. Springer, August 2017. Also available as
Cryptology ePrint Archive Report 2017/501, https://eprint.iacr.org/2017/501. Part
of this thesis.

[6] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT Key Exchange with
Full Forward Secrecy. In 36th International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT 2017, Part III), volume 10212 of Lecture Notes
in Computer Science, pages 519–548. Springer, April 2017. Also available as Cryptology
ePrint Archive Report 2017/223, https://eprint.iacr.org/2017/223.

[7] Marc Fischlin and Felix Günther. Replay Attacks on Zero Round-Trip Time: The Case of
the TLS 1.3 Handshake Candidates. In 2nd IEEE European Symposium on Security and
Privacy (EuroS&P 2017), pages 60–75. IEEE, April 2017. Also available as Cryptology

v

https://eprint.iacr.org/2014/014
https://eprint.iacr.org/2014/728
https://eprint.iacr.org/2017/517
https://eprint.iacr.org/2017/501
https://eprint.iacr.org/2017/223

List of Publications

ePrint Archive Report 2017/082, https://eprint.iacr.org/2017/082. Part of this
thesis.

[8] Benjamin Dowling, Felix Günther, Udyani Herath, and Douglas Stebila. Secure Logging
Schemes and Certificate Transparency. In 21st European Symposium on Research in
Computer Security (ESORICS 2016), volume 9879 of Lecture Notes in Computer Science,
pages 140–158. Springer, September 2016. Also available as Cryptology ePrint Archive
Report 2016/452, https://eprint.iacr.org/2016/452.

[9] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key Confirmation
in Key Exchange: A Formal Treatment and Implications for TLS 1.3. In 37th IEEE
Symposium on Security and Privacy (S&P 2016), pages 452–469. IEEE, May 2016. Part
of this thesis.

[10] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A Cryptographic
Analysis of the TLS 1.3 Handshake Protocol Candidates. In 22nd ACM Conference on
Computer and Communications Security (CCS 2015), pages 1197–1210. ACM, October
2015. Also available as Cryptology ePrint Archive Report 2015/914, https://eprint.
iacr.org/2015/914. Part of this thesis.

[11] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data Is
a Stream: Security of Stream-Based Channels. In 35th International Cryptology Conference
(CRYPTO 2015, Part II), volume 9216 of Lecture Notes in Computer Science, pages 545–
564. Springer, August 2015. Also available as Cryptology ePrint Archive Report 2017/1191,
https://eprint.iacr.org/2017/1191. Part of this thesis.

[12] Felix Günther and Bertram Poettering. Linkable Message Tagging: Solving the Key
Distribution Problem of Signature Schemes. In 20th Australasian Conference on Information
Security and Privacy (ACISP 2015), volume 9144 of Lecture Notes in Computer Science,
pages 195–212. Springer, June 2015. Best student paper. Also available as Cryptology ePrint
Archive Report 2014/014, https://eprint.iacr.org/2014/014.

[13] Jean Paul Degabriele, Victoria Fehr, Marc Fischlin, Tommaso Gagliardoni, Felix Günther,
Giorgia Azzurra Marson, Arno Mittelbach, and Kenneth G. Paterson. Unpicking PLAID
– A Cryptographic Analysis of an ISO-standards-track Authentication Protocol. In 1st
International Conference on Research in Security Standardisation (SSR 2014), volume 8893
of Lecture Notes in Computer Science, pages 1–25. Springer, December 2014. Also available
as Cryptology ePrint Archive Report 2014/728, https://eprint.iacr.org/2014/728.

[14] Marc Fischlin and Felix Günther. Multi-Stage Key Exchange and the Case of Google’s
QUIC Protocol. In 21st ACM Conference on Computer and Communications Security
(CCS 2014), pages 1193–1204. ACM, November 2014. Part of this thesis.

[15] Felix Günther, Mark Manulis, and Andreas Peter. Privacy-Enhanced Participatory Sensing
with Collusion Resistance and Data Aggregation. In 13th International Conference on
Cryptology and Network Security (CANS 2014), volume 8813 of Lecture Notes in Computer
Science, pages 321–336. Springer, October 2014. Also available as Cryptology ePrint Archive
Report 2014/382, https://eprint.iacr.org/2014/382.

[16] Nils Fleischhacker, Felix Günther, Franziskus Kiefer, Mark Manulis, and Bertram Poetter-
ing. Pseudorandom Signatures. In 8th ACM Symposium on Information, Computer and
Communications Security (ASIACCS 2013), pages 107–118. ACM, May 2013. Also available
as Cryptology ePrint Archive Report 2011/673, https://eprint.iacr.org/2011/673.

vi

https://eprint.iacr.org/2017/082
https://eprint.iacr.org/2016/452
https://eprint.iacr.org/2015/914
https://eprint.iacr.org/2015/914
https://eprint.iacr.org/2017/1191
https://eprint.iacr.org/2014/014
https://eprint.iacr.org/2014/728
https://eprint.iacr.org/2014/382
https://eprint.iacr.org/2011/673

List of Publications

[17] Felix Günther, Mark Manulis, and Thorsten Strufe. Key Management in Distributed Online
Social Networks. In 12th IEEE International Symposium on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM 2011) / D-SPAN Workshop, pages 1–7. IEEE, June
2011.

[18] Felix Günther, Mark Manulis, and Thorsten Strufe. Cryptographic Treatment of Private
User Profiles. In 15th International Conference on Financial Cryptography and Data
Security (FC 2011) / RLCPS Workshop, volume 7126 of Lecture Notes in Computer
Science, pages 40–54. Springer, March 2011. Also available as Cryptology ePrint Archive
Report 2011/064, https://eprint.iacr.org/2011/064.

Papers in Workshops without Proceedings

[19] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A Cryptographic
Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol. Cryptology
ePrint Archive, Report 2016/081, January 2016. https://eprint.iacr.org/2016/081.
Presented at the TRON (TLS1.3 – Ready or Not?) Workshop / NDSS 2016. Part of this
thesis.

[20] Pierre-Louis Cayrel, Sidi Mohamed El Yousfi Alaoui, Felix Günther, Gerhard Hoffmann,
and Holger Rother. Efficient Implementation of Code-Based Identification Schemes. Tech-
nical Report. Presented at the Western European Workshop on Research in Cryptology
(WEWoRC 2011), July 2011.

Surveys

[21] Mark Manulis, Nils Fleischhacker, Felix Günther, Franziskus Kiefer, and Bertram Poettering.
Group Signatures: Authentication with Privacy. 2012. Survey for the BSI (German Federal
Office for Information Security).

Non-Refereed Articles / Articles in Submission

[22] Jacqueline Brendel, Marc Fischlin, and Felix Günther. Breakdown Resilience of Key
Exchange Protocols and the Cases of NewHope and TLS 1.3. Cryptology ePrint Archive,
Report 2017/1252, December 2017. https://eprint.iacr.org/2017/1252.

[23] Matthias Geihs, Oleg Nikiforov, Denise Demirel, Alexander Sauer, Denis Butin, Felix
Günther, Gernot Alber, Thomas Walther, and Johannes Buchmann. The Status of
Quantum-Based Long-Term Secure Communication over the Internet. 2017.

[24] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data Is a
Stream: Security of Stream-Based Channels. Cryptology ePrint Archive, Report 2017/1191,
December 2017. https://eprint.iacr.org/2017/1191. Part of this thesis.

vii

https://eprint.iacr.org/2011/064
https://eprint.iacr.org/2016/081
https://eprint.iacr.org/2017/1252
https://eprint.iacr.org/2017/1191

Acknowledgments

Pursuing a Ph.D. is an exciting journey and its success and enjoyment depends on many more
people than just the candidate itself. Here, I do want to thank those who made my personal
Ph.D. journey possible, successful, and enjoyable.

First and foremost, I am deeply grateful for having Marc Fischlin as my Ph.D. advisor. Marc
made it possible that I could join his extraordinary Cryptoplexity research group in Darmstadt,
enabling my Ph.D. in the first place. He proved to be an outstanding advisor, both on academic
and non-academic matters, and I owe a huge share of what I learned and how I developed
during my Ph.D. to him. Working and discussing with Marc, especially one-on-one but also
when collaborating with others, was always a great pleasure and his way of challenging results
taught me a great deal about the craft of research. Thank you Marc for this opportunity, your
trust and support, and for always having an open door and ear for me and my questions.

Joining the Cryptoplexity group was one of the best experiences I could make for my Ph.D.
I felt welcome even before my first official day in the group, and since then I have enjoyed being
part of an exceptional group of colleagues and friends in and beyond Darmstadt. Thank you,
Paul Baecher, Jacqueline Brendel, Chris Brzuska, Özgür Dagdelen, Jean Paul Degabriele, Daniel
Demmler, Pooya Farshim, Victoria Fehr, Tommaso Gagliardoni, Patrick Harasser, Christian
Janson, Nikolaos Karvelas, Giorgia Azzurra Marson, Sogol Mazaheri, Heike Meissner, Arno
Mittelbach, Cristina Onete, Andreas Peter, Bertram Poettering, and Andrea Püchner. Among
these, special thanks go to my office mates, namely to Paul for sharing your insights into
processes as well as your passion for style and TikZ, to Giorgia for all the intense research and,
more importantly, non-research discussions we had, for traveling with me around the world on
truly unforgettable trips, and for being a great friend, and to Christian for many enjoyable chats
and your unending support and assurance especially during the last months.

I was fortunate to be able to travel a lot during my Ph.D. and to have the chance of joining
a number of groups for shorter and longer research visits. I want to particularly thank Kenny
Paterson for being able to visit Royal Holloway in January 2015 together with Giorgia, the
focused time he offered back then and the sincere mentoring he has provided me with ever since.
Being able to visit QUT in Brisbane in June/July 2015 was an exceptional chance and a great
experience that I enjoyed very much and for which I am grateful to Douglas Stebila who has
been a wonderful host and mentor. Finally, I want to thank Mihir Bellare for the opportunity
to visit UCSD in March 2017, experience San Diego, and enjoy intense research discussions with
him.

In the collaboration with others I found research to be most inspiring and enjoyable, and I
am thankful for the opportunity to work on many different ideas and topics with great colleagues.
Among them, I want to specifically thank Mark Manulis, Andreas Peter, Bertram Poettering,
and Thorsten Strufe for giving me the chance to experience research already early in my B.Sc.
and M.Sc. studies, and additionally Jacqueline Brendel, Benjamin Dowling, Marc Fischlin,
Tibor Jager, Christian Janson, Giorgia Azzurra Marson, Sogol Mazaheri, Arno Mittelbach,
Kenny Paterson, and Douglas Stebila for particularly enlightening, inspiring, and engaging
collaborations during my Ph.D.

ix

Acknowledgments

I thank Kenny Paterson for agreeing to co-review my thesis and Johannes Buchmann,
Matthias Hollick, and Felix Wolf for joining my defense committee.

Staying connected with a great network of friends at home in Bickenbach and beyond
provided me with invaluable support and helped reminding me of the important, non-academic
matters in life. I am particularly grateful for numerous friends in the YMCA, enabling and
sharing my belief and source of strength and forming a team I am proud to be part of. Among
them, special thanks go to Beate and Peter for being great friends and the best outfitters you
could wish for, and for hosting me at any times, good or bad. I thank Benedict and Benjamin
for our long-standing friendship, curious discussions, and relaxing evenings, Florian for reviving
our deep understanding, his care, and the great fun of visiting each other on trips, and Malte for
uncountable hours of discussions and most valuable chats, for care and support, and together
with Delila and now also Timea for providing me with a space for vacation and rest.

Last, but undoubtedly not least, I am most deeply thankful for the support and love of my
family, they ultimately enabled all that I am and so I dedicate this work to them. Among all of
them, I particularly thank Jule for all her support throughout, Tabea for noticing me and being
there for me, my brother Oliver for being my companion ever since I can remember, and my
parents for loving me for who I am. You are the greatest gift in my life.

Felix Günther
Bickenbach, February 2018

x

My Contribution

Research is, after all, a joint effort in striving for new knowledge, and so are research projects
more often than not collaborative work in which colleagues join their intellectual forces. The
way the results in this thesis evolved is not different in that regard, and I am grateful that I
had the opportunity to work on these results with many great colleagues—thank you Benjamin
Dowling, Marc Fischlin, Giorgia Azzurra Marson, Sogol Mazaheri, Kenny Paterson, Benedikt
Schmidt, Douglas Stebila, and Bogdan Warinschi.

When the work on a research project is highly collaborative, breaking down and associating
particular components of the resulting research paper to individual contributors becomes almost
impossible. In the work forming the basis of this thesis, all authors contributed to discussing and
formalizing ideas, debating results, and editing their presentation throughout the whole process
and resulting paper. This thesis integrates the results from original publications as indicated
in the preceding list of publications and listed below in revised, yet often verbatim form, and
hence carries joint and sometimes practically indivisible contributions. For the purpose of this
thesis, I nevertheless in the following give—where possible—an account of what was specifically
my contribution to the results presented in this thesis.

Chapter 4 integrates joint work with Benjamin Dowling, Marc Fischlin, and Douglas
Stebila [14, 10, 19, 7].1 Marc and I [14] jointly devised the core multi-stage key exchange
(MSKE) model (in Sections 4.2–4.5) for the analysis of the QUIC protocol (cf. Chapter 5), with
me particularly contributing its formalization and the notions of leveled forward secrecy and
key independence. I furthermore contributed the compositional result (in Section 4.6). Ben,
Marc, Douglas, and I [10, 19] later augmented the MSKE model for our analyses of the TLS 1.3
Diffie–Hellman and pre-shared key handshake modes (cf. Chapter 6). Here, I contributed to the
public-key variant and to added technical aspects like concurrent authentication, post-specified
peers, or contributive identifiers, while Ben focused on the pre-shared secret variant (MS-PSKE).
Finally, Marc and I [7] further extended the MSKE model (resulting in the version presented
in this thesis) for our analysis of the TLS 1.3 0-RTT handshakes (cf. Chapter 7), where I
contributed formalizing the effects of replays in the model.

Chapter 5 is based on a joint work with Marc Fischlin [14]. Both Marc and I discussed the
functionality and high-level security achieved by the QUIC protocol (in Sections 5.2 and 5.3),
which I revised for this thesis in the notation of the MSKE model used here. While Marc
focused on the Multi-Stage security proof for QUIC, I contributed the Match analysis and the
key-independent variant of the QUIC protocol.

Chapter 6 is composed of joint work with Benjamin Dowling, Marc Fischlin, and Douglas
Stebila [10, 19]. We all contributed to the functional description of and comments on the TLS 1.3
draft handshakes (in Sections 6.2, 6.4, and 6.7). Ben then focused on the security analysis of the
pre-shared key handshake (in Section 6.5) while I focused on the analysis of the full/(EC)DHE
handshake and composition (in Sections 6.3 and 6.6).

1References in this chapter refer to my list of publications given on pages v ff.

xi

My Contribution

Chapter 7 is based on a joint work with Marc Fischlin [7] with the results presented in this
chapter being my contribution.

Chapter 8 is based on a joint work with Marc Fischlin, Benedikt Schmidt, and Bogdan
Warinschi [9]. The notions we establish for full and almost-full key confirmation emerged from
discussions among all of us, with me particularly contributing to the concept of key-confirmation
identifiers (and their binding) and to studying their relationship (in Section 8.2). I furthermore
contributed the analysis of key confirmation in TLS 1.3 (in Section 8.3).

Chapters 10 and 11 are based on joint work with Marc Fischlin, Giorgia Azzurra Marson, and
Kenny Paterson [11, 24]. I put forward the ideas to study the streaming behavior of channels on
both the sender and receiver end (underlying Chapter 10) and of applications aiming to transport
atomic messages over a streaming channel (underlying Chapter 11). In Chapter 10, Giorgia
and I developed the functional specification and the security properties of confidentiality and
integrity of such stream-based channels (in Section 10.2 and 10.3). Giorgia then focused on the
relations among the security notions put forward, in particular proving the adapted composition
result (in Section 10.3.3). My contribution instead comprises the generic construction of a
stream-based channel from AEAD along with its security analysis and comparison with the TLS
protocol design (in Section 10.4). In Chapter 11, both Giorgia and I again devised the functional
and security definitions for atomic-message channels supporting fragmentation (in Sections 11.2
and 11.3). I then specifically contributed the generic “encode-then-stream” construction and
comparative discussion with application’s behavior in practice (in Sections 11.1 and 11.4), while
Giorgia and I jointly analyzed the construction’s security (in Section 11.5).

Chapter 12 is based on a joint work with Sogol Mazaheri [5]. I proposed the idea to study
the security of channels deploying a sequence of keys to achieve advanced security properties.
Sogol then defined the syntax of such multi-key channels (in Section 12.2) and we jointly devised
the framework of security notions capturing confidentiality and integrity with advanced security
properties (in Section 12.3). Sogol furthermore established the compositional result while I
studied the relations among the security notions we establish (both in Section 12.3.3) as well as
proposed and analyzed the generic construction of a multi-key channel including the comparative
discussion with TLS 1.3 (in Section 12.4).

xii

Abstract

Secure communication has become an essential ingredient of our daily life. Mostly unnoticed,
cryptography is protecting our interactions today when we read emails or do banking over the
Internet, withdraw cash at an ATM, or chat with friends on our smartphone. Security in such
communication is enabled through two components. First, two parties that wish to communicate
securely engage in a key exchange protocol in order to establish a shared secret key known only
to them. The established key is then used in a follow-up secure channel protocol in order to
protect the actual data communicated against eavesdropping or malicious modification on the
way.

In modern cryptography, security is formalized through abstract mathematical security
models which describe the considered class of attacks a cryptographic system is supposed to
withstand. Such models enable formal reasoning that no attacker can, in reasonable time, break
the security of a system assuming the security of its underlying building blocks or that certain
mathematical problems are hard to solve. Given that the assumptions made are valid, security
proofs in that sense hence rule out a certain class of attackers with well-defined capabilities. In
order for such results to be meaningful for the actually deployed cryptographic systems, it is
of utmost importance that security models capture the system’s behavior and threats faced in
that ‘real world’ as accurately as possible, yet not be overly demanding in order to still allow
for efficient constructions. If a security model fails to capture a realistic attack in practice, such
an attack remains viable on a cryptographic system despite a proof of security in that model, at
worst voiding the system’s overall practical security.

In this thesis, we reconsider the established security models for key exchange and secure
channel protocols. To this end, we study novel and advanced security aspects that have been
introduced in recent designs of some of the most important security protocols deployed, or that
escaped a formal treatment so far. We introduce enhanced security models in order to capture
these advanced aspects and apply them to analyze the security of major practical key exchange
and secure channel protocols, either directly or through comparatively close generic protocol
designs.

Key exchange protocols have so far always been understood as establishing a single secret
key, and then terminating their operation. This changed in recent practical designs, specifically
of Google’s QUIC (“Quick UDP Internet Connections”) protocol and the upcoming version 1.3
of the Transport Layer Security (TLS) protocol, the latter being the de-facto standard for
security protocols. Both protocols derive multiple keys in what we formalize in this thesis as
a multi-stage key exchange (MSKE) protocol, with the derived keys potentially depending on
each other and differing in cryptographic strength. Our MSKE security model allows us to
capture such dependencies and differences between all keys established in a single framework.
In this thesis, we apply our model to assess the security of both the QUIC and the TLS 1.3 key
exchange design. For QUIC, we are able to confirm the intended overall security but at the same
time highlight an undesirable dependency between the two keys QUIC derives. For TLS 1.3, we
begin by analyzing the main key exchange mode as well as a reduced resumption mode. Our
analysis attests that TLS 1.3 achieves strong security for all keys derived without undesired

xiii

Abstract

dependencies, in particular confirming several of this new TLS version’s design goals. We then
also compare the QUIC and TLS 1.3 designs with respect to a novel ‘zero round-trip time’ key
exchange mode establishing an initial key with minimal latency, studying how differences in
these designs affect the achievable key exchange security. As this thesis’ last contribution in the
realm of key exchange, we formalize the notion of key confirmation which ensures one party in a
key exchange execution that the other party indeed holds the same key. Despite being frequently
mentioned in practical protocol specifications, key confirmation was never comprehensively
treated so far. In particular, our formalization exposes an inherent, slight difference in the
confirmation guarantees both communication partners can obtain and enables us to analyze the
key confirmation properties of TLS 1.3.

Secure channels have so far been modeled as protecting a sequence of distinct messages
using a single secret key. Our first contribution in the realm of channels originates from
the observation that, in practice, secure channel protocols like TLS actually do not allow an
application to transmit distinct, or atomic, messages. Instead, they provide applications with a
streaming interface to transmit a stream of bits without any inherent demarcation of individual
messages. Necessarily, the security guarantees of such an interface differ significantly from
those considered in cryptographic models so far. In particular, messages may be fragmented in
transport, and the recipient may obtain the sent stream in a different fragmentation, which has
in the past led to confusion and practical attacks on major application protocol implementations.
In this thesis, we formalize such stream-based channels and introduce corresponding security
notions of confidentiality and integrity capturing the inherently increased complexity. We then
present a generic construction of a stream-based channel based on authenticated encryption
with associated data (AEAD) that achieves the strongest security notions in our model and
serves as validation of the similar TLS channel design. We also study the security of such
applications whose messages are inherently atomic and which need to safely transport these
messages over a streaming, i.e., possibly fragmenting, channel. Formalizing the desired security
properties in terms of confidentiality and integrity in such a setting, we investigate and confirm
the security of the widely adopted approach to encode the application’s messages into the
continuous data stream. Finally, we study a novel paradigm employed in the TLS 1.3 channel
design, namely to update the keys used to secure a channel during that channel’s lifetime in order
to strengthen its security. We propose and formalize the notion of multi-key channels deploying
such sequences of keys and capture their advanced security properties in a hierarchical framework
of confidentiality and integrity notions. We show that our hierarchy of notions naturally connects
to the established notions for single-key channels and instantiate its strongest security notions
with a generic AEAD-based construction. Being comparatively close to the TLS 1.3 channel
protocol, our construction furthermore enables a comparative design discussion.

xiv

Zusammenfassung

Sichere Kommunikation ist zu einem essentiellen Bestandteil unseres täglichen Lebens geworden.
Weitgehend unbemerkt schützt Kryptographie heute unsere Interaktionen, beispielsweise beim
Abrufen von E-Mails oder Online-Banking über das Internet, beim Abheben von Bargeld am
Geldautomaten oder beim Chatten mit Freunden auf dem Smartphone. Sicherheit in solcher
Kommunikation wird durch zwei Komponenten gewährleistet. Zwei Parteien, die sicher kommu-
nizieren wollen, handeln zunächst in einem Schlüsselaustausch-Protokoll einen gemeinsamen
geheimen Schlüssel aus. Dieser Schlüssel kann dann im sich anschließenden sicheren Kanal-
Protokoll verwendet werden, um die eigentlichen zu kommunizierenden Daten gegen Abhören
und bösartige Modifikation während des Transports zu schützen.

In der modernen Kryptographie wird Sicherheit durch abstrakte, mathematische Sicher-
heitsmodelle definiert, die die betrachtete Klasse von Angriffen beschreiben, gegen die ein
bestimmtes kryptographisches System Schutz bieten soll. Solche Modelle ermöglichen eine
formale Argumentation, dass kein Angreifer in vernünftiger Zeit die Sicherheit eines Systems
brechen kann, unter der Annahme, dass gewisse zugrundeliegende Komponenten sicher oder
bestimmte mathematische Probleme schwierig zu lösen sind. Die Gültigkeit der getroffenen
Annahmen vorausgesetzt, schließen Sicherheitsbeweise in diesem Sinn bestimmte Klassen von
Angreifern mit wohldefinierten Fähigkeiten aus. Damit entsprechende Resultate auf tatsächlich
eingesetzte kryptographische Systeme übertragbar sind, ist es von äußerster Wichtigkeit, dass
Sicherheitsmodelle das Verhalten der Systeme und ihre Bedrohungen in der ‘realen Welt’ so
akkurat wie möglich abbilden, jedoch gleichzeitig nicht unnötig fordernd sind, um weiterhin die
Konstruktion effizienter Systeme zu erlauben. Scheitert ein Sicherheitsmodell darin, einen in
der Praxis realistischen Angriff abzubilden, so bleibt ein solcher Angriff selbst für ein in diesem
Modell bewiesen sicheres kryptographisches System eine reale Bedrohung, die im schlimmsten
Fall die gesamte Sicherheit des Systems zunichte macht.

In dieser Arbeit ergänzen wir die etablierten Sicherheitsmodelle für Schlüsselaustausch und
sichere Kanäle, um fortgeschrittene Sicherheitsaspekte abzudecken, die bislang nicht berücksich-
tigt oder in neueren Konstruktionen wichtiger praktischer Sicherheitsprotokolle ergänzt wurden.
Wir wenden unsere erweiterten Sicherheitsmodelle darüber hinaus an, um die Sicherheit weit
verbreiteter Kommunikationsprotokolle direkt oder mittels ähnlicher generischer Konstruktionen
zu analysieren.

Nach bisherigem Verständnis etablieren Schlüsselaustausch-Protokolle einen einzigen Schlüs-
sel und sind dann beendet. In neueren Konstruktionen, insbesondere dem QUIC („Quick UDP
Internet Connections“) Protokoll von Google und der anstehenden Version 1.3 des Transport
Layer Security (TLS) Protokolls, hat sich dieses Paradigma allerdings geändert. Beide Protokolle
leiten mehrere Schlüssel in einem in dieser Arbeit als mehrstufiger Schlüsselaustausch (MSKE)
formalisierten Protokoll ab, wobei die Schlüssel potentiell voneinander abhängig sind und sich in
ihrer Stärke unterscheiden. Unsere Arbeit erlaubt es, die Abhängigkeiten und Unterschiede aller
dieser Schlüssel in einem einzigen Sicherheitsmodell abzubilden und darin die Sicherheit von
QUIC und TLS 1.3 zu analysieren. Für QUIC können wir dabei die erwünschte Gesamtsicherheit
bestätigen und gleichzeitig eine unnötige Abhängigkeit zwischen Schlüsseln aufzeigen. Für

xv

Zusammenfassung

TLS 1.3 analysieren wir zunächst den Haupt-Schlüsselaustausch und einen verkürzten Modus,
für die wir starke Sicherheitseigenschaften für alle Schlüssel ohne unnötige Abhängigkeiten
bestätigen können, in Übereinstimmung mit im Entwurfsprozess von TLS gesetzten Zielen. Wir
vergleichen darüber hinaus den Schlüsselaustausch in QUIC und in TLS 1.3 bezüglich eines neuen
‘zero round-trip time’ Modus zur Vereinbarung eines Schlüssels mit minimaler Latenzzeit und
studieren, wie sich Unterschiede zwischen den beiden Entwürfen auf die erreichbare Sicherheit
auswirken. Als letzten Beitrag im Bereich Schlüsselaustausch formalisieren wir schließlich eine
bislang nicht umfassend formalisierte Schlüsselbestätigungseigenschaft, durch die Verfahren
den Kommunikationspartnern die tatsächliche beidseitige Ableitung des Schlüssels zusichern.
Unsere Formalisierung verdeutlicht dabei, dass die erreichbare Eigenschaft sich für die beiden
Parteien leicht unterscheidet, und erlaubt es uns, die Sicherheit von TLS 1.3 in diesem Bezug zu
analysieren.

Die Modellierung sicherer Kanäle hat bislang nur die Absicherung von Sequenzen unteilbarer
(atomarer) Nachrichten unter einem einzigen Schlüssel berücksichtigt. Unser erster Beitrag zu
Kanälen beruht auf der Beobachtung, dass Kanäle in der Praxis nicht den Transport atomarer
Nachrichten, sondern nur das Senden von Datenströmen ohne Kennzeichnung individueller
Nachrichten ermöglichen. Notwendigerweise unterscheiden sich dadurch auch die Sicherheitsei-
genschaften dieser Kanäle von den in bisherigen Modellen definierten, wobei insbesondere die
mögliche Fragmentierung von Nachrichten in der Vergangenheit zu Verwirrungen und realen
Angriffen auf wichtige Implementierungen von Kanälen geführt hat. In dieser Arbeit formalisieren
wir solche strombasierten Kanäle und bilden deren inhärent höhere Komplexität in entsprechend
angepassten Sicherheitsdefinitionen für Vertraulichkeit und Integrität ab. Wir geben dann eine
generische Konstruktion auf Basis von authentisierter Verschlüsselung mit assoziierten Daten
(AEAD) an, die starke Sicherheit erreicht und das Konstruktionsprinzip in TLS bestätigt. Des
Weiteren studieren wir die Sicherheit von Anwendungen, die inhärent atomare Nachrichten
sicher über einen strombasierten Kanal senden wollen. Auf Basis unserer Formalisierung dieses
Sicherheitsziels (in Bezug auf Vertraulichkeit und Integrität) bestätigen wir, dass der weit
verbreitete Ansatz, die Nachrichten im zu sendenden Datenstrom zu kodieren, tatsächlich sicher
ist. Zuletzt wenden wir uns einem weiteren, neuen Paradigma im Entwurf des TLS 1.3 Kanals
zu, nämlich der Möglichkeit, Schlüssel während der Laufzeit eines Kanalprotokolls zu erneuern,
um die Sicherheit des Kanals zu erhöhen. Wir schlagen hierzu ein formales Modell für solche
Kanäle mit mehreren Schlüsseln vor, welches die fortgeschrittenen Sicherheitsaspekte jenseits
von Vertraulichkeit und Integrität in einer Hierarchie abbildet. Wir zeigen, dass sich unsere
Hierarchie dabei auf natürliche Weise an die etablierten Definitionen für Kanäle mit nur einem
Schlüssel anschließt und instanziieren die stärkste Definition in unserer Hierarchie mit einer
generischen, AEAD-basierten Konstruktion, die zudem einen Vergleich mit der ähnlichen TLS 1.3
Kanalkonstruktion ermöglicht.

xvi

Contents

Abstract xiii

Zusammenfassung xv

Contents xvii

1 Introduction 1
1.1 Key Exchange . 2
1.2 Secure Channels . 5
1.3 Related Work . 7

2 Preliminaries 11
2.1 Notation . 11
2.2 Cryptographic Building Blocks and Assumptions 11

I Key Exchange 15

3 Key Exchange Preliminaries 17
3.1 The Bellare–Rogaway Model . 17
3.2 Cryptographic Assumptions for Key Exchange 21

4 Multi-Stage Key Exchange 25
4.1 Introduction . 25
4.2 Overview . 26
4.3 Preliminaries . 30
4.4 Adversary Model . 33
4.5 Security of Multi-Stage Key Exchange Protocols 36
4.6 Composition . 38
4.7 Further Work Extending the Model . 45

5 The QUIC Protocol 47
5.1 Introduction . 47
5.2 A QUIC Tour . 48
5.3 Security of QUIC . 51

6 The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys 57
6.1 Introduction . 57
6.2 The TLS 1.3 draft-10 Full (EC)DHE Handshake Protocol 60
6.3 Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake 62
6.4 The TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake Protocol 73

xvii

Contents

6.5 Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake 74
6.6 Composition . 83
6.7 Comments on the TLS 1.3 Handshake Design 84

7 The TLS 1.3 Protocol: Zero Round-Trip Time and Replays 87
7.1 Introduction . 87
7.2 The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake Protocols . . 92
7.3 Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes . 95
7.4 The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol 105
7.5 Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake 108
7.6 Comparing the QUIC and TLS 1.3 0-RTT Handshakes 118

8 The TLS 1.3 Protocol: A Formal Model for Key Confirmation 119
8.1 Introduction . 119
8.2 A Formal Model for Key Confirmation . 122
8.3 Key Confirmation in TLS 1.3 . 129

II Secure Channels 135

9 Secure Channel Preliminaries 137
9.1 Symmetric Encryption . 137
9.2 Authenticated Encryption (with Associated Data) 138
9.3 Stateful Authenticated Encryption . 140
9.4 Notation and Terminology . 142

10 Stream-Based Channels 145
10.1 Introduction . 145
10.2 Syntax and Functionality of Stream-Based Channels 148
10.3 Security of Stream-Based Channels . 151
10.4 Generic Construction of Stream-Based Channels from AEAD 165

11 Atomic-Message Channels Supporting Fragmentation 171
11.1 Introduction . 171
11.2 Syntax and Functionality of Atomic-Message Channels Supporting Fragmentation 172
11.3 Security of Atomic-Message Channels Supporting Fragmentation 174
11.4 Generic Construction of Atomic-Message Channels from Stream-Based Channels 178
11.5 Security of the Encode-then-Stream Construction 181

12 Multi-key Channels 193
12.1 Introduction . 193
12.2 Syntax and Functionality of Multi-key Channels 195
12.3 Security of Multi-key Channels . 198
12.4 Generic Construction of Multi-key Channels from AEAD and PRFs 209

13 Conclusion 219

Bibliography 221

xviii

Chapter 1
Introduction

Securing the communication between two (or more) people is the foundational goal of cryptogra-
phy. Early solutions to maintain the secrecy of communication date back as far as 1.900 BC with
the first cryptologic hieroglyphs, 475 BC with the Greek “skytale” enciphering tool, or around
50 BC with the Caesar cipher [Kah96]. Today, the vast majority of communication requiring
security of one or another form takes place over the Internet. Cryptography—in the form of
algorithms implemented as computer programs—consequently secures network connections,
e.g., when accessing websites, emails, or the cloud, in securing server-to-server communication
between company networks, in mobile communication networks and secure messaging, or in
electronic card transactions at ATMs.

Conceptually unaltered throughout history, two core components of a cryptographically
secured communication emerged. First, the two communicating parties establish a shared secret
and (usually) authenticate each other in what we today call an (authenticated) key exchange
protocol. In the second step, this key is then used to protect the actual data to be communicated
from adversarial eavesdropping or modification in transport (e.g., through enciphering) in what
we today call a secure channel protocol.

Modern cryptography does not stop at proposing schemes and protocols that intuitively
achieve these goals, but aims at grounding their security on cryptographic or mathematical
hardness assumptions such as, e.g., (the hardness of) prime factorization or computing discrete
logarithms. This is formalized via a complexity-theoretic reduction within a formal, mathematical
abstraction of the cryptographic system under consideration, a so-called security model. Such
a security model describes how a potential adversary attacking the system, modeled as a
probabilistic polynomial-time Turing machine, may interact with the cryptographic scheme. It
then defines under which conditions the adversary, in a specified experiment setup, is considered
to have successfully broken the targeted security property of the scheme. A proof of security
finally is a complexity-theoretic reduction, transforming a successful adversary against the
specified security notion of a cryptographic scheme into a successful adversary against the
security of an underlying building block or cryptographic hardness assumption. Assuming the
building block’s security, resp. cryptographic assumption’s hardness, such a reduction asserts
that there cannot exists such an adversary capable of breaking the scheme’s security with actions
considered in the security model.

Naturally, any abstract model of the real world can only account for a limited subset of
aspects of this world, and so can a mathematical security model only capture a certain class of
attack vectors and ways a potential adversary might interact with a cryptographic scheme. Gaps
between the attacker capabilities in the real world and those captured in the security model
however are dangerous: the security of a cryptographic scheme (and, with it, the information
it protects) may in practice be threatened by an adversary capable of mounting a realistic

1

Chapter 1. Introduction

attack, despite an existing security proof in a model that does not consider the attack in
question. Beyond testing the validity and strengths of the cryptographic assumptions relied
upon, it is hence of utmost importance to devise security models which capture the power
of a potential attacker in the real world as comprehensively and accurately as possible. The
aforementioned nature of abstract mathematical models and the impossibility to devise a perfect
model inevitably makes this an infinite pursuit striving for better representations of real-world
security. This thesis is a contribution to that pursuit in the realm of key exchange and secure
channel protocols (in Part I, resp. Part II, of this work), augmenting established security models
in both areas in order to capture novel security aspects and recent developments in the design
of such protocols.

1.1 Key Exchange
Secure communication is based on a secret, or cryptographic key, shared between the two
communication partners. While traditionally such secrets had to be exchanged in an out-of-band
manner, the availability of public-key cryptography and the seminal protocol to establish a
shared symmetric key over an insecure network by Diffie and Hellman [DH76] made it possible
to devise protocols that perform a key exchange in an online manner right at the start of a
communication.

In terms of security, Bellare and Rogaway [BR94] were the first to give a formal treatment of
the notion of security to be expected from such a key exchange protocol. In their strong security
model, an adversary interacts with an arbitrary number of protocol executions, controls the
whole communication network (able to eavesdrop on, manipulate, or drop any message2), is able
to corrupt some parties in the system (learning their long-term secrets), and is allowed to reveal
the keys derived in some of the protocol runs. Still, any key established in an uncompromised
protocol execution should look like a completely random string to such an adversary and the
involved parties should authenticate correctly. This yields the intuitive guarantee that, to an
adversary as described, a key established via the key exchange protocol is as secret as if it has
been established in an authentic out-of-band manner. The Bellare–Rogaway model, which we
recap in Chapter 3, has become the cryptographic de-facto standard for security analyses of
proposed and deployed protocols as well as the foundation for extensions to capture further
security properties.

1.1.1 Multi-Stage Key Exchange

In the first part of this thesis, our first contribution also is an extension of the Bellare–Rogaway
model in order to capture novel paradigms exhibited in recent key exchange protocol designs.
Classically, starting from Bellare and Rogaway [BR94] and kept throughout subsequent formaliza-
tions, a key exchange protocol is understood to be executed in order to establish a (single) shared
key and then terminate. In recent designs of real-world key exchange protocols this paradigm
changed, particularly with the QUIC (“Quick UDP Internet Connections”) protocol [QUI]
proposed by Google in 2013 and by now globally deployed [LRW+17], and the upcoming next
version 1.3 of the de-facto standard security protocol on the Internet, the Transport Layer
Security (TLS) protocol [DR08, Res18], but also in key exchange designs underlying secure
messaging protocols like Signal [Sig]. These protocols interleave the key establishment and
communication in a continuous process deriving multiple keys, used for the actual communication

2The adversary’s omnipotence in fully controlling the communication network resembles the Dolev-Yao
adversary model [DY83]. In this thesis, we however work in the computational setting and hence furthermore
allow the adversary to tamper arbitrarily with the messages exchanged, not restricting it to an abstract, symbolic
or algebraic representation (see, e.g., Abadi and Rogaway [AR02] for a comparative discussion).

2

1.1. Key Exchange

or other purposes like exporting additional key material to an application. Established security
models cannot capture such designs in their full extent as they can only focus on one of the
keys established and are unable to, e.g., describe the mutual effects compromises of a subset of
the multiple keys established may have on their security.

To overcome this gap, we introduce in Chapter 4 a security model for multi-stage key
exchange (MSKE) protocols which is capable of capturing the security and dependency of all
keys derived, at potentially varying security levels, in a single security framework. Our model
in particular allows to capture the effects of compromises of different secrets (long-term and
medium-lived) as well as inter-dependencies and varying authentication levels of keys derived at
different stages in the key exchange. It moreover can treat both protocols with symmetric-key
and with public-key long-term secrets as well as the effects of possibilities to replay messages
in some key exchange designs aiming at low-latency key exchange. These features enable the
model to comprehensively reflect the relevant core cryptographic components of both the QUIC
key exchange protocol as well as the three different key exchange modes of TLS 1.3.

Our security model is further accompanied by a compositional result that establishes
sufficient conditions under which the keys established in a multi-stage key exchange protocol
can safely be used in a follow-up symmetric-key protocol. This result allows to argue the joint
security of a secure MSKE protocol and, e.g., the subsequent secure channel protocol and hence
reduces analysis complexity by enabling an independent and modular security analyses of both
cryptographic components.

1.1.2 The QUIC Protocol

We first apply our MSKE security model, in Chapter 5, to analyze the security of Google’s
QUIC protocol [QUI]. QUIC was introduced as a secure connection protocol (comprising both
cryptographic key exchange and channel components) that establishes connections with low
latency while maintaining the security guarantees of the established TLS protocol [DR08]. In
the meantime, it has been deployed at large scale in Google’s service infrastructure and the
Chrome browser [LRW+17], and sparked an IETF working group [QWG] aiming to provide a
standards-track specification for QUIC. The QUIC protocol particularly aims at reducing the
round complexity of the key exchange, i.e., the number of times messages have to be sent back
and forth between the two communicating parties. To this end, it introduces a so-called zero
round-trip time (0-RTT) key exchange mode. This mode enables a client to immediately send
data along with its first key exchange message to a server it previously communicated with,
hence drastically reducing the initialization delay of the secure connection. The 0-RTT data is
encrypted under an initial key; both parties then update to a stronger main key with the reply
of the server.

QUIC is a particularly interesting example to study in the MSKE model. Most notably,
it establishes two keys within one protocol execution, making it a multi-stage key exchange
protocol in the first place. These keys are moreover crucially intertwined in terms of security,
with the first key authenticating the second and hence compromising the former before the
latter is established leads to a security break—an insight which could not be formally captured
in previous security models. We can furthermore establish in our model that the second key
achieves stronger secrecy than the first, remaining secure even if the involved long-term secrets
are later compromised (so-called forward secrecy).

1.1.3 The TLS 1.3 Protocol: Diffie–Hellman and Pre-shard Keys

The remaining chapters in this part of the thesis are concerned with the upcoming next version
of the Transport Layer Security (TLS) protocol [DR08], TLS 1.3 [Res18]. The TLS protocol

3

Chapter 1. Introduction

constitutes the de-facto standard for secure application-level communication over the Internet,
among many things protecting the security of billions of web, e-mail, and cloud accesses every
day. TLS comprises both a key exchange component, the so-called handshake protocol that
allows a client and a server to authenticate each other and to establish a key, as well as a
subsequent secure channel component, the record layer protocol providing confidentiality and
integrity for communication of application data. A security protocol as widely deployed as TLS
is a particularly exposed target for attacks, and so it is perhaps not surprising that numerous
successful attacks on different TLS versions have been found over the past years. Practical
attacks that have received significant attention include exploiting weaknesses in cryptographic
components (like RC4 [ABP+13], hash functions [BL16b], or 64-bit block ciphers [BL16a]), flaws
in the protocol design (e.g., BEAST [Duo11], the Lucky 13 attack [AP13], the triple handshake
attack [BDF+14], the POODLE attack [MDK14], or the Logjam attack [ABD+15]), or flaws
in implementations (such as the Heartbleed [Cod14], SMACK [BBD+15], Cloudbleed [Orm17],
or ROBOT [BSY17] attack). In parts to overcome structural weaknesses underlying the above
attacks but also and equally important to add desired functional and privacy features the
Internet Engineering Task Force (IETF) currently devises a new TLS standard, TLS 1.3 in a
series of drafts. These new features include a low-latency handshake mode (as in QUIC), deriving
intermediate keys to encrypt parts of the handshake for privacy, or deploying a sequence of keys
in the channel protocol for advanced security. In particular, TLS 1.3 hence is a multi-stage key
exchange protocol for which our MSKE security model enables a comprehensive analysis.

We begin our analysis of the TLS 1.3 protocol drafts in Chapter 6 by establishing MSKE
security of the main Diffie–Hellman-based handshake and the abbreviated handshake for resuming
previous connections based on pre-shared keys. Both handshakes establish several keys, in parts
used within the key exchange, to protect communication, subsequent resumption handshakes,
or external cryptographic applications, and we capture them as distinct stages within our
model. This enables us to capture their individual security properties, e.g., the intermediate
key protecting parts of the handshake messages having a different authentication level than the
other keys established. The generic composition result for the MSKE model from Chapter 4
furthermore enables us to argue security of using the established handshake keys, e.g., in the
subsequent record protocol. Our analysis finally provides insights into the cryptographic choices
made during the design process of TLS 1.3 (to which our analysis itself contributed as well),
which we comment on at the end of the chapter.

1.1.4 The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

In Chapter 7 we turn to the third of the handshake modes specified in TLS 1.3 drafts, namely a
low-latency (0-RTT) mode combined with either a Diffie–Hellman or a pre-shared key handshake.
The 0-RTT mode allows a client to immediately establish a shared key with a server in order to
start communicating securely already along with its first handshake message, saving substantially
on the initial communication delay. Both parties then immediately continue with an intertwined
Diffie–Hellman or pre-shared key handshake to establish further (and more secure) keys within
the same overall handshake.

We first discuss a security issue that necessarily arises in 0-RTT handshakes, namely that
0-RTT messages can be replayed by a man-in-the-middle adversary due to the lack of contribution
from both communication parties, and how these issues are handled in different variants of
the QUIC and TLS 1.3 protocols. As we will see, TLS 1.3 accepts 0-RTT replays as generally
inevitable while the original QUIC design aimed at preventing them at least on the key exchange
level. We therefore leverage the ability of the MSKE model to distinguish between replayable
and non-replayable keys (or stages) and their differences in security. In our model, we then
analyze both a Diffie–Hellman-based 0-RTT handshake draft and one based on pre-shared keys.

4

1.2. Secure Channels

We establish that both variants constitute a secure multi-stage key exchange protocol and that,
most importantly, the added 0-RTT mode achieves the expected security and does not negatively
affect the security of the main handshake keys derived. We provide a comparative discussion of
both TLS 1.3 0-RTT mode variants as well as the QUIC design.

1.1.5 The TLS 1.3 Protocol: A Formal Treatment of Key Confirmation

As our last contribution concerning the TLS 1.3 handshake protocol, we finally consider an addi-
tional property of key exchange protocols, key confirmation, that has not been comprehensively
captured in previous key exchange models, despite being prominently mentioned by practitioners
in many protocol design specifications, including that of TLS [DR08, Res18]. Key confirmation
intuitively is the property that, when one party accepts with a key in a key exchange execution,
it is ensured that the other party also accepts with the same key. While for security (in the
style of Bellare–Rogaway [BR94]) the assurance that no third party can learn the established
key is sufficient, key confirmation provides an additional functional guarantee ensuring, e.g.,
that an application does not waste resources on sending data to a peer that did not actually
accept the shared key.

In Chapter 8, we propose a comprehensive formalization of key confirmation in key exchange
protocols in order to enable a formal treatment of this property and discussion of how it can
be, resp. is, achieved generically and in existing protocol designs. Our model in particular
exposes subtle differences in the key-confirmation guarantees the two parties running the key
exchange can expect. The party accepting last can indeed be assured of (full) key confirmation
in the sense that the other party already accepted with the same key. The party accepting
first however can at most obtain the (almost-full) key confirmation guarantee that the other
party will derive the same key in case it accepts after obtaining the final key exchange messages.
We apply our model to the main TLS 1.3 handshake in which, as in previous TLS versions, a
Finished message ensures key confirmation through a message authentication code over the full
communication transcript. Interestingly, our analysis exhibits that already a shortened variant
of the handshake without Finished messages does provide the same optimal key confirmation
guarantees, giving insights in the potential misconception that added message authentication
codes are always necessary to achieve key confirmation.

1.2 Secure Channels
Having established a shared secret key for their communication, both parties then execute a
secure channel protocol in order to securely transmit the actual communication data. In this
setting, ‘securely’ refers to such data being protected from both passive eavesdropping as well
as manipulation through active adversaries; the targeted security goals are hence confidentiality
and integrity, and the basic underlying cryptographic tool is that of (symmetric-key) encryption.

Formalizing security notions for confidentiality and (later) integrity constitutes further
foundational work in modern cryptography originating from Goldwasser and Micali [GM84]
followed by Naor and Yung [NY90], Rackoff and Simon [RS92], Bellare and Namprempre [BN00],
and Bellare and Rogaway [BR00], as we will recap in Chapter 9. Today, the building block
of authenticated encryption (with associated data) (AEAD) due to Rogaway [Rog02] combines
both confidentiality and integrity guarantees for symmetric encryption of individual messages in
a single and highly efficient component (e.g., AES-GCM [Dwo07]). Cryptographically secure
channel protocols in practice (like the Transport Layer Security (TLS) protocol [DR08] or
the Secure Shell (SSH) protocol [YL06a]) of course are used to transmit more than a single
(application) message only. In a sequence of messages integrity should hence, beyond the integrity
of single messages on their own, also be concerned with protecting against reordering, replays,

5

Chapter 1. Introduction

or dropping of messages. Bellare, Kohno, and Namprempre [BKN02, BKN04] recognized that
formalizing stateful encryption (and decryption) operations and according security notions are
necessary to capture such security properties on sequences of messages in their analysis of the
SSH protocol. Their notions for stateful authenticated encryption are widely accepted as the
right formalization of secure cryptographic channels and have been extended in a number of
works (see Section 1.3 below) and used to analyze the security of practical channel protocols,
including SSH [BKN02, BKN04] and TLS [PRS11, JKSS12, KPW13].

Still, the model of Bellare, Kohno, and Namprempre [BKN04] exhibits limitations in capturing
certain structural aspects of channels in practice, which specifically in the case of the SSH
protocol has led to a mismatch between the security guarantees assured in their model and
the expected practical security. More precisely, Albrecht, Paterson, and Watson [APW09]
demonstrated a plaintext recovery attack breaking the basic confidentiality protection in the
SSH protocol which exploits the processing of fragmented ciphertexts in SSH. This attack vector
was not reflected in [BKN04] (and hence does not contradict their security result) as here
messages and ciphertext are considered to be atomic (i.e., undividable) blocks, not allowing an
adversary to submit fragmented ciphertexts. Boldyreva et al. [BDPS12] extended the model
of [BKN04] in order to reflect such ciphertext fragmentation (and, thereby, capture the above
attack).

1.2.1 Stream-Based Channels

All formalizations of secure channels so far (including [BDPS12]) however still treat messages
as atomic objects. This is in contrast to the behavior of channels in practice, as the interface
provided to applications by most channel protocols, both non-secured as the Transmission
Control Protocol (TCP) [Pos81b] as well as the most relevant secure channels protocols (including
TLS [DR08], SSH [YL06a], or QUIC [QUI]), is a streaming one: applications submit (fragments
of) a continuous data stream of bits (or bytes) to be transmitted, which the channel protocol splits
up—usually without control of the application—into chunks to be encrypted and transferred.
In general, channels in practice thus do not preserve the boundaries of application messages,
providing applications with an interface quite distinct from that considered in cryptographic
literature so far.

In Chapter 10 we approach this gap in the formalism of secure channels by introducing
the notion of stream-based channels in order to more accurately model the streaming interface
provided by channels in practice. Lacking the structure of a one-to-one correspondence between
(atomic) messages and ciphertexts, the security notions we establish turn out to be considerably
more involved than the ones for stateful encryption. We build upon the work of Boldyreva et
al. [BDPS12] for confidentiality treating ciphertext fragmentation and additionally consider
fragmentation of messages as well as integrity. The latter allows us to lift the generic composition
theorem for symmetric encryption by Bellare and Namprempre [BN00] to the streaming setting,
namely that weak confidentiality against passive adversaries together with integrity of ciphertexts
yields strong confidentiality against active attacks. We finally provide a generic construction of
a stream-based channel from AEAD achieving strong confidentiality and integrity guarantees.
Being structurally close to the TLS record protocol our construction furthermore enables a
discussion of that protocol’s design.

1.2.2 Atomic-Message Channels Supporting Fragmentation

The interface provided by many real-world channel protocols that we capture in our notions
of stream-based channels in Chapter 10 suits well many applications that desire a streaming
interface, e.g., for transferring large files or video streaming. Other application layer protocols

6

1.3. Related Work

are however actually message-based, e.g., in chat settings or the transmission of HTTP [FGM+97]
headers. Their security may crucially rely upon messages being processed as atomic blocks,
and practical examples including TLS truncation attacks [SP13] and the ‘cookie-cutter’ at-
tack [BDF+14] demonstrate that (mis)interpreting partial, fragmented messages can have
disastrous consequences for security in such applications.

In Chapter 11 we therefore study how applications can safely transport atomic messages
over a stream-based channel, formalizing the resulting concept and security for atomic-message
channels supporting fragmentation. Extending the work of Boldyreva et al. [BDPS12] in
particular by integrating a notion of integrity, our framework allows us to capture the common
approach of applications to encode their atomic messages within the bit stream to be sent in
the secure stream-based channel. We generalize this approach in what we call the ‘encode-
then-stream’ construction and show that it indeed lifts confidentiality and integrity guarantees
from the stream-based channel to the (atomic-message) application interface under reasonable
assumptions. Our construction also casts a formal light on the potential misunderstanding of
security guarantees provided by stream-based and atomic-message channels that led to the
above-mentioned truncation attacks [SP13, BDF+14].

1.2.3 Multi-key Channels

In the last chapter of this thesis, we turn towards a novel feature of the upcoming next version of
the Transport Layer Security protocol, TLS 1.3 [Res18]. The TLS 1.3 record protocol includes a
key-updating mechanism that allows parties to deploy a sequence of multiple keys for encryption
instead of a single, fixed key. Such key updates were introduced for both functional reasons
(namely that long-lived TLS connections may exceed the limits of how much data can safely
be encrypted under a single key) and to enhance the channel’s security (especially providing
forward security of communication within a channel prior to a compromise of th currently used
key).

All models for secure channels so far consider only a single, fixed key as the source of
cryptographic protection. In Chapter 12, we introduce the first formalization of a multi-key
channel that deploys a sequence of multiple keys, each constituting a phase. We provide a
modular framework of security notions that beyond reflecting the basic notions of confidentiality
and integrity in the multi-key setting also capture the two advanced security goals aimed at with
multi-key channels, which we denote forward security and phase-key insulation. Forward security
transfers the well-established concept (e.g., in key exchange protocols) that a full compromise of
key material at some point in time should not endanger the security of prior communication.
Phase-key insulation addresses the more fine-grained compromise of an encryption key in a
specific phase of the channel and demands that the security in other, uncompromised phases is
still maintained. We study the relations between the various notions in the hierarchy spanned
by our framework, in particular establishing forward secrecy and phase-key independence as
independent notions as well as that our notions when restricted to a single key naturally connect
to the established notions for stateful encryption. We finally provide an instantiation of our
strongest confidentiality and integrity notions through a generic construction from AEAD and
pseudorandom functions which reflects aspects of the TLS 1.3 record protocol and thus enables
a review that design.

1.3 Related Work

In the following, we discuss (further) work preliminary or related to the results presented in this
thesis, accounting for the most relevant giants’ shoulders this work stands on.

7

Chapter 1. Introduction

Key exchange models. Following the seminal work by Bellare and Rogaway [BR94], a
substantial body of work extended their concept and formalism of a secure key exchange
protocol. For example, Blake-Wilson et al. [BM97, BWJM97] extended the symmetric-key
treatment of Bellare and Rogaway to the public-key setting; we integrate both settings in
our MSKE model (in Chapter 4). Bellare and Rogaway covered the settings of three-party
protocols [BR95] and, together with Pointcheval, that of password-based key exchange [BPR00],
in particular establishing different concepts for identifying partnered sessions jointly running the
key exchange protocol, including the notion of session identifiers we use for the key exchange
models in this work, and treating forward secrecy [Gün90, DVOW92]. Shoup [Sho99] established
notions for key exchange security in the simulation-based setting. Canetti and Krawzyck [CK01]
and La Maccia et al. [LLM07] considered extended compromise settings including the leakage of
ephemeral secrets or state; we adopt their approach in capturing compromises of medium-lived
secrets in the MSKE model. Cohn-Gordon et al. [CGCG16] recently also considered recovery
after compromises. Using the secret established in a key exchange protocol within a subsequent
symmetric-key protocol (e.g., a channel) is the prime goal of running the key exchange in the
first place. Composability of key exchange protocols with subsequent protocols has been studied
by Canetti and Krawczyk [CK02b] and later Küsters et al. [KT11, KR17] in the Universal
Composability (UC) framework [Can00], and by Brzuska et al. [BFWW11, BFS+13] in the
game-based setting; the latter forming the basis for our compositional results in the MSKE model.
To overcome obstacles in analyzing the TLS handshake in established key exchange models, Jager
et al. [JKSS12] introduced in a monolithic model for authenticated and confidential channel
establishment (ACCE) integrating the key exchange and channel phases. Further security
models focusing on specific real-world aspects of key exchange protocols include the treatment of
certification systems [BCF+13], capturing downgrade resilience [BBF+16], or tailored models for
zero round-trip time key exchange [HJLS17] or secure messaging protocols [CGCD+17, BSJ+17,
CGCG+17], the latter building upon the MSKE model. Our security models for multi-stage
key exchange (in Chapter 4) and key confirmation (in Chapter 8) belong to this line of research
extending the established core of key exchange models towards advanced, previously unexplored
security properties aimed at in practice.

Analyses of QUIC. In an independent and concurrent work to our analysis of Google’s
QUIC protocol [FG14] presented in Chapter 5, Lychev et al. [LJBN15] also investigated the
security of QUIC in an extension of the ACCE model [JKSS12] and gave a security proof based
on similar assumptions. Their work was later revisited in an automated verification analysis
by Sakurada et al. [SYHY16] using the ProVerif tool [Pro]. Langley et al. [LRW+17] gave an
account of the experience from their Internet-scale deployment of QUIC which we also refer to
for further information on non-cryptographic aspects of QUIC.

Analyses of TLS. As one of the most important and widely used security protocols, the
Transport Layer Security (TLS) protocol attracted substantial efforts not only in attacks but
also in analyzing and understanding its security. Formal results were first obtained for truncated
variants of the handshake [MSW08, GMP+08]. The first full handshake mode (of TLS 1.2)
was analyzed by Jager et al. [JKSS12] in their ACCE model combining key exchange and
channel security. Subsequent analyses include providing results for further handshake modes
and ciphersuites [KPW13, KSS13, LSY+14], the interaction of multiple handshake runs in TLS
renegotiation [GKS13], ciphersuite and version negotiation in TLS [DS15], or exporting key
material from a TLS connection [BJS16]. The miTLS [miT] team significantly contributed to
understanding the security and weaknesses of TLS implementations with their verified miTLS

8

1.3. Related Work

reference implementation [BFK+13], in particular providing a security analysis of the TLS 1.2
handshake within their implementation [BFK+14].

While all analyses of TLS 1.2 were conducted only after that protocol version was specified
(in 2008), the development process for the TLS 1.3 protocol was accompanied by a significant
academic effort to assess the security of its draft versions while they were being specified. Work on
the first drafts of TLS 1.3 started in April 2014. Through 24 draft versions (which we refer to as
draft-xx throughout this thesis, with xx indicating the draft number), TLS 1.3 by now reached
a relatively stable state in terms of its cryptographic design, the latest draft as of February 2018
being draft-24 [Res18]. We refer to Paterson and van der Merwe [PvdM16] for a comprehensive
treatment of this design process but list its most notable academic contributions in the following,
excluding our analyses of the multi-stage security and key confirmation properties of the TLS 1.3
handshake protocol drafts which we present in Chapters 6–8. Using a constructive-cryptography
approach [MR11], Kohlweiss et al. [KMO+14] studied the handshake of draft-05 [Res15b] and
Badertscher et al. [BMM+15] the record protocol of draft-08 [Res15d]. In draft-07 [Res15c],
the handshake’s cryptographic core was substantially reworked based on the modular OPTLS
design by Krawzyck and Wee [KW16], elegantly integrating the main Diffie–Hellman, resumption,
and 0-RTT modes within a uniform handshake and key schedule structure. Krawczyk [Kra16b]
also provided a formal treatment of the post-handshake client authentication introduced in
TLS 1.3. Cremers et al. [CHSvdM16, CHH+17] conducted a comprehensive symbolic analysis of
several TLS 1.3 drafts starting from draft-10 [Res15e] based on the Tamarin tool [SMCB12],
covering all specified handshake modes. Li et al. [LXZ+16] studied draft-10 in a multi-level
extension of the multi-stage key exchange model we present in Chapter 4 to capture interaction of
different handshake modes. Further symbolic analyses were performed using the ProVerif [Bla16]
tool on draft-11 [Res15f] by the CELLOS (Cryptographic protocol Evaluation toward Long-
Lived Outstanding Security) team [Mat16] as well as on draft-18 [Res16d] by Bhargavan et
al. [BBK17]. The miTLS team extended their reference implementation, in particular assessing
the draft-18 record protocol in [DLFK+17]. The interaction between different TLS versions
(as well as QUIC) was studied in terms of weaknesses in the PKCS#1 v1.5 encryption [Kal98]
by Jager et al. [JSS15] and the downgrade resilience of TLS 1.3 was comprehensively analyzed
by Bhargavan et al. [BBF+16]. Overall, the community effort including both academic and
industry contributions was well-received by the IETF TLS working group, acknowledging and
incorporating the provided feedback in the TLS 1.3 design process (cf. again Paterson and van
der Merwe [PvdM16] as well as the security overview in the draft standard [Res18, Appendix E]).

Secure Channels. The first formalization of cryptographically secure channels by Bellare,
Kohno, and Namprempre [BKN02, BKN04] spawned a line of research studying and extending
the models for channels in various directions. For example, Kohno, Palacio, and Black [KPB03]
introduce a hierarchy of channel notions capturing different protection levels against replays,
reordering, and dropping of messages. Their hierarchy was studied further for authentication
and AEAD schemes by Boyd et al. [BHMS16] who provide generic transformations between the
hierarchy levels and apply them in an analysis of the TLS 1.2 record protocol. In simulation-
based settings, Shoup [Sho99] gave a basic functional model for secure channels, Canetti
established a concept of secure channels in the UC framework [Can00], and Canetti and
Krawczyk [CK01] introduced composable notions of channel security which Namprempre [Nam02]
then characterized in terms of standard, game-based notions for authenticated encryption. In the
constructive-cryptography setting, Maurer and Tackmann [MT10] formalized channel security
in terms of transformations from encryption and authentication; Badertscher et al. [BMM+15]
later defined a constructive-cryptography counterpart of a stateful AEAD scheme as abstraction
of a secure channel. In the course of studying the security of TLS, Jager et al. [JKSS12]

9

Chapter 1. Introduction

introduced the monolithic ACCE model combining key exchange and channel phases, with
the latter building upon a work by Paterson et al. [PRS11] capturing the padding mechanism
in TLS as length-hiding authenticated encryption. Reflecting implicit information leakage
through behavioral differences in processing erroneous ciphertexts, Boldyreva et al. [BDPS14]
considered channels that distinguish multiple decryption errors and their effects on the generic
composition result by Bellare and Namprempre [BN00]. The same authors also considered
the effects of fragmentation of ciphertexts on confidentiality for secure channels [BDPS12],
forming a starting point for our notions of stream-based channels from [FGMP15] and of atomic-
message channels supporting fragmentation from [FGMP17] presented in Chapters 10 and 11,
later and concurrently to [FGMP15, FGMP17] augmented with integrity notions by Albrecht et
al. [ADHP16]. Notions approaching the streaming behavior of channels have also been developed
by Bhargavan et al. [BFK+13, DLFK+17] as part of their verified implementation analyses of
the TLS record protocol. Their security models accompanying the verified implementation also
informally touch upon the security implications of deploying a sequence of multiple keys in
the TLS 1.3 channel which we capture formally in our general model for multi-key channels
in Chapter 12. Boyd and Hale [BH17] studied security notions for secure termination of
channels with an application to TLS. Giving a characterization of how unidirectional channels
are combined in practice, Marson and Poettering [MP17a, MP17b] studied the security of
bidirectional channels and channel security in group communication.

10

Chapter 2
Preliminaries

In this chapter, we introduce the basic notation used throughout this thesis and recap some
fundamental concepts and general cryptographic building blocks. Preliminaries specifically
required in the key exchange and secure channels settings are provided in Chapters 3 and 9,
respectively.

2.1 Notation
We begin by establishing some of the common notation used within this thesis. We denote by
N the natural numbers as the set of non-negative integers, by R the real numbers, and by ∅
the empty set. We write a bit as b ∈ {0, 1} and a (bit) string as s ∈ {0, 1}∗ with |s| indicating
its (binary) length; further {0, 1}n for the set of bit strings of length n. Given two bit strings
s, t ∈ {0, 1}∗ we denote by s‖t their concatenation and by s⊕ t their bitwise XOR (for |s| = |t|).
We write x ← y for the assignment of value y to the variable x and x $←− X for uniformly
sampling x from the (finite) set X.

For an algorithm A we write x← A(y) or A(y)→ x, resp. x $←− A(y) or A(y) $−→ x, for the
algorithm deterministically, resp. probabilistically, outputting x on input y. We indicate by AO
an algorithm A running with oracle access to some other algorithm O. When defining security
in the asymptotic setting, we indicate by λ the security parameter and provide it (implicitly)
as A(1λ) in unary representation 1λ to an algorithm A. We call an algorithm efficient if it runs
in polynomial time in λ as a (probabilistic) Turing machine (i.e., if there exists a polynomial p
such that A takes at most p(λ) steps on input of length λ); we then also say A is a probabilistic
polynomial-time (PPT) algorithm. We say that a function is efficient if it can be computed by
an efficient algorithm. We call a function f : N→ R negligible if for all positive polynomials p
there exists an N ∈ N such that for all n > N it holds that f(n) < 1

p(n) .

2.2 Cryptographic Building Blocks and Assumptions
In the following, we recap some basic and well-studied cryptographic building blocks deployed in
the key exchange and secure channel protocols covered in this thesis. For a detailed discussion
beyond the common formalization of their syntax and security we refer to, e.g., Katz and
Lindell [KL08].

2.2.1 Pseudorandom Functions

A pseudorandom function (PRF) is a keyed function mapping inputs to a (pseudo)random-
looking output which is indistinguishable from the output of a truly random function. PRFs

11

Chapter 2. Preliminaries

find application in key derivation steps of key exchange protocols as well as (multi-key) channels.
We define their security as follows [KL08].

Definition 2.1 (Pseudorandom function and PRF security). Let f : {0, 1}∗ × {0, 1}i(λ) →
{0, 1}o(λ) be an efficient keyed function having input and output length i(λ), resp. o(λ), when
keyed with k ∈ {0, 1}λ. We say that f is pseudorandom if for all PPT adversaries A the
following advantage function is negligible in the security parameter:

AdvPRF-sec
f,A :=

∣∣∣Pr
[
Af(k,·)(1λ) = 1

]
− Pr

[
Ag(·)(1λ) = 1

]∣∣∣ ,
where the PRF key k $←− {0, 1}λ is sampled uniformly at random and g is randomly chosen from
the set of all functions {0, 1}i(λ) → {0, 1}o(λ).

2.2.2 Message Authentication Codes

Message authentication codes (MACs) enable two parties holding a secret key to authenticate
messages through a MAC (tag) value, as well as to verify the authenticity of such tags on
messages. In key exchange protocols, MACs are used in order to authenticate parties in a setting
with shared secret keys and to attest the integrity of the (transcript of) messages exchanged.
We state the syntax for MAC schemes and their standard security notions of existential and
strong unforgeability under chosen-message attacks [KL08].

Definition 2.2 (Message authentication code scheme). A message authentication code (MAC)
scheme MAC = (KGen,Tag,Verify) consists of three efficient algorithms defined as follows.

• KGen(1λ) $−→ K. On input a security parameter 1λ, this probabilistic algorithm outputs a
MAC key K.

• Tag(K,m) $−→ τ . On input a key K and a message m ∈ {0, 1}∗, this (possibly) probabilistic
algorithm outputs a MAC tag τ .

• Verify(K,m, τ)→ {0, 1}. On input a key K, a message m, and a tag τ , this deterministic
algorithm outputs 1 (indicating validity of the tag) or 0 (otherwise).

Definition 2.3 (Existential and strong unforgeability of MACs). Let MAC = (KGen,Tag,Verify)
be a MAC scheme and experiments ExptEUF-CMA

MAC,A (1λ) and ExptSUF-CMA
MAC,A (1λ) for an adversary A

be defined as in Figure 2.1.
We say that MAC provides existential (resp. strong) unforgeability under chosen-message

attacks (EUF-CMA, resp. SUF-CMA) if for all PPT adversaries the following advantage function
is negligible in the security parameter:

AdvEUF-CMA
MAC,A := Pr

[
ExptEUF-CMA

MAC,A (1λ) = 1
]
, resp. AdvSUF-CMA

MAC,A := Pr
[
ExptSUF-CMA

MAC,A (1λ) = 1
]
.

2.2.3 Signatures

(Digital) signatures allow a signer holding a secret key (and only the signer) to issue a publicly
verifiable signature authenticating a message. They are in particular used in key exchange
protocols to authenticate parties in a public-key setting and the exchanged communication
transcript. We recap the syntax of digital signatures together with their standard security
notions of existential and strong unforgeability under chosen-message attacks [KL08, Kat10].

Definition 2.4 (Signature scheme). A signature scheme Sig = (KGen, Sign,Verify) consists of
three efficient algorithms defined as follows.

12

2.2. Cryptographic Building Blocks and Assumptions

ExptEUF-CMA
MAC,A (1λ):

1 K $←− KGen(1λ)
2 Q← ∅
3 (m∗, τ∗) $←− AOTag (1λ)
4 return 1 iff (m∗, ∗) /∈ Q

and Verify(K,m∗, τ∗) = 1

ExptSUF-CMA
MAC,A (1λ):

1 K $←− KGen(1λ)
2 Q← ∅
3 (m∗, τ∗) $←− AOTag (1λ)
4 return 1 iff (m∗, τ∗) /∈ Q

and Verify(K,m∗, τ∗) = 1

OTag(m):
1 τ $←− Tag(K,m)
2 Q← Q ∪ {(m, τ)}
3 return τ

ExptEUF-CMA
Sig,A (1λ):

1 (sk, pk) $←− KGen(1λ)
2 Q← ∅
3 (m∗, σ∗) $←− AOSign (1λ, pk)
4 return 1 iff (m∗, ∗) /∈ Q

and Verify(pk,m∗, σ∗) = 1

ExptSUF-CMA
Sig,A (1λ):

1 (sk, pk) $←− KGen(1λ)
2 Q← ∅
3 (m∗, σ∗) $←− AOSign (1λ, pk)
4 return 1 iff (m∗, σ∗) /∈ Q

and Verify(pk,m∗, σ∗) = 1

OSign(m):
1 σ $←− Sign(sk,m)
2 Q← Q ∪ {(m,σ)}
3 return σ

Figure 2.1: Security experiments for existential and strong unforgeability under chosen-message attacks
(EUF-CMA, resp. SUF-CMA) for MAC and signature schemes. We write (a, ∗) /∈ Q if 6 ∃b s.t. (a, b) ∈ Q.

• KGen(1λ) $−→ (sk, pk). On input a security parameter 1λ, this probabilistic algorithm
outputs a secret signing key sk and a public verification key pk.

• Sign(sk,m) $−→ σ. On input a signing key sk and a message m ∈ {0, 1}∗, this (possibly)
probabilistic algorithm outputs a signature σ.

• Verify(K,m, τ)→ {0, 1}. On input a verification key pk, a message m, and a signature σ,
this deterministic algorithm outputs 1 (indicating validity of the signature) or 0 (otherwise).

Definition 2.5 (Existential and strong unforgeability of signatures). Let Sig = (KGen,Sign,
Verify) be a signature scheme and experiments ExptEUF-CMA

Sig,A (1λ) and ExptSUF-CMA
Sig,A (1λ) for an

adversary A be defined as in Figure 2.1.
We say that Sig provides existential (resp. strong) unforgeability under chosen-message

attacks (EUF-CMA, resp. SUF-CMA) if for all PPT adversaries the following advantage function
is negligible in the security parameter:

AdvEUF-CMA
Sig,A := Pr

[
ExptEUF-CMA

Sig,A (1λ) = 1
]
, resp. AdvSUF-CMA

Sig,A := Pr
[
ExptSUF-CMA

Sig,A (1λ) = 1
]
.

2.2.4 Hash Functions and the Random Oracle Model

A (cryptographic) hash function compresses an input message of arbitrary length to a fixed-length
hash value. For security we demand that this mapping is collision-resistant, i.e., it should be hard
to find two distinct input values that are mapped to the same hash value. In the key exchange
protocols we analyze, hash functions are in particular used as underlying building blocks for key
derivation and to shorten the representation of communication transcripts. Following their usage
in practice, we consider hash functions to be unkeyed and demand that a security reduction
to a hash function’s collision resistance provides effective means for constructing a concrete
algorithm generating a collision (cf. Rogaway [Rog06]).

Definition 2.6 (Hash function and collision resistance). A hash function H : {0, 1}∗ → {0, 1}λ
maps arbitrary-length messages m ∈ {0, 1}∗ to a hash value H(m) ∈ {0, 1}λ of fixed length λ ∈ N.

We say that H provides collision resistance (COLL) if we cannot construct an efficient
adversary A for which the following advantage function is non-negligible in the security parameter:

AdvCOLL
H,A := Pr

[
(m,m′) $←− A : m 6= m′ and H(m) = H(m′)

]
.

13

Chapter 2. Preliminaries

The random oracle model. In some settings, (practical) constructions for a cryptographic
task can only be found when idealizing the security of a certain primitive used. One such
idealization is to assume the existence of a truly random function H : {0, 1}∗ → {0, 1}λ which
can be publicly evaluated by every participating party in the system. This idealization was
introduced by Bellare and Rogaway [BR93] as the random oracle model, referring to H as a
random oracle. Relying on a random oracle eases the design of cryptographic schemes as follows:
for fresh inputs x the output value H(x) can be assumed to be uniformly random; furthermore,
in a reduction, the random oracle can be efficiently computed (and potentially programmed
on certain values) by sampling output values at random ‘on-the-fly’ (a technique called ‘lazy
sampling’).

When implementing a cryptographic scheme designed based on a random oracle, the idealized
random oracle is instantiated by some concrete implementation of, e.g., a hash function whose
output is then assumed to be essentially indistinguishable from that of a random oracle. In
general, an actual real-world implementation of a random oracle of course cannot exist and there
are counterexamples showing that contrived instantiations can yield insecure schemes [CGH98].
Yet, the random oracle model has turned out to be immensely useful for the design of practical
cryptographic schemes and no security weaknesses resulting from this idealization have occurred
in such schemes. The random oracle model hence emerged as an essential tool for proving
security especially when schemes not relying on a random oracle (in the so-called standard
model) have not been found (yet) or are too inefficient.

14

Part I

Key Exchange

15

Chapter 3
Key Exchange Preliminaries

Summary. In this chapter we recall preliminaries on key exchange and foundational work
on the security of key exchange protocols that form the basis of our work in the first part of
this thesis. We in particular summarize the seminal work by Bellare and Rogaway [BR94] that
formalizes key exchange security for the first time and which underpins essentially all security
models for key exchange to date. We furthermore recall cryptographic assumptions that we
employ or refer to in our security analyses like, e.g., the Decisional Diffie–Hellman assumption
or the pseudorandom-function oracle-Diffie–Hellman assumption, as well as (assumptions on)
the HMAC and HKDF functions.

3.1 The Bellare–Rogaway Model
A protocol establishing a secure shared key over an insecure connection between parties sharing
only public information has been one of the great inventions in the seminal paper by Diffie and
Hellman in 1976 [DH76]. The first rigorous formalization of what security means for such key
exchange protocols was then given in the foundational work by Bellare and Rogaway [BR94],
formalizing the core security goals of key secrecy and (entity) authentication. Their model
considers a strong adversary that controls the network, hence able to execute both passive
and active attacks when interacting with multiple executions of the key exchange protocol
(spawning them via a NewSession oracle and controlling communication via a Send oracle). The
adversary further is allowed to corrupt some of the interacting honest parties (via a Corrupt
oracle), learning their long-term secrets, and to reveal the session keys established in some
of the protocol runs (through a Reveal oracle). Security then demands that such a powerful
adversary is nevertheless unable to distinguish the established session key in an uncompromised
(or “fresh”) session from a random string (through a Test oracle). This, informally, provides the
guarantee that established keys look random to such an adversary and that the (uncompromised)
party the key is established with is indeed authenticated. The Bellare–Rogaway model was
extended in a number of follow-up works (see also Section 1.3) to capture related protocols
and concepts, including the treatment of the public-key setting [BM97, BWJM97], three-party
protocols [BR95] and password-based key exchange [BPR00], or forward secrecy (in the sense
that keys remain secure even if the adversary later corrupts an involved party’s long-term
secret [Gün90, DVOW92]) and the compromise of ephemeral secrets [CK01, LLM07].

In the following, we recap the classical notion of key exchange security in the style of the
Bellare–Rogaway model for the public-key setting. The formalism used is based on that of
Brzuska et al. [BFWW11, Brz13] which we also adopt in the security model we propose for
multi-stage key exchange, presented in Chapter 4 based on [FG14, DFGS15a, DFGS16, FG17].
We restrict ourselves here to the case of mutual authentication with pre-specified peers; our

17

Chapter 3. Key Exchange Preliminaries

multi-stage model will then also cover settings where one or both parties are unauthenticated
and possibly learn the partner identity only during the protocol run.

3.1.1 Notation

We denote by U the set of identities (or users) used to model the participants in the system,
each identified by some U ∈ U and associated with a certified long-term public key pkU and
secret key skU . We uniquely identity protocol sessions (on the administrative level of the model)
via a label label ∈ LABELS = U × U × N, where label = (U, V, k) indicates the k-th local session
of identity U (the session owner) with V as the intended communication partner.

For each session, we maintain the following information in a session list ListS, where values
in square brackets [] indicate the default, initial value.

• label ∈ LABELS: the unique (administrative) session label

• id ∈ U : the identity of the session owner

• pid ∈ U : the identity of the intended communication partner

• role ∈ {initiator, responder}: the session owner’s role in this session

• stexec ∈ {running, accepted, rejected}: the state of execution, set once to accepted when the
session accepts resp. rejected when the session rejects [running]

• sid ∈ {0, 1}∗ ∪ {⊥}: the session identifier, set once upon acceptance [⊥]

• key ∈ {0, 1}∗ ∪ {⊥}: the established session key, set once upon acceptance [⊥]

• stkey ∈ {fresh, revealed}: the state of the session key [fresh]

• tested ∈ {true, false}: indicator whether the session key key has been tested or not [false]

Adding a not fully specified tuple (label, U, V, role) to ListS by convention sets all other entries
to their default value. We also use shorthands and write, e.g., label.sid for the element sid in the
tuple with (unique) label label in ListS.

Partnering of sessions. In the key exchange literature there exist different approaches to
specify when two sessions are partnered in the sense of being considered to have jointly run an
execution of the key exchange protocol. The notion of partnering is crucial for excluding trivial
attacks in the security notion: An adversary that, in an undisturbed protocol execution between
two sessions, tests one session and reveals the (same) session key derived at the communication
partner should not be considered successful, as it can trivially check whether the tested key
is real or random by comparing it with the revealed key. Forbidding an adversary to test and
reveal keys in partnered sessions effectively prevents such trivial attacks.

Here, we follow the approach going back to Bellare, Rogaway, and Pointcheval [BPR00]
to define partnering of sessions via session identifiers. Compared to the original partnering
definition via matching communication transcripts used by Bellare and Rogaway [BR94], this
approach is more versatile and allows, e.g., to omit (cryptographically) unnecessary parts of the
transcript. It must in turn be accompanied by a type of soundness condition (captured via the
notion of Match security we define later) in order to prevent trivial session identifiers through
which more than just the two actual communication partners are considered partnered (e.g., all
sessions sharing some fixed session identifier would trivialize security by preventing any session
from being revealed).

18

3.1. The Bellare–Rogaway Model

Formally, we say that two distinct sessions label and label′ are partnered if both sessions
hold the same session identifier, i.e., label.sid = label′.sid 6= ⊥. For correctness, we require that
two sessions jointly executing the key exchange protocol without tampering are partnered upon
acceptance.

3.1.2 Adversary Model

We model the adversary against a key exchange protocol as a probabilistic polynomial-time
(PPT) Turing machine A interacting with the protocol via oracles. The adversary is active and
controls the full network, i.e., the communication between all parties, enabling interception,
injection, and dropping of messages and scheduling their delivery. In order to capture whether
certain interactions and conditions are (in-)admissible we set a flag lost (initialized to false) in
cases where the adversary trivially loses (such as both revealing and testing the session key in
partnered sessions, destroying the freshness of the test session).

The adversary may query the following oracles to interact with the protocol.

• NewSession(U, V, role): Creates a new session with a (unique) new label label for owner
participant identity id = U with role role, having pid = V as intended partner. Add (label,
U, V, role) to ListS and return label.

• Send(label,m): Sends a message m to the session with label label.
If there is no tuple with label label in ListS, return ⊥. Otherwise, run the protocol on behalf
of U on message m and return the response and the updated state of execution label.stexec.
As a special case, if label.role = initiator and m = init, the protocol is initiated (without
any input message).
If the state of execution changes to label.stexec = accepted and the intended communication
partner pid is corrupted, then set label.stkey ← revealed.

• Reveal(label): Reveals the session key label.key in the session with label label.
If there is no session with label label in ListS or label.stexec 6= accepted, then return ⊥.
Otherwise, set label.stkey to revealed and provide the adversary with label.key.

• Corrupt(U): Provide the adversary with the long-term secret skU of user U . No further
queries are allowed to sessions owned by U .
In the non-forward-secret case, for each session label owned by U or having U set as
intended partner (i.e., label.id = U or label.pid = U) set label.stkey to revealed. In this case,
all (previous and future) session keys are considered to be disclosed.

• Test(label): Tests the session key of the session with label label. In the security game this
oracle is given a uniformly random test bit btest as state which is fixed throughout the
game. The adversary may issue this query at most once at an arbitrary point in the game.
If there is no session with label label in ListS or if label.stexec 6= accepted, return ⊥.
Otherwise, set label.tested to true. If the test bit btest is 0, sample a key K $←− D at random
from the session key distribution D. If btest = 1, let K ← label.key be the real session key.
Return K.

3.1.3 Bellare–Rogaway Security

We follow the formalization by Brzuska et al. [BFWW11, Brz13] to separate the security
experiments for actual key indistinguishability (BR security) and for session matching (BR-Match

19

Chapter 3. Key Exchange Preliminaries

security). The former captures the classical idea of session keys being indistinguishable from
random ones and (implicitly) mutually authenticated. The latter formalizes soundness of session
identifiers in that they appropriately identify partnered sessions.

BR-Match security. The notion of BR-Match security ensures soundness of the session identi-
fiers sid, i.e., that they properly identify partnered sessions in the sense that

1. sessions with the same session identifier hold the same key,

2. sessions are partnered with the intended (authenticated) participant, and

3. at most two sessions have the same session identifier.

The BR-Match security game GBR-Match
KE,A is defined as follows.

Definition 3.1 (BR-Match security). Let KE be a key exchange protocol and A a PPT adversary
interacting with KE via the queries defined in Section 3.1.2 in the following game GBR-Match

KE,A :

Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries
NewSession, Send, Reveal, Corrupt, and Test.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GBR-Match
KE,A = 1, if at least one of the following conditions

holds:

1. There exist two distinct labels label, label′ such that label.sid = label′.sid 6= ⊥, label.stexec 6=
rejected, and label′.stexec 6= rejected, but label.key 6= label′.key. (Different session keys in
partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sid = label′.sid 6= ⊥, label.role =
initiator, and label′.role = responder, but label.pid 6= label′.id or label.id 6= label′.pid. (Dif-
ferent intended partner.)

3. There exist three pairwise distinct labels label, label′, label′′ such that label.sid = label′.sid =
label′′.sid 6= ⊥. (More than two sessions share the same session identifier.)

We say KE is BR-Match-secure if for all PPT adversaries A the following advantage function is
negligible in the security parameter:

AdvBR-Match
KE,A := Pr

[
GBR-Match

KE,A = 1
]
.

BR security. The second and actual key secrecy notion, BR security, is defined as follows.

Definition 3.2 (BR security). Let KE be a key exchange protocol with key distribution D and
A a PPT adversary interacting with KE via the queries defined in Section 3.1.2 in the following
game GBR,D

KE,A:

Setup. The challenger chooses the test bit btest
$←− {0, 1} at random and sets lost ← false. It

furthermore generates long-term public/private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries
NewSession, Send, Reveal, Corrupt, and Test. Note that such queries may set lost to true.

20

3.2. Cryptographic Assumptions for Key Exchange

Guess. At some point, A stops and outputs a guess b.

Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not necessarily
distinct) labels label, label′ such that label.sid = label′.sid, label.stkey = revealed, and
label′.tested = true. (Adversary has tested and revealed the key in a single session or in
two partnered sessions.)

We say that A wins the game, denoted by GBR,D
KE,A = 1, if b = btest and lost = false. Note that the

winning condition is independent of the forward secrecy property of KE, as forward secrecy is
already reflected in the Corrupt query.

We say KE is BR-secure in a non-forward-secret resp. forward-secret manner if KE is
BR-Match-secure and for all PPT adversaries A the following advantage function is negligible
in the security parameter:

AdvBR,D
KE,A := Pr

[
GBR,D

KE,A = 1
]
− 1

2 .

3.2 Cryptographic Assumptions for Key Exchange
In the following we recall established cryptographic assumptions employed in analyses of key
exchange protocols as well as (variants of) the more recent pseudorandom-function oracle-Diffie–
Hellman (PRF-ODH) assumption and specific assumptions on the HMAC-based key derivation
function HKDF.

3.2.1 The Diffie–Hellman Assumptions

Along with their seminal proposal of a key exchange protocol, Diffie and Hellman [DH76]
introduced the assumption that, in a finite cyclic group G of prime order q with generator g
it should be hard to compute gab given ga and gb. (Here, G is an instance from a sequence of
groups (Gλ)λ in dependency of the security parameter λ.) This assumption is by now well-known
as the computational Diffie–Hellman (CDH) assumption.

Definition 3.3 (Computational Diffie–Hellman (CDH) assumption). Let G be a cyclic group
of prime order q from a sequence of groups (Gλ)λ in dependency of the security parameter λ,
and g be a generator of G. The computational Diffie–Hellman (CDH) assumption states that
for any probabilistic polynomial-time (PPT) algorithm A the following advantage function is
negligible in λ:

AdvCDH
G,A := Pr

[
A(1λ,G, g, ga, gb) = gab

∣∣∣ a, b $←− Zq
]
.

For key exchange security in the sense of Bellare–Rogaway we require that session keys
be indistinguishable from random. The CDH assumption is too weak for that purpose, as an
adversary while not able to recover the full session key (e.g., gab) may still learn (biases) of
certain bits of the key. In key exchange, one hence rather employs the (conjectured to be
stronger) decisional Diffie–Hellman assumption [Bon98] demanding that Diffie–Hellman values
be indistinguishable from randomly chosen group elements.

Definition 3.4 (Decisional Diffie–Hellman (DDH) assumption). Let G be a cyclic group of
prime order q with generator g from a sequence of groups (Gλ)λ in dependency of the security
parameter λ. The decisional Diffie–Hellman (DDH) assumption states that for any probabilistic
polynomial-time (PPT) algorithm A the following advantage function is negligible in λ:

AdvDDH
G,A :=

∣∣∣Pr
[
A(1λ,G, g, ga, gb, gab) = 1

∣∣∣ a, b $←− Zq
]

−Pr
[
A(1λ,G, g, ga, gb, gc) = 1

∣∣∣ a, b, c $←− Zq
] ∣∣∣.

21

Chapter 3. Key Exchange Preliminaries

A common strategy for security proofs of Diffie–Hellman-based key exchange protocol is to
employ the random oracle model (cf. Section 2.2.4) and reduce security down to being able to solve
the computational Diffie–Hellman problem while having access to a decisional Diffie–Hellman
problem. This problem is known as the Gap-Diffie–Hellman (GapDH) assumption [OP01] and
enables proofs for example in settings where Diffie–Hellman shares are re-used across multiple
protocol instances. The GapDH has been used in analyses of many Diffie–Hellman-based key
exchange protocol (e.g., [JP02, KP05, LM06, DF11]) and we will employ it in our analysis of
the QUIC protocol (see Chapter 5).

Definition 3.5 (Gap-Diffie–Hellman (GapDH) assumption). Let G be a cyclic group of prime or-
der q with generator g from a sequence of groups (Gλ)λ in dependency of the security parameter λ.
Let DDH(·, ·, ·) be a decisional Diffie–Hellman (DDH) oracle that checks for Diffie–Hellman
tuples in the sense that DDH(X,Y, Z) = 1 if and only if logg Z = loggX · logg Y mod q. The
Gap-Diffie–Hellman (GapDH) assumption states that for any probabilistic polynomial-time (PPT)
algorithm A the following advantage function is negligible in λ:

AdvGapDH
G,A := Pr

[
ADDH(·,·,·)(1λ,G, g, ga, gb) = gab

∣∣∣ a, b $←− Zq
]
.

A variant of GapDH where the first input to the DDH oracle DDH(ga, ·, ·) is fixed to ga is
known as the Strong Diffie–Hellman (StDH) assumption.

3.2.2 The PRF-ODH Assumption(s)

The pseudorandom-function oracle-Diffie–Hellman (PRF-ODH) assumption has been introduced
by Jager et al. [JKSS12] in their analysis of the TLS 1.2 key exchange. It is a variant of the
oracle-Diffie–Hellman assumption introduced by Abdalla et al. [ABR01] in the context of the
DHIES encryption scheme. Basically, the PRF-ODH states that the pseudorandom-function value
PRF(guv, x?) for a Diffie–Hellman-type key guv is indistinguishable from a random string, even
when given gu and gv and when being able to see related values PRF(Su, x) and/or PRF(T v, x)
for chosen values S, T , and x.

As we will see in our analyses of various TLS 1.3 handshake modes, the PRF-ODH assumption
appears quite naturally in Diffie–Hellman-based key exchange protocols, e.g., when aiming
at strong security of unauthenticated session keys. More specifically, an adversary may have
a tested session accept with a session key PRF(guv, . . .) derived from guv for some honest
Diffie–Hellman shares gu and gv while making the honest participant that sent gu accept with an
adversary-controlled share gv′ , deriving a key PRF(guv′ , . . .) from guv

′ . In a Bellare–Rogaway-
style security game, a reduction encoding a (Decisional) Diffie–Hellman challenge in gu and gv
now needs to be to respond to a Reveal query on PRF(guv′ , . . .), while knowing neither u nor v′.
This is where the PRF-ODH assumption enables a sound simulation by providing access to the
related session key value PRF(guv′ , . . .).

Different variants of the PRF-ODH assumption have been introduced and used in the literature
for the analysis of various key exchange protocols. The original version by Jager et al. [JKSS12]
for the ephemeral Diffie–Hellman TLS 1.2 handshake required security under a single query for
one of the two Diffie–Hellman shares. Krawczyk et al. [KPW13] extended this to multiple oracle
queries against this share for their analyses of the TLS 1.2 static Diffie–Hellman handshake. In
our work on the TLS 1.3 Diffie–Hellman-based 0-RTT handshake (see Chapter 7) we augmented
the PRF-ODH assumption by an additional single oracle query to the other Diffie–Hellman share.
Finally, Brendel and Fischlin [BF17] required multiple queries to both shares in their work on a
0-RTT extension to the Extended Access Control (EAC) protocol.

The PRF-ODH assumption can be seen as a more modular building block for proofs compared
to the rather involved proof strategies based on the GapDH or StDH assumption in the random

22

3.2. Cryptographic Assumptions for Key Exchange

oracle model. We refer to our recent study [BFGJ17] for instantiations of PRF-ODH under
different assumptions, but note that all variants can be instantiated in the random oracle model
under the StDH assumption. Our study furthermore establishes relations between the different
variants and provides indication that PRF-ODH is likely not a standard-model assumption.

In the following, we present the generic PRF-ODH assumption definition we put forward
in [BFGJ17] which captures all different flavors occurring in previous works. This in particular
includes the original Jager et al. [JKSS12] single-one-sided (snPRF-ODH) variant we employ in
all our key secrecy analyses of Diffie–Hellman-based TLS 1.3 handshakes (see Chapters 6 and 7)
as well as the (multiple-single) double-sided (msPRF-ODH) variant we rely on for our analysis
of the TLS 1.3 Diffie–Hellman 0-RTT handshake (in Chapter 7).

Definition 3.6 (Generic PRF-ODH assumption). Let λ ∈ N be the security parameter and
G be a cyclic group of prime order q with generator g. Let PRF : G × {0, 1}∗ → {0, 1}λ be a
pseudorandom function that takes a key K ∈ G and a label x ∈ {0, 1}∗ as input and outputs a
value y ∈ {0, 1}λ, i.e., y ← PRF(K,x).

We define a generic security notion lrPRF-ODH which is parameterized by l, r ∈ {n, s,m}
indicating how often the adversary is allowed to query a certain “left”, resp. “right”, oracle
(ODHu, resp. ODHv) where n indicates that no query is allowed, s that a single query is allowed,
and m that multiple (polynomially many) queries are allowed to the respective side. Consider
the following security game GlrPRF-ODH

PRF,G,A between a challenger and a probabilistic polynomial-time
(PPT) adversary A.

1. The challenger samples u $←− Zq and provides G, g, and gu to the adversary A.

2. If l = m, A can issue arbitrarily many queries to the following oracle ODHu.

ODHu oracle. On a query of the form (S, x), the challenger first checks if S /∈ G and
returns ⊥ if this is the case. Otherwise, it computes y ← PRF(Su, x) and returns y.

3. Eventually, A issues a challenge query x?. Upon this query, the challenger samples v $←− Zq
and a bit b $←− {0, 1} uniformly at random. It then computes y?0 = PRF(guv, x?) and
samples y?1 $←− {0, 1}λ uniformly random. The challenger returns (gv, y?b) to A.

4. Next, A may issue (arbitrarily interleaved) queries to the following oracles ODHu and ODHv

(depending on l and r).

ODHu oracle. The adversary A may ask no (l = n), a single (l = s), or arbitrarily many
(l = m) queries to this oracle. On a query of the form (S, x), the challenger first
checks if S /∈ G or (S, x) = (gv, x?) and returns ⊥ if this is the case. Otherwise, it
computes y ← PRF(Su, x) and returns y.

ODHv oracle. The adversary A may ask no (r = n), a single (r = s), or arbitrarily many
(r = m) queries to this oracle. On a query of the form (T, x), the challenger first
checks if T /∈ G or (T, x) = (gu, x?) and returns ⊥ if this is the case. Otherwise, it
computes y ← PRF(T v, x) and returns y.

5. At some point, A stops and outputs a guess b′ ∈ {0, 1}.

We say that the adversary wins the lrPRF-ODH game if b′ = b and define the advantage
function as

AdvlrPRF-ODH
PRF,G,A := 2 ·

(
Pr[b′ = b]− 1

2

)
.

Assuming a sequence of groups in dependency of the security parameter, we say that a pseudo-
random function PRF with keys from (Gλ)λ provides lrPRF-ODH security (for l, r ∈ {n, s,m}) if
for any A the advantage AdvlrPRF-ODH

PRF,G,A is negligible in the security parameter λ.

23

Chapter 3. Key Exchange Preliminaries

3.2.3 Assumptions on HMAC and HKDF

Key exchange protocols rely on key derivation functions in order to extract uniformly random
session keys of a certain length from potentially non-uniform sources of entropy (e.g., Diffie–
Hellman group elements). The key exchanges we analyze in the QUIC protocol and TLS 1.3
protocol drafts employ HKDF [Kra10, KE10], a specific hash-function-based key derivation
function employing HMAC [BCK96, KBC97] as core building block. We here recap the definitions
for both. For our analyses we rely on several assumptions on both functions, including standard
PRF security (cf. Definition 2.2.1), the PRF-ODH assumption, and the random oracle model, as
well as two more specific assumptions given below.

HMAC [BCK96, KBC97] is a MAC scheme based on a cryptographic hash function H. Key
generation simply samples a random key K $←− {0, 1}λ, tagging and verification is then done by
(re)computing on a messagem the MAC value HMAC(K,m) := H((K⊕opad) ‖H((K⊕ipad) ‖m)),
where opad and ipad are two one-block-long padding values consisting of repeated bytes 0x5c
and 0x36, respectively.

HKDF is a key derivation function following the extract-then-expand paradigm [Kra10, KE10]
instantiated with HMAC. We adopt the standard notation for the two HKDF functions:
HKDF.Extract(XTS,SKM) on input an (non-secret and potentially fixed) extractor salt XTS
and some (not necessarily uniform) source key material SKM outputs a pseudorandom key PRK.
HKDF.Expand(PRK,CTXinfo) on input a pseudorandom key PRK (from the Extract step)
and some (potentially empty) context information CTXinfo outputs pseudorandom key ma-
terial KM.3 Both functions are instantiated with HMAC, where directly HKDF.Extract(XTS,
SKM) := HMAC(XTS,SKM) and HKDF.Expand iteratively invokes HMAC to generate pseudo-
random output of the required length (see [Kra10]).

The first assumption, which we denote as HMAC(0, $)-$, concerns HMAC and is induced
by an HKDF extraction step of a uniformly random pre-shared key in the TLS 1.3 draft-14
key schedule (see Section 7.3). It states that HMAC(0, x) for an unknown, uniformly random
value x $←− {0, 1}λ is computationally indistinguishable from another uniformly random value y $←−
{0, 1}λ.

Definition 3.7 (HMAC(0, $)-$ assumption). Let HMAC be the HMAC function as defined
in [BCK96]. We say that the HMAC(0, $)-$ assumption holds for HMAC if for all PPT adver-
saries A the following advantage function is negligible in the security parameter:

AdvHMAC(0,$)-$
HMAC,A :=

∣∣∣Pr
[
A(1λ,HMAC(0, x)) = 1

∣∣∣ x $←− {0, 1}λ
]
− Pr

[
A(1λ, y) = 1

∣∣∣ y $←− {0, 1}λ
]∣∣∣.

The second assumption, induced by the TLS 1.3 draft-12 key schedule (see Section 7.5),
is that the HKDF extraction step HKDF.Extract (being the HMAC function) is a strong
(computational) extractor (in a mild form, extracting λ uniform bits from λ uniform bits with a
public seed of λ uniform bits).

Definition 3.8 (HKDF.Extract as strong (computational) extractor). Let HKDF.Extract : {0, 1}λ×
{0, 1}λ → {0, 1}λ be the HKDF extraction function as defined in [Kra10] (i.e., HKDF.Extract =
HMAC) with fixed inputs and output length λ. We say that HKDF.Extract is a strong (computa-
tional) extractor (in that setting) if for all PPT adversaries A the following advantage function
is negligible in the security parameter:

Advst-Extract
HKDF.Extract,A :=

∣∣∣Pr
[
A(1λ, x,HKDF.Extract(x, y)) = 1

∣∣∣ x, y $←− {0, 1}λ
]

− Pr
[
A(1λ, x, y) = 1

∣∣∣ x, y $←− {0, 1}λ
] ∣∣∣.

3For simplicity, we omit the original third parameter L in Expand determining its output length and always
assume that L = λ for our security parameter λ if not stated otherwise.

24

Chapter 4
Multi-Stage Key Exchange

Summary. In this chapter we introduce our security model for multi-stage key exchange
protocols, enabling our analyses of the QUIC (Chapter 5) and TLS 1.3 (Chapters 6 and 7)
protocols. We begin by briefly introducing the setting of multi-stage key exchange protocols and
why existing key exchange security models are insufficient to capture such protocols. We then
provide an overview over the features and advanced security aspects captured by our model,
before defining the technical model itself and its associated security notions. Afterwards, we
discuss under which conditions the keys established in a multi-stage key exchange protocol
can be securely composed with a subsequent symmetric-key protocol and provide an according
composition theorem. At the end, we briefly discuss other applications our model has found
since its introduction. The multi-stage key exchange model was introduced in a work published
at ACM CCS 2014 [FG14] and extended in works published at ACM CCS 2015 [DFGS15a] and
IEEE EuroS&P 2017 [FG17], and presented at the TLS 1.3 TRON workshop 2016 [DFGS16].
The version presented in this chapter is based on the most comprehensive one from [FG17].

4.1 Introduction

The goal of an authenticated key exchange protocol is to establish a cryptographically secure key
between two parties over an insecure network, enabling the two parties securely communicate
using the key established. Traditionally, the key exchange step was seen as the setup phase for
the actual communication, ceasing as soon as the key is established, and this key being the only
information passed to the following protocol flow (cf. Chapter 3).

Secure communication protocols in practice, however, demand a more flexible use of key
exchange protocols where multiple keys are established in a continuous process, interleaving
derivation of keys with their usage. Two prominent examples are the QUIC protocol [QUI]
proposed by Google in 2013 and the upcoming next version of the Transport Layer Security
(TLS) protocol, TLS 1.3 [Res18], designed by the Internet Engineering Task Force (IETF),
whose key exchange designs and security we study in Chapters 5–8 of this thesis.

QUIC. Google proposed QUIC (for “Quick UDP Internet Connections”) as a low-latency
transport protocol with security equivalent to TLS. It is a Diffie–Hellman-based connection
establishment protocol, with the particular goal of reduced round complexity. Specifically, it
aims at zero round-trip time (0-RTT) key establishment, i.e., the client is enabled to immediately
deliver data along with the first message sent to the server, protected under an intermediate
cryptographic key. With the server’s reply and contribution to the key exchange, both parties
then switch to a stronger key and continue the communication with that key.

25

Chapter 4. Multi-Stage Key Exchange

TLS 1.3. TLS 1.3 is the next version of the Transport Layer Security (TLS) protocol currently
drafted by the IETF. The protocol design includes several substantial cryptographic changes
compared to the previous TLS version 1.2 [DR08]. Most notably from the structural perspective
of the key exchange design are the following three features of the TLS 1.3 key exchange (the
so-called handshake). First, it derives an intermediate key to encrypt some of its key exchange
messages for increased privacy. Second, besides the main key for securing application data it
establishes further keys for session resumption and exporting of key material. Third, it provides
an optional low-latency (0-RTT) mode in which an additional key is derived early on, enabling
the client to immediately send data.

4.1.1 Multi-Stage Key Exchange

Both examples, QUIC and TLS 1.3, demonstrate that traditional key exchange models are
inappropriate to capture recent desirable key exchange designs in practice. Only considering a
single key established, they cannot capture scenarios in which multiple keys are derived, possibly
used in between (and within the channel protocol), and being dependent on each other’s security.
Our goal here is hence to define a security model for such multi-stage key exchange protocols
which captures the security of all derived keys (at potentially varying security levels) and their
dependency in a single framework.

Our starting point will be the Bellare–Rogaway key exchange model (cf. Section 3.1), as
it is liberal enough to capture many protocols, but also provides reasonably strong security
guarantees. We prudently use the formalization in [Brz13, BFWW11], as we can then more easily
argue about composability with arbitrary symmetric-key protocols. A major difference with the
single-stage case lies in the dependencies of the different stages. In QUIC, for instance, the final
key is protected under the stage-one key by sending the server’s ephemeral Diffie–Hellman key
through a secure channel. This example indicates that we need to carefully devise and motivate
when session keys should be considered fresh (and thus indistinguishable from random) in the
sense that they are not trivially available to the adversary.

Our model furthermore allows us to consider unilaterally and mutually authenticated as well
as as anonymous sessions of a key exchange protocol. This specifically captures that, e.g., in
TLS 1.3, client and server may decide adaptively whether or not to authenticate in a particular
execution of the protocol. Authentication in our model can be based either on public keys (as
in QUIC or the Diffie–Hellman-based TLS 1.3 handshake) or on pre-shared secrets (as in the
TLS 1.3 resumption handshake).

Finally, our model is able to capture low-latency 0-RTT key establishment. Here, the
multi-stage treatment allows us to cover security dependencies between the 0-RTT and main
communication keys established (as in QUIC). We furthermore formally capture in our model
the reduced security properties arising from potential replays of 0-RTT keys possible, e.g., in
the TLS 1.3 0-RTT mode design.

The model we present here evolved over several research papers studying the security of
QUIC [FG14] and TLS 1.3 in several drafts and handshake modes [DFGS15a, DFGS16, FG17].
In the following, we present the model in its most generic variant described in [FG17], enabling
us to capture all aspects of QUIC and TLS 1.3 in the following chapters.

4.2 Overview
Before diving into the technical details of the multi-stage key exchange model, let us provide an
overview and some motivation of the changes originating from the multi-stage setting.

Our model for multi-stage key exchange protocols follows the paradigm of Bellare and
Rogaway [BR94] in the formalism by Brzuska et al. [BFWW11, Brz13] (cf. Section 3.1). We

26

4.2. Overview

likewise keep lists of session information, including values stexec about the state (accepted,
running, or rejected), the session key key, the status stkey of the key (fresh or revealed), and a
session identifier sid. In these lists, we basically account for the multi-stage setting by storing
vectors of these core entries and a variable stage describing the stage a session is in.

Adversarial interaction. As in the basic setting, the adversary can interact with sessions
via core oracle queries NewSession, Send, Reveal, Corrupt, and Test in order to initiate a new
session, send messages to that session, reveal the session key, corrupt the long-term secret key
of a party, and test a session key against a random key, respectively.

One difference in the oracle behavior of our model is owed to the fact that an execution can
continue after some session has accepted and derived an intermediate key which can potentially
be tested. To enable the adversary to decide whether to test such keys prior to their usage we
pause the reply to such Send command after acceptance.

We furthermore distinguish between derived keys which are used internally within the key
exchange protocol (e.g., to encrypt part of the communication as in QUIC or TLS 1.3) and
those only used externally (e.g., to encrypt application data). In case of testing an internal
session key and returning the genuine or a random key to the adversary, we let the subsequent
key exchange step—which may now depend on this session key in the multi-stage setting—also
use the genuine or the random key. Otherwise, distinguishing the session keys from random
might be trivial.

In contrast to the basic Bellare–Rogaway setting and most other key exchange models,
we moreover allow the adversary to issue not only a single but multiple Test queries. This
intuitively captures a setting where an adversary concurrently challenges the security of multiple
keys derived, e.g., in various stages of a single session. It turns out that both variants are
not always immediately reducible via a straightforward hybrid argument, but may depend on
some technical conditions like session matching being publicly decidable (cf. similar conditions
for Bellare–Rogaway composition [BFWW11, Brz13]) or computational independence of the
session keys (see below). For the QUIC and TLS 1.3 draft key exchange protocols we consider
in this thesis we will establish such hybrid arguments within the proofs and prefer to make them
explicit through considering multiple Test queries.

Forward secrecy. We make the usual distinction between non-forward secrecy and forward
secrecy, where the latter protects sessions that accepted before corruption took place. In our
multi-stage setting, session keys may however become forward-secret starting only from a certain
stage on (e.g., in QUIC only the second key is forward-secret). We hence introduce the notion
of stage-j forward secrecy, indicating that keys from stage j on are forward-secret.

Key independence. We also differentiate between (session-)key-dependent and (session-)key-
independent multi-stage protocols. The difference is basically that, for key-dependent schemes,
the session key of stage i is used to derive the session key of stage i+ 1, typically to enhance the
security properties of the session keys. QUIC is an example of such a protocol, where the second
key exchange phase is run through a channel secured with the first key, making the authenticity
of the former dependent on the latter. This property directly affects the adversary’s capabilities
in the sense that we cannot allow the adversary to reveal the session key of stage i before the
key of stage i+ 1 is established in order to avoid trivial attacks. For key-independent protocols,
exposure of the preceding session key in contrast does not weaken the next session key (e.g.,
TLS 1.3 is key-independent, as keys are derived computationally independent of each other).

27

Chapter 4. Multi-Stage Key Exchange

Public, pre-shared, and semi-static keys. Traditional key exchange models consider long-
term keys to be either public keys (e.g., backed by a public-key infrastructure) or pre-shared
symmetric keys. We likewise provide two variants of the multi-stage key exchange model, the
regular one (MSKE) for the more common public-key scenario as well as a pre-shared secret
(MS-PSKE) variant. In the former, public keys are considered authentically distributed upfront,
while in the latter, the adversary is given a NewSecret oracle to generate and register new secrets
shared between two parties.

In the public-key variant of the model, motivated both by QUIC and intermediate TLS 1.3
drafts, we additionally consider temporary or semi-static keys. These keys are somewhat in
between ephemeral keys and static keys. For example, QUIC suggests to let the server use the
short-term key in the second stage in multiple sessions. The description [LC16] speaks of a life
span of about 60 seconds in which the same key is used in every session of this server. Hence,
semi-static keys, analogous to static keys, are not bound to a single session. At the same time,
they may be too transient to be susceptible to cryptanalytic attacks, such that we do not reveal
these key in case of a Corrupt query, but instead introduce a specific RevealSemiStaticKey query.
In the model, to avoid introduction of timing events, we let the adversary decide when parties
should switch to a new semi-static key via a NewSemiStaticKey command.

Note that the NewSemiStaticKey and RevealSemiStaticKey queries can be omitted for analyses
of protocols that do not comprise temporary keys without affecting the remaining security model.

Authentication. Our model captures all three common authentication types of key exchange
protocols: unauthenticated key exchange where neither party authenticates, unilateral authenti-
cation in which only the server (responder) side authenticates, and mutual authentication. As
the authentication type might differ between the different stages of a multi-stage key exchange
protocol (e.g., depending on the sub-protocol of TLS 1.3 used), the model allows to determine
the authentication level for each stage individually. We capture this by allowing the adversary
in the security model to determine the type of authentication, and thus the corresponding
sub-protocol, when initializing a session. We also allow executions of different types to run
concurrently, even within a single party.

We additionally allow the communication partner of a session to be unknown at the start of the
protocol, i.e., we allow for “post-specified peers” as introduced by Canetti and Krawczyk [CK02a].
In our model, this is captured by letting the adversary initialize a session with a wildcard ‘∗’ as
the intended communication partner. This corresponds to the regular case, e.g., in TLS 1.3 that
parties discover their peer’s identity during protocol execution when they receive their peer’s
certificate.

Finally, we aim at strong key secrecy properties for sessions communicating with unauthen-
ticated partners even in cases of incomplete communication. Since the adversary can easily
impersonate the unauthenticated party and thereby legitimately compute the shared session key,
we cannot in general allow all sessions with unauthenticated partners to be tested. However,
if an honest unauthenticated partner contributed the cryptographic material needed for the
shared session key, then the key between these honest parties should still be secure (and a Test
allowed), even if the adversary did not deliver all messages to that honest partner session. To
capture this, we introduce the notion of contributive identifiers, identifying sessions of honest
parties which are currently not partnered according to (full) session identifiers, but indicating
that the key is entirely based on an honest peer’s contribution. For soundness we assume that
partnered sessions (having matching session identifiers) also agree on the contributive identifier.
Both session identifiers and contributive identifiers are set primarily as administrative tokens by
the key exchange protocol during the execution. In contrast to session identifiers, a contributive
identifier can be updated several times instead of being set only once, e.g., to eventually match

28

4.2. Overview

the session identifier.4

Replayability. The standard approach in key exchange protocols to prevent a man-in-the-
middle attacker from replaying messages in order to make a party derive the same key twice
is to include a nonce (‘number used once’) in both the client’s and the server’s messages and
let the nonce contribute to the derived key. In a 0-RTT key exchange, which is essentially a
one-pass (i.e., one-message) key exchange protocol [BWM99a], messages (and hence keys) are
however—at first glance—inevitably replayable5.

The QUIC protocol side-stepped the replay problem in its original cryptographic design of
Revision 20130620 [LC13] by demanding the server to store all client nonces seen in a so-called
“strike register”—restricted in size by a server-specific “orbit” prefix and current time contained
in the nonces—and rejecting any recurring nonce. TLS 1.3, in contrast and in response to
generic application-level replay attacks on 0-RTT key exchange that we discuss in Chapter 7,
forgoes any cryptographically strong protection mechanisms and instead accepts replays as
inevitable (on the channel level).

In our model we therefore distinguish between replayable and non-replayable stages (and,
hence, keys). The latter type of stage leaves the original security properties untouched. The
replayable kind of stage allows for multiple collisions among session identifiers and keys, such
that we need to relax the notion of Match security for such stages. Key secrecy in contrast
should be not affected by replayability because the adversary may be able to impose the same
key on multiple sessions, but the key itself should still look random. For the case of TLS 1.3, this
allows us to capture that the 0-RTT key exchange messages of a client session can be replayed
to multiple server sessions which will all derive the same key.

Furthermore, we capture the effects of exposures of semi-static keys (via RevealSemiStaticKey)
used to non-interactively establish keys in a Diffie–Hellman-based 0-RTT key exchange on both
0-RTT keys (which will be compromised) and non–0-RTT keys (which are required to remain
secure).

Secret compromise paradigm. Finally, let us summarize and exemplify the types of secrecy
compromise our model considers, and which kind of compromises are beyond the scope of this
model.

Our model captures the leakage of long-term secret keys and output session keys as well as
the leakage of semi-static keys (in the public-key variant), following the paradigm of Bellare and
Rogaway [BR94] to capture the compromise of long(er)-lived secret inputs and key outputs of a
key exchange protocol. Note that forward secrecy refers (only) to disclosure of long-term secrets:
if, in the public-key variant, semi-static keys are revealed we in any case expect keys to look
random, except for the ones in replayable stages. Vice versa, we expect that the compromise of
long-term secrets alone (i.e., without also exposing the semi-static key involved) does not affect
keys in (forward-secret) replayable stages.

We note that other classical key exchange models by Canetti and Krawczyk [CK01] and
LaMacchia et al. [LLM07] further capture the leakage of internal session state or ephemeral
secret inputs, which we do not, and against most of which QUIC and TLS 1.3 also do not aim
to protect. One can in principal augment our model with such queries, though.

4Contributive identifiers may be seen as the identifier-based analogue to prefix-matching definitions used in
ACCE models [JKSS12], allowing the adversary to issue Test queries to sessions that are non-trivial to break
but normally force the adversary to lose the game. A similar concept was also introduced by Cremers and
Feltz [CF12] under the term “origin-sessions” for partnering based on matching conversations, and by Bhargavan
et al. [BFK+14] using “(peer-)exchange variables” as alternative to session identifier–based partnering.

5We use the notion of replays interchangeably for both messages and the keys computed based on those
replayed messages.

29

Chapter 4. Multi-Stage Key Exchange

At the examples of QUIC (cf. Chapter 5) and TLS 1.3 (cf. Chapters 6–7), this means we
consider the leakage of:

• Long-term keys (e.g., the server’s static Diffie–Hellman key in QUIC or signing resp.
pre-shared key in TLS 1.3).
This is allowed since usage of keys over a long time period induces a substantial risk of
compromise, spawning the notion of forward secrecy. Leakage of long-term keys is modeled
by the Corrupt query.

• Session keys (e.g., the various traffic/channel encryption keys established in QUIC and
TLS 1.3 or the derived resumption secret in TLS 1.3).
This is allowed since session keys are the actual output of a key exchange, used in a
follow-up protocol (e.g., for encryption, resumption, or key export) or internally in a
subsequent key exchange step (treated in our notion of key independence). Leakage of
session keys is modeled by the Reveal query.

• Semi-static keys (i.e., medium-lived Diffie–Hellman exponents in QUIC or TLS 1.3’s
Diffie–Hellman-based 0-RTT mode).
This is allowed since these keys are meant to be used (by servers) in several connections
with multiple clients and over a potentially significant time span. Furthermore, their
leakage affect the security of derived replayable keys. Leakage of semi-static keys is
modeled by the RevealSemiStaticKey query.

We do not permit the leakage of:

• Ephemeral secrets (e.g., the randomness in a signature algorithm or ephemeral Diffie–
Hellman exponents).
This is disallowed as QUIC and TLS 1.3 do not aim (neither achieve) being secure against
compromises of this kind.6

• Internal values / session state (e.g., internally computed master secrets or MAC keys).
This is disallowed as, again, QUIC and TLS 1.3 do not provide protection against such
leakage.

4.3 Preliminaries

In our model, we explicitly separate some protocol-specific properties (as, e.g., various authen-
tication flavors) from session-specific properties (as, e.g., the state of a running session). We
represent protocol-specific properties as a vector (M,AUTH,USE,REPLAY) that captures the
following:

• M ∈ N: the number of stages (i.e., the number of keys derived)7

6To be precise, the OPTLS key exchange protocol underlying the TLS 1.3 handshake actually maintains
secrecy of the application traffic key even under exposure of the server’s ephemeral Diffie–Hellman exponent,
given that the client’s exponent as well as the server’s semi-static key exponent remain secret, as analyzed by
Krawczyk and Wee [KW15, KW16]. We omitted capturing one-sided ephemeral secret leakage in our model in
order to not further increase its complexity, but conjecture a similar result can be obtained in the multi-stage
setting for the TLS 1.3 Diffie–Hellman-based 0-RTT handshake.

7We fix a maximum stage M only for ease of notation. Note that M can be arbitrarily large in order to cover
protocols where the number of stages is not bounded a-priori. Also note that, for technical convenience, stages
and session keys may be “back to back,” without further protocol interactions between parties.

30

4.3. Preliminaries

• AUTH ⊆ {unauth, unilateral,mutual}M: the set of supported authentication properties (for
each stage). We call stages and keys unauthenticated if they provide no authentication for
either communication partner, unilaterally authenticated if they authenticate only the re-
sponder (server) side, and mutually authenticated if they authenticate both communication
partners.

• USE ∈ {internal, external}M: the usage indicator for each stage, where USEi indicates the
usage of the stage-i key. Here, an internal key is used within the key exchange protocol (but
possibly also externally), whereas an external key must not be used within the protocol,
making the latter potentially amenable to generic composition (see Section 4.6).

• REPLAY ∈ {replayable, nonreplayable}M: the replayability indicator for each stage, where
REPLAYi indicates whether the i-th stage is replayable in the sense that an adversary
can easily force identical communication and thus identical session identifiers and keys in
this stage (e.g., by re-sending the same data in 0-RTT stages). Note that the adversary,
however, should still not able to distinguish such a replayed key from a random one. We
remark that, from a security viewpoint, the usage of replayable stages should ideally be
small, whereas such stages usually come with an efficiency benefit.

As for the basic Bellare–Rogaway model (see Section 3.1), we denote by U the set of identities
(or users) used to model the participants in the system, each identified by some U ∈ U . Sessions
of a protocol are uniquely identified (on the administrative level of the model) using a label
label ∈ LABELS = U × U × N, where label = (U, V, k) indicates the k-th local session of identity
U (the session owner) with V as the intended communication partner.

In the public-key variant of the model (MSKE), each identity U is associated with a certified
long-term public key pkU and secret key skU . In the pre-shared secret setting (MS-PSKE), a
session instead holds a key index for the pre-shared secret pss (and its unique identifier psid)
used. The challenger maintains vectors pssU,V and psidU,V of pre-shared secrets created on
adversary demand, with the k-th entry indicating the k-th secret, resp. corresponding identifier,
shared by parties U and V .

In addition to the long-term keys, parties may in the public-key setting also hold certified
semi-static key pairs (sspk, sssk), each identified by a semi-static key identifier sskid.8 Semi-static
keys moreover are associated with some auxiliary data sskaux which may for example carry
the data structure in which a party learns the semi-static key (e.g., the ServerConfiguration
message and other identifiers in TLS 1.3’s Diffie–Hellman-based 0-RTT handshake). Finally,
a flag stssk,sskid ∈ {fresh, revealed} indicates whether a semi-static key has been revealed to the
adversary or not. This flag is convenient since in our model semi-static keys are linked to
replayable stages, especially to 0-RTT stages (as is common practice), such that we consider
the disclosure of such keys inevitably rendering these session keys to be insecure.

For each session, a tuple with the following information is maintained as an entry in the
session list ListS, where values in square brackets [] indicate the default initial value. Some
variables have values for each stage i ∈ {1, . . . ,M}.

• label ∈ LABELS: the unique (administrative) session label

• id ∈ U : the identity of the session owner

8In earlier versions of the multi-stage key exchange model [FG14, DFGS15a], we denoted those keys as
“temporary keys.” Here, we adopt the more common terminology of “semi-static keys” which is also used in
TLS 1.3.

31

Chapter 4. Multi-Stage Key Exchange

• pid ∈ (U ∪ {∗}): the identity of the intended communication partner, where the distinct
wildcard symbol ‘∗’ stands for “unknown identity” and can be set to a specific identity in
U once by the protocol

• role ∈ {initiator, responder}: the session owner’s role in this session

• auth ∈ AUTH: the intended authentication type (for each stage) from the set of supported
authentication properties AUTH, where authi indicates the authentication level in stage i

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0], where
RUNNING = {runningi | i ∈ N ∪ {0}}, ACCEPTED = {acceptedi | i ∈ N}, REJECTED =
{rejectedi | i ∈ N}, set to acceptedi in the moment a session accepts the i-th key, to
rejectedi when the session rejects that key (we assume a session does not continue after a
reject in any stage), and to runningi when a session continues after accepting the i-th key

• stage ∈ {0, . . . ,M}: the current stage [0], where stage is incremented to i when stexec
reaches acceptedi resp. rejectedi

• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i, set once upon
acceptance in that stage

• cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi [⊥] indicates the contributive identifier in stage i, may be set
several times until acceptance in that stage

• key ∈ ({0, 1}∗ ∪ {⊥})M: keyi [⊥] indicates the established session key in stage i, set once
upon acceptance in that stage

• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in stage i

• tested ∈ {true, false}M: test indicator testedi [false], where true means that keyi has been
tested

In the public-key (MSKE) variant, ListS furthermore contains the following entries:

• sskidid: the key identifier for the semi-static key pair (sspk, sssk) used by the session owner
(⊥ if no key is used)

• sskidpid: the semi-static key identifier for the communication partner (⊥ if no key is used)

In the pre-shared secret (MS-PSKE) variant, ListS instead contains the following extra entries:

• k ∈ N: the index of the pre-shared secret used in a protocol run with the communication
partner

• pss ∈ ({0, 1}∗ ∪ {⊥}): the pre-shared secret to be used in the session

• psid ∈ ({0, 1}∗ ∪ {⊥}): the pre-shared secret identifier of the pre-shared secret to be used
in the session

By convention, adding a not fully specified tuple (label, id, pid, role, auth, sskidid, sskidpid) resp.
(label, id, pid, role, auth, k, pss, psid) to ListS sets all other entries to their default value. We
furthermore write, e.g., label.sid as shorthand for the element sid in the tuple with (unique)
label label in ListS.

As for the plain Bellare–Rogaway model, we define two distinct sessions label and label′ to
be partnered if both sessions hold the same session identifier, i.e., label.sid = label′.sid 6= ⊥, and
require for correctness that two sessions having a non-tampered joint execution are partnered
upon acceptance.

32

4.4. Adversary Model

4.4 Adversary Model
We consider a probabilistic polynomial-time (PPT) adversary A which controls the commu-
nication between all parties, enabling interception, injection, and dropping of messages. Our
adversary model further reflects the advanced security aspects in multi-stage key exchange as
outlined in Section 4.2. We conveniently capture admissibility of adversarial interactions and
conditions where the adversary trivially loses (such as both revealing and testing the session key
in partnered sessions) via a flag lost (initialized to false).

The adversary interacts with the protocol via the following queries.

• NewSecret(U, V, k, psid): This query is only available in the pre-shared secret (MS-PSKE)
variant. Generates a fresh pre-shared secret with identifier psid shared as k-th secret
between parties U and V . If there already is a k-th entry in pssU,V or if psid is already
registered for any other pss, return ⊥. The latter ensures global uniqueness of the psid
value. Otherwise, sample pss uniformly at random from the protocol’s pre-shared secret
space and store pss and psid as the k-th entry in pssU,V and pssV,U, resp. in psidV,U
and psidV,U.

• NewSemiStaticKey(U, sskauxpre): This query is only available in the public-key (MSKE)
variant. Generates a new semi-static key pair (sspk, sssk) for identity U with associated
(protocol-defined) auxiliary data sskaux (which might include some adversarially pre-
specified parts sskauxpre) and a (unique) new identifier sskid. Set stssk,sskid ← fresh and
return the tuple (sskid, sspk, sskaux).

• NewSession(U, V, role, auth, sskidU , sskidV) or NewSession(U, V, role, auth, k): The first query
is only used in the public-key (MSKE) variant, the second query only in the pre-shared
secret (MS-PSKE) variant. Creates a new session with a (unique) new label label for owner
participant identity id = U with role role, having pid = V as intended partner (potentially
unspecified, indicated by V = ∗) and aiming at authentication type auth ∈ AUTH.
In the public-key variant, sskidU and sskidV indicate the semi-static key identifiers used
by the owner, resp. intended partner. Either semi-static key identifier can also be left
unspecified (sskidU = ⊥, resp. sskidV = ⊥), indicating that the according party does not
use such key. In the pre-shared secret variant, k indicates the key index of the shared pss
between U and V . If no such pss has been registered, return ⊥. Otherwise, set label.pss to
pss and label.psid to the corresponding k-th entry of psidU,V . Add (label, U, V, role, auth,
sskidU , sskidV), resp. (label, U, V, role, auth, k, pss, psid), to ListS and return label.

• Send(label,m): Sends a message m to the session with label label.
If there is no tuple with label label in ListS, return ⊥. Otherwise, run the protocol on
behalf of U on message m and return the response and the updated state of execution
label.stexec. As a special case, if label.role = initiator and m = init, the protocol is initiated
(without any input message).
If, during the protocol execution, the state of execution changes to acceptedi for some i,
the protocol execution is immediately suspended and acceptedi is returned as result to
the adversary. The adversary can later trigger the resumption of the protocol execution
by issuing a special Send(label, continue) query. For such a query, the protocol continues
as specified, with the party creating the next protocol message and handing it over to
the adversary together with the resulting state of execution stexec. We note that this is
necessary to allow the adversary to test such a key, before it may be used immediately in
the response and thus cannot be tested anymore to prevent trivial distinguishing attacks.

33

Chapter 4. Multi-Stage Key Exchange

If the state of execution changes to label.stexec = acceptedi for some i and there is a
partnered session label′ 6= label in ListS (i.e., label.sidi = label′.sidi) with label′.stkey,i =
revealed, then, for key independence, label.stkey,i is set to revealed as well, whereas for key-
dependent security, all label.stkey,i′ for i′ ≥ i are set to revealed. The former corresponds to
the case that session keys of partnered sessions should be considered revealed as well, the
latter implements that for key dependency all subsequent keys are potentially available to
the adversary, too.
If the state of execution changes to label.stexec = acceptedi for some i and there is a
partnered session label′ 6= label in ListS (i.e., label.sidi = label′.sidi) with label′.testedi = true,
then set label.testedi ← true and (only if USEi = internal) label.keyi ← label′.keyi. This
ensures that, if the partnered session has been tested before, subsequent Test queries for
the session are answered accordingly and, in case it is used internally, this session’s key
keyi is set consistently.9

If the state of execution changes to label.stexec = acceptedi for some i and the intended
communication partner pid 6= ∗ is corrupted, then set label.stkey,i ← revealed.

• Reveal(label, i): Reveals the session key label.keyi of stage i in the session with label label.
If there is no session with label label in ListS or label.stage < i, then return ⊥. Otherwise,
set label.stkey,i to revealed and provide the adversary with label.keyi.
If there is a partnered session label′ in ListS (i.e., label.sidi = label′.sidi) with label′.stage ≥ i,
then label′.stkey,i is set to revealed as well. This means the i-th session keys of all partnered
sessions (if established) are considered revealed too.
As above, in the case of key-dependent security, since not yet established future keys depend
on the revealed key, we cannot ensure their security anymore (neither in this session in
question, nor in partnered sessions). Therefore, if label.stage = i, set label.stkey,j = revealed
for all j > i, as they depend on the revealed key. For the same reason, if a partnered
session label′ (label.sidi = label′.sidi) has label′.stage = i, then set label′.stkey,j = revealed
for all j > i. Note that if however label′.stage > i, then keys label′.keyj for j > i derived
in the partnered session are not considered to be revealed by this query since they have
been accepted previously, i.e., prior to keyi being revealed in this query.

• RevealSemiStaticKey(sskid): This query is only available in the public-key (MSKE) variant.
If there exists a semi-static key pair (sspk, sssk) with identifier sskid, set stssk,sskid ← revealed,
and output sssk. Otherwise, return ⊥.
Furthermore, for each session label with label.sskidid = sskid or label.sskidpid = sskid and
all replayable stages i ∈ {1, . . . ,M} with REPLAYi = replayable, set label.stkey,i to revealed.
That is, any replayable stage’s session key in a session that uses the revealed semi-static
key is considered to be disclosed.

• Corrupt(U) or Corrupt(psid): The first query is only used in the public-key (MSKE) variant,
the second query only in the pre-shared secret (MS-PSKE) variant. Provide the adversary
with the corresponding long-term secret, i.e., skU (MSKE), resp. pss corresponding to psid
(MS-PSKE). No further queries are allowed to sessions owned by U (MSKE), resp. to any
session label with label.psid = psid (MS-PSKE).
In the non-forward-secret case, for each session label with label.id = U or label.pid = U
(MSKE), resp. holding label.psid = psid (MS-PSKE), and for all i ∈ {1, . . . ,M}, set

9Note that for internal keys this implicitly assumes the following property of the later-defined Match security:
Whenever two partnered sessions both accept a key in some stage, these keys will be equal.

34

4.4. Adversary Model

label.stkey,i to revealed. In this case, all (previous and future) session keys are considered
to be disclosed.

In the case of stage-j forward secrecy, stkey,i of such sessions label is instead set to revealed
only if i < j or if i > stage. This means that session keys before the j-th stage (where
forward secrecy kicks in) as well as keys that have not yet been established are potentially
disclosed.

Independent of the forward secrecy aspect, in the case of key-dependent security, setting the
relevant key states to revealed for some stage i is done by internally invoking Reveal(label, i),
ignoring the response and also the restriction that a call with i > stage would immediately
return ⊥. This ensures that follow-up revocations of keys that depend on the revoked
keys are carried out correctly.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security
game this oracle is given a uniformly random test bit btest as state which is fixed throughout
the game.

If there is no session with label label in ListS or if label.stexec 6= acceptedi or label.testedi =
true, return ⊥. If there is a partnered session label′ in ListS (i.e., label.sidi = label′.sidi)
with label′.stexec 6= acceptedi, set the ‘lost’ flag to lost ← true. This ensures that keys
can only be tested once and if they have just been accepted but not used yet, including
ensuring any partnered session that may have already established this key has not used it.

If label.authi = unauth or if label.authi = unilateral and label.role = responder, but there is
no session label′ (for label 6= label′) in ListS with label.cidi = label′.cidi, then set lost← true.
This ensures that having an honest contributive partner is a prerequisite for testing
unauthenticated stages, resp. the responder sessions in a unilaterally authenticated stage.10

Otherwise, set label.testedi to true. If the test bit btest is 0, sample a key K $←− D at random
from the session key distribution D. If btest = 1, let K ← label.keyi be the real session
key. If USEi = internal (i.e., the tested i-th key is indicated as being used internally),
set label.keyi ← K, i.e., we substitute an internally used session key by the random and
independent test key K which is also used for consistent future deployments within the key
exchange protocol. In contrast, externally used session keys are not replaced by random
ones, the adversary only receives the real (in case btest = 1) or random (in case btest = 0)
key. This distinction between internal and external keys for Test queries emphasizes that
external keys are not supposed to be used within the key exchange (and hence there is no
need to register the tested random key in the protocol’s session key field) while internal
keys will be used (and hence the tested random key must be deployed in the remaining
protocol steps for consistency).

Moreover, if there exists a partnered session label′ which has also just accepted the i-
th key (i.e., label.sidi = label′.sidi and label.stexec = label′.stexec = acceptedi), then also
set label′.testedi ← true and (only if USEi = internal) label′.keyi ← label.keyi to ensure
consistency (of later tests and (internal) key usage) in the special case that both label and
label′ are in state acceptedi and, hence, either of them can be tested first.

Return K.

10Note that ListS entries are only created for honest sessions, i.e., sessions generated by NewSession queries.

35

Chapter 4. Multi-Stage Key Exchange

4.5 Security of Multi-Stage Key Exchange Protocols
As in the formalization of the Bellare–Rogaway key exchange model by Brzuska et al. [BFWW11,
Brz13] (cf. Section 3.1), we model security according to two games, one for key indistinguishability,
and one for session matching. The former is the classical notion of random-looking keys, refined
under the term Multi-Stage security according to the advanced security aspects for multi-stage
key exchange: key (in)dependence, (stage-j) forward secrecy, different authentication modes, and
replayability. The Match property complements this notion by guaranteeing that the specified
session identifiers sid effectively match the partnered sessions, and is likewise adapted to the
multi-stage setting.

4.5.1 Match Security

The notion of Match security ensures soundness of the session identifiers sid, i.e., that they
properly identify partnered sessions in the sense that

1. sessions with the same session identifier for some stage hold the same key at that stage,

2. sessions with the same session identifier for some stage agree on that stage’s authentication
level,

3. sessions with the same session identifier for some stage share the same contributive identifier
at that stage,

4. sessions are partnered with the intended (authenticated) participant, and for mutual
authentication based on pre-shared secrets share the same key index,

5. session identifiers do not match across different stages, and

6. at most two sessions have the same session identifier at any non-replayable stage.

The Match security game GMatch
KE,A thus is defined as follows.

Definition 4.1 (Match security). Let KE be a multi-stage key exchange protocol with prop-
erties (M,AUTH,USE,REPLAY) and A a PPT adversary interacting with KE via the queries
defined in Section 4.4 in the following game GMatch

KE,A :

Setup. In the public-key variant (MSKE), the challenger generates long-term public/private-key
pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys (MSKE) and has access to the queries
NewSecret, NewSemiStaticKey, NewSession, Send, Reveal, RevealSemiStaticKey, Corrupt,
and Test.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A = 1, if at least one of the following conditions

holds:

1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some
stage i ∈ {1, . . . ,M}, label.stexec 6= rejectedi, and label′.stexec 6= rejectedi, but label.keyi 6=
label′.keyi. (Different session keys in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some
stage i ∈ {1, . . . ,M}, but label.authi 6= label′.authi. (Different authentication types in some
stage of partnered sessions.)

36

4.5. Security of Multi-Stage Key Exchange Protocols

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some
stage i ∈ {1, . . . ,M}, but label.cidi 6= label′.cidi or label.cidi = label′.cidi = ⊥. (Different
or unset contributive identifiers in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some
stage i ∈ {1, . . . ,M}, label.authi = label′.authi ∈ {unilateral,mutual}, label.role = initiator,
and label′.role = responder, but label.pid 6= label′.id or (only if label.authi = mutual)
label.id 6= label′.pid or (only for MS-PSKE and if label.authi = mutual) label.k 6= label′.k.
(Different intended authenticated partner or (only MS-PSKE) different key indices in
mutual authentication.)

5. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6=
⊥ for some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session
identifier.)

6. There exist three pairwise distinct labels label, label′, label′′ such that label.sidi = label′.sidi =
label′′.sidi 6= ⊥ for some stage i ∈ {1, . . . ,M} with REPLAYi = nonreplayable. (More than
two sessions share the same session identifier in a non-replayable stage.)

We say KE is Match-secure if for all PPT adversaries A the following advantage function is
negligible in the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

4.5.2 Multi-Stage Security

The second and core notion, Multi-Stage security, captures Bellare–Rogaway-like key secrecy in
the multi-stage setting as follows.

Definition 4.2 (Multi-Stage security). Let KE be a multi-stage key exchange protocol with key
distribution D and properties (M,AUTH,USE,REPLAY), and A a PPT adversary interacting
with KE via the queries defined in Section 4.4 in the following game GMulti-Stage,D

KE,A :

Setup. The challenger chooses the test bit btest
$←− {0, 1} at random and sets lost← false. In

the public-key variant (MSKE), it furthermore generates long-term public/private-key pairs
for each participant U ∈ U .

Query. The adversary A receives the generated public keys (MSKE) and has access to the queries
NewSecret, NewSemiStaticKey, NewSession, Send, Reveal, RevealSemiStaticKey, Corrupt,
and Test. Note that such queries may set lost to true.

Guess. At some point, A stops and outputs a guess b.

Finalize. The challenger sets the ‘lost’ flag to lost ← true if there exist two (not necessarily
distinct) labels label, label′ and some stage i ∈ {1, . . . ,M} such that label.sidi = label′.sidi,
label.stkey,i = revealed, and label′.testedi = true. (Adversary has tested and revealed the
key of some stage in a single session or in two partnered sessions.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false. Note

that the winning condition is independent of key dependency, forward secrecy, and authentication
properties of KE, as those are directly integrated in the affected (Reveal and Corrupt) queries
and the finalization step of the game; for example, Corrupt is defined differently for non-forward-
secrecy versus stage-j forward secrecy.

37

Chapter 4. Multi-Stage Key Exchange

We say KE is Multi-Stage-secure in a key-dependent resp. key-independent and non-forward-
secret resp. stage-j-forward-secret manner with concurrent authentication types AUTH, key
usage USE, and replayability property REPLAY if KE is Match-secure and for all PPT adver-
saries A the following advantage function is negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .

4.6 Composition

Key exchange protocols would be of limited use if applied in isolation; in general the derived keys
are meant to be deployed in a follow-up (or overall) protocol. The most common application is
of course the encryption (and authentication) of data sent between the two involved parties
within a (cryptographic) channel protocol, with the QUIC transport and TLS record protocols
being prime examples. The TLS 1.3 handshakes additionally derive further keys for different
purposes, namely for later resumption of a session and for exporting extra key material from
a connection. For both, the key usage in the cryptographic channel as well as the usage for
other purposes, it is desirable to modularize the security analysis, treating key exchange and
the composed protocol(s) independently and then obtaining overall security guarantees for the
combined execution.

Ideally, one would hence like to see a composition result for Multi-Stage-secure key exchange
protocols in the sense that such protocols—potentially under some condition—can be securely
composed with arbitrary symmetric-key protocols, as has been shown for the case of Bellare–
Rogaway-secure key exchange protocols by Brzuska et al. [BFWW11]. In this section, we prove
that indeed secure composition with arbitrary symmetric-key protocols is possible for a specific
flavor of Multi-Stage-secure protocols, namely those that provide key independence and stage-j
forward secrecy (as well as a technical notion of multi-stage session matching we define below),
when composed with a symmetric-key protocol at a forward-secret, external, and non-replayable
stage.

4.6.1 Preliminaries

In order to reason about composition of key exchange and symmetric-key protocol games, we
employ the syntax for composed games as well as the notion of session matching introduced by
Brzuska et al. [BFWW11, Brz13]. We adapt their syntax and notions to the multi-stage setting.
We furthermore extend them to also capture, beyond mutual authentication, composition for
unilaterally authenticated and unauthenticated keys, as well as session matching with non-public
partnering.

Composed games for multi-stage key exchange. Let GKE be a game modeling security
for a (multi-stage) key exchange protocol KE, and GΠ a security game for some symmetric-key
protocol Π. Fix some stage i for the moment and keys derived in this stage only; the composition
with protocols run on keys for other stages will follow from this via the possibility to reveal
such keys via the Reveal query.

We define GKEi;Π as the security game for the composition KEi; Π of KE and Π as follows:
Whenever a session key keyi is accepted in stage i of a session of KE where each of the two
sessions involved either are authenticated or contributed honestly to the derived key11, this

11More formally, we consider stage-i keys which are accepted in a session label that either has an authenticated
communication partner (i.e., label.authi = mutual or label.authi = unilateral and label.role = initiator) or an honest
contributing partnered session (i.e., there exists a session label′ with label.cidi = label′.cidi).

38

4.6. Composition

key keyi is registered as a new key in the symmetric-key protocol game GΠ, allowing the
adversary to run Π-sessions with this key (and all previously registered keys). Observe that
compositional security can obviously only be guaranteed when the adversary does not know
the derived session key, which we require the key exchange protocol to ensure whenever both
sides of the key exchange are either authenticated or honest in their contribution. In particular,
if a session key is derived in a key exchange involving an unauthenticated party whose key
contribution was not simulated by the challenger, we must expect that the adversary controls
this party to an extent where it holds the derived session key—and hence cannot require any
security property of the symmetric-key protocol to hold for such a session key.

In GKEi;Π, the adversary’s task is to break the security of Π by winning in the subgame GΠ,
given access to both the queries of GKE and GΠ, which the composed game essentially just
relays to the appropriate subgame. Exceptions to this are the key registration queries of GΠ
(that are only executed by the composed game to register stage-i keys within GΠ whenever such
a key has been accepted), the Reveal query of GKE (which the adversary is not allowed to query
for stage-i keys in the composed game12, as session key compromise for these keys is—if at
all—captured in GΠ), and the Test query of GKE (being only of administrative purpose for GKE).
The adversary wins in the composed game, if it, via its queries, succeeds in the subgame GΠ.

Multi-stage session matching. As established by Brzuska et al. [BFWW11], session match-
ing is both a necessary and sufficient condition for the composition of Bellare–Rogaway-secure key
exchange and generic symmetric-key protocols. In their definition, a key exchange protocol KE
allows for session matching if there exists an efficient algorithm that, when eavesdropping on the
communication between an arbitrary adversary A and the security game GKE, is able to deduce
which sessions are partnered at each point of the communication. They moreover observe that
such a matching might not be (efficiently) computable in certain cases, e.g., if the key exchange
messages are encrypted using a (publicly) re-randomizable cipher, but partnering is defined over
the unencrypted messages.

The latter restriction becomes particularly relevant in the multi-stage setting, as key exchange
protocols may—and TLS 1.3 does—use keys of previous stages to encrypt later stages’ messages.
In such cases, session matching based on the public transcript may not be feasible anymore;
this especially holds for the case of TLS 1.3. We can however leverage that key independence is
already a prerequisite for composition in the multi-stage setting and hence, when targeting the
keys of a certain stage, revealing the keys of previous stages is of no harm in the key exchange
game. Therefore, we can strengthen session matching in the multi-stage setting to obtain also
the session keys keyj for all stages j < i when determining the partnering for stage i. We
moreover extend session matching to comprise not only the session identifiers but also the newly
introduced contributive identifiers.

Formally, we define multi-stage session matching as follows.

Definition 4.3 (Multi-stage session matching algorithm). A multi-stage session matching
algorithmM for a key exchange protocol KE is an efficient algorithm for which the following
holds for any adversary A interacting in the Multi-Stage security game GMulti-Stage,D

KE,A of KE. On
input a stage i, the public parameters of the game, an ordered list of all queries made by A and
responses from GMulti-Stage,D

KE,A at any point of the game execution, and, for all sessions, a list of
all stage-j keys (for any j < i) accepted at this point,M outputs two lists of pairs of all sessions
in stage i, the first list containing exactly those pairs sharing the same session identifier sidi

12Note however that keys in stages different from i, not being used for Π, are still accessible via Reveal queries
in GKEi;Π, which makes our result also cover concurrent composition with one (or several) of such protocols using
the keys from multiple stages.

39

Chapter 4. Multi-Stage Key Exchange

(i.e., being partnered), and the second list exactly those pairs sharing the same contributive
identifier cidi at this point of the game execution.

If such an algorithm exists for a key exchange protocol KE, we say that KE allows for an
efficient multi-stage session matching.

4.6.2 Compositional Security

We are now able to state our composition result for multi-stage key exchange protocols: The
composition KEi; Π of a multi-stage key exchange protocol KE with an arbitrary symmetric-key
protocol Π employing the stage-i session keys of KE is secure if the key exchange is Multi-Stage-
secure providing key independence, stage-j forward secrecy (for j ≤ i), multi-stage session
matching, and the stage-i keys are external and non-replayable.

Theorem 4.4 (Multi-stage composition). Let KE be a Multi-Stage-secure key exchange protocol
(in the public-key or preshared-secret setting) providing key independence and stage-j forward
secrecy with properties (M,AUTH,USE,REPLAY) and key distribution D, and that allows for
efficient multi-stage session matching. Let Π be a symmetric-key protocol that is secure w.r.t.
some game GΠ and has a key generation algorithm that outputs keys with distribution D.
Then the composition KEi; Π for any external and non-replayable stage i ≥ j (i.e., REPLAYi =
nonreplayable and USEi = external) is secure w.r.t. the composed security game GKEi;Π. Formally,
for any efficient adversary A against GKEi;Π there exist efficient algorithms B1,B2,B3 such that

AdvGKEi;Π
KEi;Π,A ≤ AdvMatch

KE,B1 + ns · AdvMulti-Stage,D
KE,B2

+ AdvGΠ
Π,B3

,

where ns is the maximum number of sessions in the key exchange game.

Proof of Theorem 4.4. The proof proceeds along the lines of the Bellare–Rogaway composition
result by Brzuska et al. [BFWW11].

As a technical prerequisite, we ensure that the key exchange protocol KE in the composed
game GKEi;Π always outputs the same key keyi for two partnered sessions in stage i. This basic
property is given by Match security (which is subsumed under requiring Multi-Stage security
from KE) and hence we can easily turn an adversary A that triggers different keys to be output
in partnered sessions in the key exchange part of GKEi;Π into an adversary B1 against Match
security. Observe that B1 can simply relay all oracle queries A makes for the KE subgame to
its own oracles (note that A is not given access to a Test query in GKEi;Π). Furthermore, B1
simulates the Π subgame on its own according to the GKEi;Π definition. Providing a correct
simulation for A, algorithm B1 always wins if A makes two partnered sessions output different
keys in stage i; hence, we can from this point on assume that partnered sessions agree on their
derived keys.

On a high level, we now first replace the derived session keys, one at a time, by a randomly
chosen key from D and show that an adversary able to distinguish each of these replacements
can be turned into an efficient Multi-Stage adversary against KE. After all keys have been
replaced by random ones, the subgame GΠ is then independent of the key exchange protocol
as the now randomly chosen final stage-i keys are not used within the key exchange. Hence,
breaking the composed game at this point immediately translates to breaking the symmetric-key
protocol game.

The first part of the proof is a hybrid argument. Let GnKEi;Π denote a game that behaves like
GKEi;Π (with partnered sessions agreeing on the derived key), except that for the first n accepting
sessions in stage i where the key is registered in the symmetric-key protocol subgame (i.e.,
where the communication partner is either authenticated or an honest partnered session exists),
instead of the real session key keyi a randomly chosen key′i $←− D is registered in GΠ. Obviously,

40

4.6. Composition

G0
KEi;Π = GKEi;Π while GnsKEi;Π (for ns being the maximum number of sessions) denotes the

game where all keys used in the Π subgame are chosen at random from D. As we establish in
Lemma 4.5 below, we have that both games are indistinguishable due to the Multi-Stage security
of KE and, for AdvMulti-Stage,D

KE,B2
being the maximal advantage of any of the hybrid reductions B

from Lemma 4.5, it holds that

Adv
G0

KEi;Π
KEi;Π,A ≤ Adv

GnsKEi;Π
KEi;Π,A + ns · AdvMulti-Stage,D

KE,B2
.

In GnsKEi;Π only randomly chosen keys, independent of KE, are used in the symmetric-key
protocol subgame GΠ. This allows us to bound, in Lemma 4.6 below, the advantage of A
in GnsKEi;Π by the advantage of an adversary B3 directly breaking the protocol security game GΠ.

Finally, the initial assumption that Π is secure w.r.t. GΠ then allows us to conclude that
KE; Π is secure w.r.t. GKEi;Π.

We first establish the hybrid argument in the proof of Theorem 4.4.

Lemma 4.5. Let KE be a Multi-Stage-secure key exchange protocol (in the public-key or
preshared-secret setting) providing key independence and stage-j forward secrecy with prop-
erties (M,AUTH,USE,REPLAY) and key distribution D, that allows for efficient multi-stage
session matching, and where partnered sessions in stage i always agree on the derived session key.
Let Π be a symmetric-key protocol that is secure w.r.t. some game GΠ and has a key generation
algorithm that outputs keys with distribution D. Then for any external and non-replayable
stage i ≥ j, all n = 1, . . . , ns, and any efficient adversary A there exists an efficient algorithm B
such that ∣∣∣∣∣Adv

Gn−1
KEi;Π

KEi;Π,A − Adv
GnKEi;Π
KEi;Π,A

∣∣∣∣∣ ≤ AdvMulti-Stage,D
KE,B ,

where ns is the maximum number of sessions in the key exchange game.

We provide B with n as auxiliary input for simplicity but note that letting B pick n at
random in [1, ns] suffices to prove the hybrid argument.

Let us remark that each hybrid step makes use of only a single Test query in its reduction
to the Multi-Stage security of KE. We expect that the overall bound could be improved by
the factor of ns introduced by the hybrid argument when leveraging the multiple Test queries
available in the Multi-Stage game to transition from G0

KEi;Π to GnsKEi;Π directly.

Proof of Lemma 4.5. The task is to construct an algorithm B given n and using the adversary A
against GKEi;Π such that, if A is able to distinguish (by a a non-negligible advantage difference)
between Gn−1

KEi;Π and GnKEi;Π, then B has non-negligible advantage in GMulti-Stage,D
KE,B .

In order to simulate GKEi;Π for A, algorithm B basically forwards all KE-related queries
to its Multi-Stage game as described below while answering queries to the GΠ subgame on its
own (using the established stage-i keys from the key exchange). For administrative pur-
poses, B keeps two mappings. The first one, SDATA : LABELS → {initiator, responder} ×
{unauth, unilateral,mutual}× [D]i−1, stores the role, the i-th stage’s authentication level, and the
session keys for all stages j < i of each key exchange session. The second one, SKEY : LABELS→
[D], stores the key value for each session whose stage-i key was registered in GΠ. Morever, B
keeps a counter c, initialized as c = 0, indicating the number of session keys replaced by random
values so far. Algorithm B handles queries by A to the key exchange subgame as follows (recall
that there A does not have access to the Test oracle of GKE in GKEi;Π):

• NewSecret, NewSemiStaticKey, NewSession, Reveal, RevealSemiStaticKey, and Corrupt queries
are forwarded to GMulti-Stage,D

KE,B and the responses sent back to A. For any NewSession call,

41

Chapter 4. Multi-Stage Key Exchange

B puts the issued label together with the session’s specified role and authentication level
for stage i into the map SDATA.
Observe that the approach to simply forward Reveal, RevealSemiStaticKey, and Corrupt
queries is sound and in particular does not infringe with a later test query on a stage-i
key (see below). For the former, KE being key-independent implies that Reveal(label, i′)
queries for stages i′ 6= i, which are allowed in the composed game, never affect the security
of session keys in stage i. For the latter, the stage-j forward secrecy of KE (for j ≤ i) and
non-replayability of stage i ensure that session keys in stage i are not affected by Corrupt
or RevealSemiStaticKey queries.

• Send(label,m) queries are forwarded to GMulti-Stage,D
KE,B as well and the responses sent back

to A. Additionally, if session label in GMulti-Stage,D
KE,B changes to an accepting state acceptedj

for j < i due to such a query, B issues a query Reveal(label, j) and stores the resulting
session key keyj in the map SDATA. Note that, again by key independence, this Reveal
query does not affect the session’s stage-i key.
The most important case is when session label changes to state acceptedi. Here, B first
of all invokes the efficient multi-stage session matching algorithm on the queries and
responses A posed to the subgame GKE and all established session keys for stages j < i
(which B has stored in SDATA), in order to obtain all sessions which are partnered and
those which agree on the contributive identifier in stage i.
In case label is partnered with some other session label′ and SKEY(label′) is set, B sets
this key value also as SKEY(label) and provides A with a handle for SKEY(label) in GΠ.
Recall that by assumption two accepting partnered sessions always establish identical
session keys (a property we ensure through Match security in the proof of Theorem 4.4).
Otherwise, B checks whether the conditions for registering the resulting key in the sub-
game GΠ are satisfied, namely whether session label either has an authenticated communica-
tion partner (i.e., if label.authi = mutual or label.authi = unilateral and label.role = initiator,
which B looks up in its map SDATA) or has an honest contributing partnered session (i.e.,
the session matching outputs a session label′ with label.cidi = label′.cidi). If this is the
case, B increments the counter c and provides A with an identifier for SKEY(label) in GΠ,
where SKEY(label) is computed depending on the counter c:

– If c < n, then sample SKEY(label) $←− D at random.
– If c = n, then issue a Test(label, i) query and store the resulting value in SKEY(label).
– If c > n, then issue a Reveal(label, i) query and store the resulting value in SKEY(label).

Note that B first checking for partnered sessions in stage i ensures that it, if at all, only
tests the first session accepting a key (avoiding the according ‘lost’-flag penalty in the Test
query) and never both tests and reveals a key in two partnered sessions (satisfying the finalize
condition of the Multi-Stage definition). Moreover, as the compositional game as well as B only
register session keys for which each of the communication partners in the key exchange is either
authenticated or contributed honestly, we never test a session with an unauthenticated peer
and no honest contributive partnered (satisfying the according conditions in the Test query).
Therefore, B will never cause the ‘lost’ flag to be set in its GMulti-Stage,D

KE,B game. Furthermore, as
stage i keys in KE are external, for stage i the tested random key in the Test query of our model
(for btest = 0) does not replace the actual key in subsequent protocol steps. Determining the
c-th stage-i key established via a Test query hence does not infringe with a correct simulation
of GKEi;Π.

42

4.6. Composition

When A terminates, B stops as well and outputs 1 if A has won in the composed game
(i.e., in the GΠ subgame that B simulates on its own) and 0 otherwise. That way, if the Test
query made by B returns the real session key, B perfectly simulates Gn−1

KEi;Π for A, whereas, if
a random key is returned, B perfectly simulates GnKEi;Π. Since B never causes lost = 1 in its

game we can hence bound the advantage difference between Adv
Gn−1

KEi;Π
KEi;Π,A and Adv

GnKEi;Π
KEi;Π,A by the

advantage of B in winning the game GMulti-Stage,D
KE,B :∣∣∣∣∣Adv

Gn−1
KEi;Π

KEi;Π,A − Adv
GnKEi;Π
KEi;Π,A

∣∣∣∣∣ ≤ AdvMulti-Stage,D
KE,B .

It remains to show how an adversary in the hybrid game GnsKEi;Π, where all composed stage-i
session keys in the GΠ subgame are chosen at random and independent of the key exchange (as
the according stage i is external), can be reduced to an adversary in security game GΠ of the
symmetric-key protocol.

Lemma 4.6. Let KE be a multi-stage key exchange protocol with stage i being external and where
partnered sessions in stage i always agree on the derived session key. Let Π be a symmetric-key
protocol that is secure w.r.t. some game GΠ and has a key generation algorithm that outputs
keys with distribution D. Let ns be the maximum number of sessions in GKEi;Π. Then for any
efficient adversary A there exists an efficient algorithm C such that

Adv
GnsKEi;Π
KEi;Π,A ≤ AdvGΠ

Π,C .

Proof of Lemma 4.6. We let algorithm C simulate the entire composed game GnsKEi;Π for A,
computing the outputs of the key exchange subgame on its own while forwarding any Π-related
query to its game GΠ. This is possible, as the keys established in the key exchange stage i are
external (i.e., unused in KE), hence independent of the protocol part, and thus C is indeed able
to provide a perfect simulation for A. In the end, if A wins in the simulated game, C will have
won in its game GΠ as well, establishing the desired equation.

Formally, C only has to handle Send queries to the key exchange game in a special way.
Although all session keys used in the protocol stage are uniformly distributed, C needs to
distinguish two cases when a session key is accepted in the key exchange:

• If the accepting session is partnered, C instructs GΠ to register the same key as for the
partnered session and returns the according key identifier to A.

• Otherwise, C simply queries GΠ for an identifier of a new (randomly distributed) key
chosen by GΠ, which it relays to A.

All other queries are handled by C in an unmodified way, either by simulating them on its own
(in the case of key exchange queries) or by forwarding them to GΠ (in the case of protocol
queries).

As GΠ samples keys randomly and C ensures consistency in the cases of partnered sessions,
its simulation of GnsKEi;Π for A is perfect. Since C forwards all protocol queries of A unaltered to
GΠ, if A succeeds in the composed game, C wins in GΠ.

On the conditions for multi-stage composition. Our composition theorem for multi-stage
key exchange protocols is conditioned on a number of properties of the key exchange protocol
being composed (recall that there however are no conditions on the composed symmetric-key
protocol). After seeing the proof (technique) for the theorem, let us comment on these conditions
and augment them with some higher-level rationale.

43

Chapter 4. Multi-Stage Key Exchange

Forward secrecy. In our hybrid argument in the proof of Theorem 4.4, we depend on the
forward secrecy of stage i at which instances of the protocol Π are spawned. More precisely,
this property ensures that Corrupt queries of adversary A do not affect our simulation of
instances of the symmetric-key protocol Π that have already been spawned, thus allowing
us to gradually key these protocols with a random instead of the real key. This corresponds
to the intuition that, if some of the keys composed into the symmetric-key protocol are
later compromised, security of that protocol can in general not be achieved anymore.
We remark that Brzuska [Brz13] describes an avenue towards (restricted) composition for
non–forward-secret Bellare–Rogaway-style key exchange protocols. More concretely, if
the security notion for the composed symmetric-key protocol is a single-session game (or
reducible to such), composition for non–forward-secret key exchange becomes possible as
no other keys than the single-session challenge key is registered with the symmetric-key
protocol. We conjecture that a similar result can be obtained for multi-stage composition,
but restrict our focus here on composition with general symmetric-key protocols.

Key independence. In the proof of our composition theorem, key independence of the multi-
stage key exchange guarantees that Reveal queries for session keys keyi′ of stages i′ 6= i
do not affect the session keys in stage i, that we are gradually replacing by random ones.
Key independence furthermore enables non-public session matching by providing previous
stages’ session keys to the matching algorithm to, e.g., decide partnering even on encrypted
transcripts (a beneficial feature to argue composition for TLS 1.3).
Indeed, if the key exchange would be key-dependent, revealing a session key of stage
i′ < i before the key of stage i′ + 1 is established would lead to all keys in this session
getting revealed, including the to-be-replaced key keyi. Thus, when B replaces the real keyi
by a randomly chosen one, A is potentially able to determine this and abort, rendering
our simulation invalid. This corresponds to the intuition that security cannot generally
be expected for keys in a symmetric-key protocol that might be compromised through
exposure of keys external to the symmetric-key security game.
Note that, moreover, we cannot get rid of Reveal queries for session keys keyi′ of stages
i′ 6= i in our simulation without sacrificing concurrent composition of the multi-stage
key exchange protocol with several symmetric-key protocols at multiple stages. We can
either implicitly obtain concurrent composition by allowing A to arbitrarily compromise
session keys of stages i′ 6= i (which is what we do) or explicitly simulate the composed
symmetric-key protocol on each stage ourself. In the latter case, though, in order to
be able to correctly simulate the protocol for some stage, we would need to reveal the
according session key ourself, i.e., issue exactly those Reveal queries that required key
independence in the first place.

External usage. The composed key being used only externally of the key exchange protocol
enables us to perform the hybrid steps via Test and argue that these do not affect the
internal operations of the key exchange protocol. This corresponds to the intuition that a
key which is already used within the key exchange protocol cannot at the same time be
securely used in any arbitrary symmetric-key protocol. To give an example, say that the
key is used in the key exchange to produce a MAC value, then composing the key with
the according MAC protocol would—in the general sense—be insecure as an adversary
can simply present the MAC value seen in the key exchange as a valid “fresh” forgery in
the MAC security game.

Non-replayability. As for forward secrecy (and Corrupt queries), non-replayability ensures that
RevealSemiStaticKey queries do not affect the simulation Π instances already spawned,

44

4.7. Further Work Extending the Model

again capturing the intuition that such later compromise impede generic security of the
composed protocol. Moreover, due to replays more than two sessions may derive the same
session keys, a situation which contradicts the setting of two-party symmetric-key protocol
security where keys are assumed to be shared between two parties only.

4.7 Further Work Extending the Model
We introduced the initial version of multi-stage key exchange model for the analyses of the
QUIC protocol [FG14] and extended it along with the analysis of various TLS 1.3 drafts and
handshake modes [DFGS15a, DFGS16, FG17] to the form presented here (cf. Chapters 5–7).
Since then, and partially in parallel, the multi-stage key exchange model has been used and
built upon by others in the following works.

Li et al. [LXZ+16] augment our multi-stage model by an additional notion of “levels” in
order to analyze the cascading execution of multiple TLS 1.3 (resumption) handshakes as an
alternative approach to the compositional security guarantees of our model (cf. Section 4.6).

Cohn-Gordon et al. [CGCD+17] build upon our multi-stage model to provide a formal
analysis of the secure messaging protocol Signal [Sig]. They introduce a tweaked variant of
the model to support a tree-like structure of stages instead of a linear sequence, in order to
capture the complex key schedule and advanced security properties (like post-compromise
security [CGCG16]) of the Signal protocol.

Brendel and Fischlin [BF17] adopt our multi-stage model in the smart card setting in order
to analyze a 0-RTT extension of the Extended Access Control (EAC) protocol (see, e.g., [Int15]).

Cohn-Gordon et al. [CGCG+17] propose a design for a tree-based group key exchange
protocol with strong security guarantees, in particular post-compromise security, to improve
over current secure group messaging protocols. For their analysis, they define a group key
exchange variant of our multi-stage model to capture their key updating mechanism.

45

Chapter 5
The QUIC Protocol

Summary. In this chapter we present our security analysis of the QUIC protocol proposed
by Google in 2013 and globally deployed at Google in the meantime [QUI, LRW+17]. We first
provide a cryptographic description of QUIC’s key exchange protocol. We then give our security
analysis and results in the multi-stage key exchange model and discuss its implications and
notes on the protocol design. The results in this chapter are based on a work published at
ACM CCS 2014 [FG14].

5.1 Introduction
In 2013, Google announced the QUIC [QUI] (for “Quick UDP Internet Connections”) protocol,
setting out to improve the efficiency of secure connections while maintaining security guarantees
comparable to the de-facto standard TLS (Transport Layer Security) protocol. While, to this
end, QUIC comprises substantial and complex engineering efforts to optimize efficiency, the
focus in this chapter will be on the cryptographic connection establishment part of the protocol.
QUIC employs a Diffie–Hellman-based key exchange protocol for establishing the keys for a
secure connection, but particularly focuses on reducing the round complexity of the interactions.
It starts with the client being able to deliver data to the server immediately—i.e., with zero
round-trip time (0-RTT), protected under an intermediate cryptographic key. At some point,
the server replies with its contribution to the key exchange. Both parties then switch to a
stronger key and continue the interaction with that key. The basic version of the protocol is
displayed in Figure 5.1.

As already outlined in Chapter 4, establishing multiple session keys (key1 and key2 in QUIC)
demands a key exchange security model capturing interactions and dependencies between these
keys. In QUIC, for example, we will see that the derivation of the final key key2 being protected
under the intermediate key key1 makes the former’s secrecy dependent on the latter’s.

Analysis of QUIC. Google’s QUIC protocol will hence be the first protocol we study in our
multi-stage key exchange security model from Chapter 4. It provides a reasonable starting point
as it is simpler than the TLS protocol, whose multi-stage security in version 1.3 we will turn to
in Chapters 6 and 7. Investigating QUIC also avoids the need to deal with the problem of key
deployment for the finished message as in TLS versions up to 1.2 [DR08], which lead researchers
to use alternative approaches for security analyses [JKSS12, KPW13, BFS+13]. We show that
QUIC is a secure key exchange protocol, assuming idealized key derivation via random oracles,
the Gap Diffie-Hellman assumption [OP01], and use of a secure channel. Here we distinguish
between the keys of the two stages, showing that the stage-one key provides basic key secrecy,
whereas the stage-two key yields forward secrecy.

47

Chapter 5. The QUIC Protocol

Client C Server S
server’s static public key pkS server’s static secret key skS

generate ephemeral key pair eskC, epkC
compute key1 ← DH(eskC , pkS)

compute key1 ← DH(epkC , skS)
generate ephemeral key pair eskS , epkS

compute key2 ← DH(eskC , epkS) compute key2 ← DH(epkC , eskS)

epkC
{data}key1

{epkS}key1

{data}key2

Figure 5.1: High-level protocol run description of Google’s QUIC protocol with 0-RTT handshake.
DH(X,Y) indicates the Diffie–Hellman secret computed from shares X and Y . {X}key indicates sending
X over a channel secured under key.

Note that our result about QUIC being a secure key exchange protocol shows that the
protocol, as is, does not show any weakness, although the security bounds are far from being
tight. Ideally, though, we would like to argue that QUIC, together with a secure channel protocol,
provides a fully secure connection. This is where the compositional properties of our model and
the composition result come into play. Recall from Section 4.6 that this result requires the key
exchange protocol to be, in particular, (session-)key-independent and forward-secret. As the two
keys derived in QUIC however are dependent, we first propose a slight modification of QUIC to
turn it into a key-independent protocol, following ideas similar to those for TLS resumption.
We then can conclude that compositional security with any symmetric-key protocol using the
forward-secret second-stage session key is indeed achieved by the modified version of QUIC.

In summary, our results show that QUIC can be understood and analyzed as a multi-stage
key exchange protocol. QUIC exhibits shows strong security properties, despite its comparatively
low complexity. In particular, the trade-off between 0-RTT performance and forward secrecy is
only one round trip. Still, as we discuss, with little effort QUIC can be strengthened further to
facilitate a compositional analysis of its key exchange and channel component.

5.2 A QUIC Tour

Before we provide our analysis of the QUIC protocol, let us first give a more detailed description of
QUIC and describe how we reflect the relevant protocol in our security model. Our discussion here
and subsequent analysis refers to Revision 20130620 of the QUIC cryptographic protocol [LC13].
Most notably, this revision includes anti-replay mechanisms for the 0-RTT key established,
which we discuss below and include in our analysis. In later revisions including the current
Revision 20161206 [LC16], this replay protection mechanism was abandoned and the QUIC
crypto protocol destined to be replaced by the upcoming TLS 1.3 protocol [LRW+17, TT17]. We
discuss the different approaches towards replay protection for 0-RTT key exchange protocols in
more detail in Chapter 7, but stress here that studying the QUIC design first is still meaningful,
most importantly as it inspired the discussion and design of TLS 1.3’s 0-RTT mode.

Let us recall the typical protocol run of the QUIC handshake shown in Figure 5.1 and
in an expanded form in Figure 5.2. In the core protocol the client first sends an ephemeral
Diffie–Hellman (DH) share from which the first session key key1 is derived with the static
DH share of the server, before the key key2 of the second stage is derived when the server
sends a temporary (semi-static) DH share over the key1-secured channel (indicated by curly
braces {. . . }key1). The key key2 is then computed as the DH key of the two ephemeral keys.

48

5.2. A QUIC Tour

Client C Server S
server’s static public key pkS , [nonceS] server’s static secret key skS

generate ephemeral keys eskC , epkC
generate nonceC

D1 ← DH(eskC , pkS) D1 ← DH(epkC , skS)
PRK1 ← HKDF.Extract(nonceC‖[nonceS], D1) PRK1 ← HKDF.Extract(nonceC‖[nonceS], D1)

key1 ← HKDF.Expand(PRK1, info1) key1 ← HKDF.Expand(PRK1, info1)
use semi-static keys ssskS , sspkS

D2 ← DH(eskC , sspkS) D2 ← DH(epkC , ssskS)
PRK2 ← HKDF.Extract(nonceC‖[nonceS], D2) PRK2 ← HKDF.Extract(nonceC‖[nonceS], D2)

key2 ← HKDF.Expand(PRK2, info2) key2 ← HKDF.Expand(PRK2, info2)

nonceC , [nonceS], auxC , epkC

{auxS , sspkS}key1

Figure 5.2: Expanded protocol run description of Google’s QUIC protocol with 0-RTT handshake.
DH(X,Y) indicates the Diffie–Hellman secret computed from shares X and Y . {X}key indicates sending
X over a channel secured under key.

Temporary keys. QUIC suggests to let the server use its Diffie–Hellman share in the second
stage across multiple sessions to amortize the Diffie–Hellman generation at the server over the
connections in that time span. The description [LC13] speaks of a life span of about 60 seconds
in which the same share is used in every session of this server. These temporary keys are
hence somewhat in between ephemeral per-session keys and static keys not bound to a single
session. At the same time, they are too transient to be susceptible to cryptanalytic attacks, and
QUIC relies on that as disclosure of the temporary keys indeed trivially exposes the derived
(second-stage) key.

We therefore capture the temporary keys in QUIC as semi-static keys in our multi-stage key
exchange model. This in particular allows the adversary in our model to decide when parties
should switch to a new temporary key via a NewSemiStaticKey command, without introducing
timing events. We however do not allow the adversary in our model to reveal these keys, i.e.,
we drop (access to) the RevealSemiStaticKey oracle.

Channels. Note that the key key1 may be used to transmit payload data before it is used
to establish key2. In fact, the key1-protected channel may still be used after the server has
sent its share for key2. The reason is the unreliable transmission due to QUIC running atop
of UDP [Pos80], i.e., the ephemeral key may be delivered later than expected or even get lost.
The actual channel protocol is not fully specified in the QUIC crypto specification [LC13], only
references to possible authenticated encryption algorithms are given, supporting the usefulness
of our composition theorem. We also remark that it turns out that for the security of the key
exchange protocol we only need authenticity of the server’s message, not confidentiality.

Certification. The main protocol is surrounded by some means to ensure that the server’s
static key pair is available and certified. Binding of keys to server identities is ensured by
certification of public keys, potentially including revocation mechanisms. For the sake of
simplicity, and in compliance with various similar efforts, we leave this part out of the security
proof.13 Hence, we presume that valid binding of static keys is ensured as a part of the security
game in the sense that the assignment of public keys to parties is known by default.

13There are only a few exceptions where the certification process has been considered to be an integral part of
cryptographic protocol, e.g. [BFPW07, FW09, BCF+13], where the latter one deals with key exchange explicitly.

49

Chapter 5. The QUIC Protocol

If the client is currently not in possession of the server’s public key it may start the interaction
with an “inchoate” client hello. Upon receiving such a message, the server forwards its public
configuration, possibly including the certificate and further information. We omit this part of
the key retrieval in our modeling of the protocol, since we assume known binding of public keys
to servers anyway.

Replay protection. To prevent replay attacks, QUIC employs the common countermeasure
and uses nonces. However, because of the restriction of zero round-trip time, one cannot expect
the server to contribute to the nonce, and must rely on the user to generate good nonces.
To sustain security, QUIC assumes that the server uses a so-called “strike-register” in which
previously seen nonces are stored. Several severs within a so-called “orbit” are supposed to
share such a register. A nonce is thus assumed to consist of a time stamp, an orbit identifier,
and 20 random bytes; the designers of QUIC estimate that 32 bytes should be sufficient.

If a connection with a client-generated nonce fails, because the server finds an entry in the
strike register, then the server rejects, but provides a server-generated nonce, encrypted and
authenticated under some private server key. If the server then recognizes such a server nonce in
a subsequent, fresh 0-RTT connection retry, it can check that it is authentic. We simply write
nonceC for the nonce eventually used by the client, and [nonceS] for the (optional, otherwise
empty) server nonce. Because of the strike registers, we presume in our protocol abstraction
that any honest server accepts any client nonce only once.

We note that there are practical scenarios, particularly in distributed server settings, where
replay protection on the key exchange level (as provided by QUIC in Revision 20130620) cannot
successfully prevent replays on the application level. We provide a detailed discussion of such
attacks and (the limits of) mitigation strategies in Chapter 7.

Format of handshake messages. Handshake messages are tagged, e.g., the client resp.
server hello message in the handshake phase carry special tags CHLO and SHLO, and may
contain further information like the version numbers. However, many of these entries are
optional and do not directly contribute to the cryptographic strength of the key exchange step
(except that they enter the key derivation step in a non-critical way, see below). We thus simply
write aux for these data, with a subscript for the corresponding party.

Key derivation. Key derivation is performed via the key derivation function HKDF [Kra10,
KE10] based on HMAC [BCK96, KBC97] (cf. Section 3.2.3) with hash function SHA-256, as
specified by NIST SP800-56C [Che11]. This is a two-stage derivation process. In the first
extraction step via function HKDF.Extract one computes a pseudorandom master key PRK from
the corresponding Diffie-Hellman key, using the client nonce and possibly the server nonce as a
salt input. In our security proof we model this extraction function as a random oracle.

In the second expansion step, one derives client and server write keys and IV values by
expanding the PRK via HKDF.Expand. Here, the input are the client hello message, the (public)
server configuration, and a label distinguishing the first-stage key (“QUIC key expansion”) from
the second-stage key (“QUIC forward secure key expansion”). We denote these data by info1
and info2, respectively. Note that they are both determined given the client’s ephemeral key, the
nonces, the auxiliary data and the stage number. We assume in our analysis that HKDF.Expand
is a random oracle, too.

Session identifiers and partners. For the analysis we also need to specify the intended
partners and the session identifiers. Since clients are not authenticated in QUIC, we assume
that the responder in an execution, i.e., the server, sets the partner identity label.pid to ‘*’. The

50

5.3. Security of QUIC

client on the other hand sets the partner entry to the identity of the server specified through the
public key. As for session identifiers, for both parties we let sid1 = info1 = (pkS , nonceC , [nonceS],
auxC , epkC) and sid2 = (info1, {auxS , sspkS}key1), where the latter value is the authenticated
ciphertext sent by the server. Note that the session identifiers are only set to these values
once the corresponding party accepts, and are ⊥ otherwise. Each stage consisting of a single
message only, the contributive identifiers are set identically to the session identifiers for each
stage. We remark that auxC , containing the used server configuration’s ID, together with the
verified certification of the server configuration uniquely identifies the full configuration used
in the key derivation. Furthermore, observe that info1 and info2 can be derived mutually from
another, as they only differ in some constant labels.

5.3 Security of QUIC
We conduct our security analysis of QUIC in the (public-key) multi-stage key exchange (MSKE)
model (cf. Chapter 4). In terms of this model, we will establish that QUIC is key-dependent and
stage-2-forward-secret with the following protocol-specific properties (M,AUTH,USE,REPLAY):

• M = 2: QUIC consists of two stages deriving keys key1 and key2.

• AUTH =
{
(unilateral, unilateral)

}
: QUIC fixes unilateral (responder) authentication for

both stages.

• USE = (internal, external): The first key established in QUIC is used within the key
exchange (to encrypt the server’s response), the second key is only used externally.

• REPLAY = (nonreplayable, nonreplayable): Both stages’ keys are non-replayable due to the
strike register employed in the protocol.

As discussed above, we will omit the RevealSemiStaticKey oracle from the model, as QUIC does
not aim at security when the re-used temporary server Diffie–Hellman share is exposed.

For the security proof we will rely on the random oracle model and the Gap-Diffie–Hellman
(GapDH) problem [OP01] (cf. Section 3.2.1).14 Besides the underlying number-theoretic problem,
we also need security of the channel protocol which is used for the server hello message. Since
we only need authenticity, we can simply define security as follows: We denote by AdvAuth{·},A the
probability that adversary A, when allowed to query the channel oracle {·}key for a random
key key at most once, is able to create in an attempt a channel message (not returned by the
oracle) such that decryption under key yields a valid message. Note that we merely require
one-time authenticity because we analyze QUIC as a key exchange protocol only, assuming that
no payload data is sent by the client in the first stage.

Theorem 5.1 (Match security of QUIC). QUIC is Match-secure with properties (M,AUTH,
USE,REPLAY) given above. For any efficient adversary A we have

AdvMatch
QUIC,A ≤ n2

s/q,

where ns is the maximal number of initiated sessions and q denotes the size of the group G.
14We note that alternatively to using GapDH in the random oracle model we could employ the (multiple-single)

double-sided msPRF-ODH variant of the pseudorandom-function oracle-Diffie–Hellman assumption (instantiable
under the same assumptions [BFGJ17], cf. Section 3.2.2). This would enable the necessary multiple queries to
the challenged server’s static secret in other sessions as well as a potential single query to the challenged client’s
ephemeral secret for a differing server ephemeral secret, similar to the usage of msPRF-ODH in the proof for the
TLS 1.3 draft-12 (EC)DHE 0-RTT handshake in Section 7.5. We here stick to the original proof from [FG14],
in particular enabling a comparison of both proof techniques.

51

Chapter 5. The QUIC Protocol

Proof of Theorem 5.1. We need to show the six properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at that stage.
Note that identical session identifiers in QUIC (at either stage) imply that the input to the
key derivation functions are identical, too. Hence there cannot exist stages with identical
session identifiers but different keys.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
This trivially holds as QUIC fixes unilateral (responder) authentication for all stages.

3. Sessions with the same session identifier for some stage share the same contributive
identifier.
This immediately follows from the session identifiers being equal to the contributive
identifiers in both stages.

4. Sessions are partnered with the intended (authenticated) participant.
The client does not authenticate. The server’s public key in QUIC is part of both session
identifiers and that the identity can be reliably deduced from the key resp. the certificate
by assumption, thus the property holds.

5. Session identifiers are distinct for different stages.
This is immediately satisfied by sid2 containing more elements than sid1.

6. At most two sessions have the same session identifier at any non-replayable stage.
Note that the probability that two sessions of honest clients create the same random
ephemeral key is at most n2

s/q by the birthday bound. Here we use that corrupting a
user terminates the interaction with the session such that, in particular, that session does
not generate session identifiers. Given that no such collision occurs, the three sessions
in question must include two sessions of honest servers. But the client nonce, appearing
both in sid1 and in sid2, contains the server’s orbit and this value also enters the session
identifier. Hence, the two servers in the same orbit must have accepted the same client
nonce twice, contradicting our assumption about the strike registers.

Theorem 5.2 (Multi-Stage security of QUIC). In the random oracle model, QUIC is Multi-Stage-
secure in a key-dependent and stage-2-forward-secret manner with properties (M,AUTH,USE,
REPLAY) given above. For any efficient adversary A there exist efficient algorithms B and C
such that

AdvMulti-Stage
QUIC,A ≤ 2ns ·

(
(nsnu + nsnss) · AdvGapDH

G,B

+ (2qh + 4qhns) · 2−min{|PRK1|,|PRK2|} + ns · Advauth
{·},C

)
,

where ns is the maximal number of sessions, nu is the maximal number of users, nss is the
maximal number of semi-static keys generated, qh is the total number of random oracle queries
of the adversary, and |PRKi| is the output length of HKDF.Extract.

Proof of Theorem 5.2. First, we may consider the case that the adversary makes a single Test
query only. This can decrease the success probability by a factor at most 1/2ns by a hybrid
argument (leveraging that session matching is decidable based on the public transcripts) as
there are at most 2ns keys. From now on we can therefore speak of the tested session. Recall
further that for an admissible Test query in a responder-authenticated unilateral protocol, the
query must be either for an initiator session (i.e., for a client in QUIC), or for a partnered server
session such that the client’s ephemeral public key originates from a session of an honest client.

52

5.3. Security of QUIC

Stage-1 secrecy. Consider first the (non-forward) secrecy of the session keys of the first
stage. We can bound the adversary’s success probability to distinguish the keys from random
by (a) the probability that the adversary queries the random oracle HKDF.Extract about the
DH key (specified through the session identifier of the tested session), plus (b) the conditional
probability that A succeeds given that it has not queried HKDF.Extract about the key before.
In the latter case, the corresponding value PRK1 is an unknown random value for the adversary.
Furthermore, since the adversary cannot reveal the session key in partnered sessions and keys for
other session identifiers are distributed independently, distinguishing the derived test session key
from random is then given by the (pseudo)randomness of HKDF.Expand. To be precise, we can
bound the adversary’s advantage by its number of queries to the random oracle in proportion to
the size of possible PRK1 values, i.e., by qh · 2−|PRK1|.

The former probability of making the query to HKDF.Extract about the DH value can
be bounded in terms of the GapDH assumption, along the arguments for similar protocols,
e.g. [JP02, KP05, LM06, DF11]. That is, one guesses two sessions, one being a client session,
the other one being a server session, and injects the given challenge values X and Y of the
GapDH problem into the client’s ephemeral key and the server’s static public key. The hope
is that these sessions will correspond to the Test query, which is either for a client session, or
for a server session, but which is then partnered to the (hopefully correctly predicted) client
session and key. If the adversary makes the random oracle query about the DH key of the two
values, then we can solve the DH problem. Here, in the course of the simulation, the server’s
long-term key may be used in another session, in which we could not derive the corresponding
DH key. Using the same technique as in previous works, we leverage the decisional DH oracle to
simulate the random oracle via implicit representation of DH tuples.

More formally, we build a reduction B to the GapDH problem as follows. We are given G,
g and two random group elements X, Y and are supposed to compute Z = DH(X,Y) with
the help of a decisional oracle DDH(·, ·, ·). We initially guess one of the at most ns executions
and one of the at most nu server keys at random. We will use X in the predicted execution
as the honest client’s ephemeral key (and abort if the session starts but is not by a client nor
by an honest party), and analogously use Y as the server’s long-term public key. Run now
the attack of the stage-1 adversary by emulating the honest parties’ behavior, with the only
exception that honest parties sometimes need to skip hash computation and instead maintain
an implicit representation. This is necessary in the case that the injected keys appear and we
cannot compute the DH values on behalf of the honest parties. We will match this list against
the explicitly computed hash values by the adversary. Note that the adversary will be oblivious
about this structural modification, as we still simulate the random oracle as before and the
input/output behavior of the honest parties are statistically indistinguishable from its point of
view.

To simulate the execution we maintain an initially empty list and use it as follows to compute
hash answers for both stages:

• If the adversary makes a hash query to the extraction random oracle HKDF.Extract
about (nonceC‖[nonceS], D), then we return a (consistent) random answer PRK via
lazy sampling, i.e., where we answer previous queries as before and pick a fresh value
for a new query. Next we check if we can update our list by searching for entries
({A,B}, nonceC , [nonceS], info, ∗, key) with DDH(A,B,D) = 1 and where the value for
PRK has not been set yet.15 Note that we can check for this efficiently since the size of
the list will be bounded by the number of sessions, and each element can be checked easily

15Here, and also below, the optional server nonce [nonceS] should only be used in the list operations if it also
appears in the hash query, e.g., if the adversary queries about (D, nonceC) then we also search the list for entries
({A,B}, nonceC, info, ∗, key).

53

Chapter 5. The QUIC Protocol

with the help of the decision oracle. If we find such an entry then we set the wildcard ∗ to
PRK.

• If the adversary makes a query (PRK, info) to the expansion random oracle HKDF.Expand
we first search for entries ({A,B}, nonceC , [nonceS], info,PRK, key) with matching entries
for info and PRK in our list. If we find such an entry then we return key. Else we answer
(consistently) as the random oracle would.

• If a (simulated) honest party is supposed to compute a key for group elements A and B,
nonces nonceC and [nonceS], and execution information info, then we proceed as follows:
If the party could compute the DH key D itself we do so and proceed as in the adversarial
cases above, possibly updating information in our list. If the party could not compute the
DH key, say, because it involves the injected server’s long-term key Y , then it searches for
an entry ({A,B}, nonceC , [nonceS], info,PRK|∗, key) in the list (where ‘PRK|∗’ stands for
‘either PRK or ∗’) and subsequently uses key. If there is no such entry then it picks key at
random for subsequent usage, and adds an entry ({A,B}, nonceC , [nonceS], info, ∗, key) to
the list.

The list strategy basically allows the reduction to implicitly set the PRK value and adjust it
later. An inconsistency can happen if the adversary asks the expansion oracle HKDF.Expand
about a value (PRK, info) to receive a key key, before having received PRK as a reply from the
extraction oracle HKDF.Extract. If we later set the wildcard ∗ in our list to that value PRK
but for a different key, then this does not match the adversary’s expectation. However, since
the value PRK is chosen at random, the probability that this happens among the at most qh
random oracle queries of the adversary and the at most 2ns list entries (of both stages) is at
most 2qh · ns · 2−min{|PRK1|,|PRK2|}.

Recall that we assume that the adversary makes a hash query to derive PRK1 in the Test
session. We can check for all queries via the decisional oracle if this has already happened; if
so we can output the correct value and solve the GapDH problem in this case. Also observe
that the Test session must be either between an honest client and an uncorrupted server, or
that the server must be honest and the client’s ephemeral must origin from an honest client.
Therefore, given that the simulation does not generate any inconsistency, our simulation is
perfectly indistinguishable from an actual attack of the adversary’s viewpoint. In particular,
the Test session then uses our injected keys X, Y with probability at least 1

ns·nu , allowing us to
solve the GapDH problem in this case.

Finally, to complete the argument, note that the adversary cannot succeed by hoping
that another session with different session identifier sid′1 yields the same input (PRK1, info1)
to HKDF.Expand. This would potentially allow the adversary to Reveal that session key and
distinguish the tested key from random. The reason is simply that the session identifier
information completely enters the key derivation and the session keys of distinct sessions are
thus distributed independently.16

Stage-2 forward secrecy. To show stage-2 forward secrecy, we distinguish again between
the cases that the adversary queries the random oracle about the DH key of stage 2, and that
it does not (in which case the randomness of PRK2 ensures security of the session keys again
with a bound of qh · 2−|PRK2|). For the first case, however, we have to apply a more fine-grained
case distinction now. To this end, we first show that the adversary essentially cannot inject its
own temporary/semi-static key into the server’s hello message; else this would clearly violate
security. For this we argue that the first stage key key1 of the tested client session with label

16The derived keys may be identical by chance but this does not violate our analysis.

54

5.3. Security of QUIC

label still looked random to the adversary when the server hello message has been sent but not
yet received. This follows as above and from the following three properties:

1. Because of the key dependence, the adversary cannot learn the key key1 via a Reveal(label, 1)
query to the test session; such queries are prohibited before the key key2 has been
established.

2. For the same reason, key dependence, the adversary cannot learn key1 by revealing the
key of a session label′ which is partnered according to the stage-one session identifier
(label.sid1 = label′.sid1). Any such reveal request would make key1 and key2 in the tested
session revealed, according to the Reveal query in which keys for partnered sessions are
set to revealed for the current and all subsequent stages.

3. Corruptions of the test session’s party could only have happened after key2 has been
established.

Since key1 has looked fresh, we can then argue along the authenticity of the key1-channel. The
adversary either gets to see one or none channel message for the fresh key key1 (depending on
whether there is a partnered session to label), and needs to break the authenticity if it manages
to send a new valid ciphertext. This is bounded by advantage Advauth{·},C times the factor to guess
the right sessions again.

More formally, we consider the probability that the adversary in the attack sends to the
(honest) client in an execution for info1 a ciphertext which the client does not reject but which
has not been created by the (honest) server, as specified in info1. Note that this comprises
the case that the adversary tries to forge an authentic ciphertext from scratch, or that it has
forwarded the client’s first message to the server and got a different, valid ciphertext as reply.
We bound this probability by the advantage of an adversary against the authenticity of the
channel protocol.

Our adversary C against the channel basically simulates the honest parties for the key
exchange attacker with one exception: It initially selects one of the at most ns client sessions
(with identifier info1) at random and waits for an honest server session in which the client
has sent nonceC , auxC, and epkC of info1 and is supposed to answer using the key key1. Note
that by the strike registers this server session is uniquely determined. Our adversary prepares
the server’s answer according to the protocol, e.g., using its current semi-static key, but then
eventually calls its external channel oracle to create the authenticated ciphertext (under a fresh
key). If the adversary against the key exchange protocol sends a reply to the predicted client
session involving the same data info1, then we output this ciphertext as a potential forgery.

By the argument for stage-1 security, and the fact that the adversary cannot learn key
key1 in session info1 by other means like Reveal queries because of key dependence, it follows
that using the fresh key instead of key1 cannot influence the adversary’s success probability
significantly. Intuitively, one may think of key1 as having been replaced by the random value
used in the game AdvAuth{·},C . Hence, a key-exchange adversary as above would essentially win
with the same probability as in game AdvAuth{·},C , times the probability ns for predicting the client
session.

We conclude that we can from now on reject any attempt in which the key-exchange adversary
sends to an honest client a new ciphertext which has not been created by an honest server.
The adversary can thus only relay the second messages between an honest client and an honest
server. In such an execution we can again inject the GapDH challenge X, Y into the client’s
ephemeral public key and the server’s semi-static public key. Only this time, we have to guess
one session and the right semi-static key used by the server, instead of one session and the right
(long-term secret of a) user, yielding a factor ns ·nss instead of ns ·nu. Note that Corrupt queries

55

Chapter 5. The QUIC Protocol

for the server only disclose the long-term secret, but not the semi-static key by convention, and
we do not allow the adversary to access the RevealSemiStaticKey oracle here. Hence, we can
carry out the same reduction to the GapDH problem as above.

The final step, as in the stage-1 case, is now to argue that there cannot be another session
with identifier sid′2 = (info′1, C ′) 6= sid2 = (info1, C) such that the inputs to the derivation
function HKDF.Expand are identical. Recall that each info1 contains the client’s ephemeral
public key and that it corresponds uniquely to some info2. Hence, a difference in info′1 6= info1
would immediately yield different inputs info′2 6= info2 to HKDF.Expand in the protocol. If, on
the other hand, info′1 = info1 then the two ciphertexts must differ. Because of the strike registers
on the server’s side the ciphertexts can only differ if one has been created by the adversary for
the same stage-1 key. In this case, however, we would have rightfully rejected the ciphertext such
that the client would not have derived the session key key2. It follows that only the partnered
sessions can have the same input DH(epkC , sspkS) and info2 to HKDF.Expand, implying that
the key in the test session is independent of all other keys (except for the keys of partnered
sessions).

The claim now follows.

Making QUIC key-independent. Recall that our composition theorem in particular only
applies to key-independent protocols, whereas QUIC, as is, does not satisfy this property. It is,
however, quite easy to change QUIC into a key-independent version. With this modification we
can then argue security of, say, the composition with a secure channel protocol for the second
stage.

Recall that, in the key-independent case, the adversary is allowed to reveal the session key
of a stage before the session key of the next stage has been established. The idea for QUIC is
similar to, e.g., TLS resumption, where the resumption key is derived from an established master
secret (from which the previous session keys have been computed). For a key-independent
variant of QUIC, one would simply derive two secret values key1 and preK2 in the HKDF.Expand
step of the key derivation in the first stage, where key1 is still the first stage’s session key and
preK2 is kept secret and subsequently input to the key derivation in the second stage. Any
Reveal query would then disclose the session keys, but not preK2. It should thus be hard to
compute the second-stage session keys given only the previous session keys.17 We stress that
this change does not impose additional expensive state to be kept by the server: As apparent
from Figure 5.2, the server computes key2 immediately after deriving key1 and must anyway
keep a small state between the two KDF invocations.

17Note that, if we would allow session state reveals, then the key PRK could still be disclosed, of course. The
idea here therefore protects against bad usage of the session keys in the channel (modeled through Reveal queries),
but not against disclosure of ephemeral randomness.

56

Chapter 6
The TLS 1.3 Protocol:

Diffie–Hellman and Pre-shared Keys

Summary. In this chapter we present our security analysis of the TLS 1.3 handshake protocol
candidates in version draft-10 [Res15e] for the main Diffie–Hellman-based handshake mode and
the abbreviated resumption mode based on pre-shared keys. We first describe the cryptographic
operations of both modes and then give our security results in the multi-stage key exchange
model. We also discuss some of the design choices in TLS 1.3 along the way. The results in
this chapter are based on a work published ACM CCS 2015 [DFGS15a, DFGS15b] and one
presented at the TLS 1.3 TRON (“TLS 1.3 – Ready or Not?”) workshop 2016 [DFGS16].

6.1 Introduction

The Transport Layer Security (TLS) protocol [DR08] is one of the most widely deployed
cryptographic protocols in practice, comprising both key exchange (the handshake protocol) and
secure channel (the record protocol) components. Due to numerous security problems with the
existing versions of TLS up to the latest one, TLS 1.2 [DR08], but also because of additional
desirable privacy features (both discussed in Section 1.1.3), the Internet Engineering Task Force
(IETF) is currently drafting a new TLS 1.3 standard.

Work on TLS 1.3 began in mid 2014, when the first draft versions were defined based
on the previous TLS 1.2 version [DR08]. We conducted our first analysis of TLS 1.3 in May
2015 [DFGS15a, DFGS15b]; at this point there were two (slightly different) candidates in
discussion: one is draft-05 [Res15b], the other one is the forked draft-dh [Res15g], incor-
porating a different key schedule based on the OPTLS protocol design by Krawczyk and
Wee [KW15, KW16]. A later analysis of ours [DFGS16] provided an updated analysis of the
design of draft-10 [Res15e], published in October 2015. Both our analyses of draft-05 and
draft-dh [DFGS15a, DFGS15b] as well as draft-10 [DFGS16] provide a comprehensive cryp-
tographic evaluation of the primary Diffie–Hellman-based handshake as well as the (resumption)
handshake based on pre-shared keys (PSKs), to the extent specified, of the respective drafts. In
a later work [FG17] we then also conducted an analysis of both the Diffie–Hellman-based and the
PSK-based 0-RTT handshake modes specified in draft-12 [Res16a] resp. draft-14 [Res16c].
The most recent TLS 1.3 draft is draft-24 [Res18] which differs from the latest drafts we
analyzed in some cryptographic aspects, particularly details in the key schedule, but overall still
defines the handshake modes similar to the drafts covered by our analysis.

In this chapter, we cover the results for the Diffie–Hellman-based and PSK handshakes of
draft-10, providing comparative remarks to other draft versions along the way. Chapter 7

57

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

then contains our security analyses of the (DH- and PSK-based) 0-RTT handshake modes from
draft-12 and draft-14, particularly focusing on replays in this setting. While the results
presented in this thesis hence do not capture the changes made in the latest TLS 1.3 drafts,
they provide a thorough evaluation of the core cryptographic design of all TLS 1.3 handshake
modes and give an insight into the design process and decisions for this new version of TLS.
We particularly believe that it is important that cryptographic evaluation takes place before
standardization. This contrasts with the history of TLS and its predecessor the Secure Sockets
Layer (SSL) protocol (see also Paterson and van der Merwe [PvdM16]): SSL 3 [FKK11] was
standardized in 1996, TLS 1.0 [DA99] in 1999, TLS 1.1 [DR06] in 2006, and TLS 1.2 [DR08] in
2008, but the first comprehensive cryptographic proof of any complete TLS ciphersuite did not
appear until 2012 [JKSS12]. We refer to Section 1.3 for an extensive discussion of the prior and
related work on (analyses of) the TLS protocol.

The TLS 1.3 handshake protocol design introduces several cryptographic changes that are
substantially different from TLS 1.2, including: (1) encrypting some handshake messages with
an intermediate session key, to provide confidentiality of handshake data such as the client
certificate; (2) signing the entire handshake transcript for authentication; (3) including hashes
of handshake messages in a variety of key calculations; (4) encrypting the final Finished
messages in the handshake with a different key than is used for encrypting application data;
(5) deprecating a variety of cryptographic algorithms (including RSA key transport, finite-field
Diffie–Hellman key exchange, SHA-1, RC4, CBC mode, MAC-then-encode-then-encrypt); (6)
using modern authenticated encryption with associated data (AEAD) schemes for symmetric
encryption; (7) updating keys during execution of the record protocol to increase the channel’s
lifetime and security; and (8) providing handshakes with fewer message flows to reduce latency.

These changes are meant in part to address several of the aforementioned attacks. While
some of those attacks are implementation-specific and escape abstract cryptographic evaluation,
assessing the cryptographic security of the design of TLS 1.318 can provide assurance that
the protocol design does not display any unexpected cryptographic weaknesses. Our goal is
a comprehensive assessment of the security of the handshake protocol, covering draft-10 in
this chapter. Overall, in the first part of this thesis we focus solely on the handshake protocol
as a key exchange protocol (aspects of the TLS 1.3 channel are captured in Part II). Our
modular approach to treat both components individually is made possible by the TLS 1.3 drafts
providing a cleaner separation between the key exchange in the handshake protocol and the
use of the resulting session key in the record protocol. This contrasts with TLS 1.2 and earlier,
where the session key was used both for record layer encryption and encryption of the Finished
messages in the handshake, making it impossible for TLS 1.2 to satisfy standard key exchange
indistinguishability notions and requiring either (a) a more complex security model that treats
the handshake and record layer together [JKSS12] or (b) a cunning approach to release the
record layer key early [BFK+14]. The cleaner separation in the TLS 1.3 design allows us to take
a compositional approach to the security of TLS 1.3, treating the handshake separate from the
record layer, and also allowing us to include session resumption for abbreviated handshakes.

6.1.1 Modeling TLS 1.3 as a Multi-Stage Key Exchange Protocol

The message flow for the TLS 1.3 draft-10 full, i.e., (elliptic-curve) ephemeral Diffie–Hellman
(abbreviated (EC)DHE) handshake is shown in Figure 6.1 (on page 61) along with the respective
key schedule. The draft-10 PSK-only and the combined PSK with ephemeral Diffie–Hellman
handshakes (abbreviated PSK resp. PSK-(EC)DHE) are given in Figure 6.2 (on page 74). It is

18When we refer to “TLS 1.3”, we mean the common features of its design conceptually spanning all drafts
discussed here.

58

6.1. Introduction

convenient to view the TLS 1.3 handshakes as multi-stage key exchange protocols in which both
parties, the client and the server, agree on multiple session keys, with potential dependencies
between these keys.

In the first stage, a handshake traffic key tkhs is derived. In the full or PSK-(EC)DHE hand-
shake, tkhs is established via an anonymous Diffie–Hellman key exchange (in the ClientKeyShare
and ServerKeyShare messages). In the PSK-only handshake, tkhs is computed from the shared
pre-shared key PSK. From the established shared Diffie–Hellman value resp. the shared PSK,
denoted as ephemeral secret ES, both parties first compute an (HKDF-)extracted version xES.
This value is then used to compute tkhs which encrypts the remaining messages of the handshake
and should provide some form of outsider privacy, e.g., for the exchanged certificates.

In the second stage, the parties in the full handshake (depending on the desired authentication
level) exchange signatures over the (hash of the) transcript under a certified key in order to
authenticate. Both parties in all handshake modes conclude the protocol by exchanging Finished
messages over the transcripts, generated a distinct finished secret key FS. Via further key
derivation steps, both parties then compute a master secret MS (mixing in the the pre-shared
key in PSK-based modes). From that, they then derive the application traffic key tkapp for
securing the actual application data. They furthermore derive from MS a resumption master
secret RMS (in the full handshake) for potential session resumption as well as an exporter
master secret EMS which can be used for deriving additional keying material. Viewing each of
these keys as one of the (three resp. four) multi-stage session keys enables us to argue about
their security, even if the other keys are leaked.

We present the full and PSK-based handshake modes in more detail in Sections 6.2 and 6.4.
The security results using our multi-stage key exchange model follow in Sections 6.3 and 6.5,
respectively.

Security of the draft-10 full (EC)DHE handshake. We show that the full (EC)DHE
handshake of draft-10 is a secure multi-stage key exchange protocol where different stages
and simultaneous runs of the protocols can be unauthenticated, unilaterally authenticated, or
mutually authenticated. On a high level, this means that the handshake establishes record layer
as well as resumption and exporter keys that look random to an adversary. This holds even for
sessions that run concurrently and if the adversary controls the network, is able to corrupt the
long-term secret keys of other parties, and allowed to reveal keys established in other sessions,
thus providing quite strong security guarantees for practice. Moreover, the multi-stage model
allows us to show that even leakage of record layer or exporter keys in the same handshake
session do not compromise each other’s security. All keys derived in the draft-10 full (EC)DHE
handshake enjoy forward secrecy and key independence, making them in particular amenable to
a compositional analysis approach of their usage in the record protocol.

Notably, we are able to prove a standard (Bellare–Rogaway-style) notion of key secrecy
(or key indistinguishability) for the handshake as key exchange protocol, which is in contrast
to the results possible for previous TLS versions [MSW08, GMSS08, JKSS12, BFK+14]. Our
security proof relies on mostly standard cryptographic assumptions such as unforgeability of
the deployed signature scheme, collision resistance of the hash function, and pseudorandomness
of the HKDF key derivation function. In addition, we employ the pseudorandom oracle-Diffie–
Hellman (PRF-ODH) assumption in the snPRF-ODH variant which has been introduced and
used for analyses of the previous TLS version 1.2 [JKSS12, KPW13].19 See Section 3.2 for the

19In a recent work [BFGJ17], we found strong indications that the PRF-ODH assumption likely cannot—as
originally hoped for [JKSS12, KPW13]—be instantiated in the standard model. We still deploy it in our TLS 1.3
analyses as a convenient stepping stone in the proof to avoid a tailored and involved reduction to the Strong
or Gap Diffie–Hellman assumption in the random oracle (cf. the security proof for QUIC in Section 5.3 for a
comparison).

59

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

definitions of these assumptions.

Security of the draft-10 PSK and PSK-(EC)DHE handshakes. We also analyze the
pre-shared key handshake modes of draft-10, PSK and PSK-(EC)DHE, and show that they as
well are secure multi-stage (pre-shared secret) key exchange protocols. The result holds under
similar cryptographic assumptions, particularly relying on the unforgeability of the HMAC
message authentication code instead of signature unforgeability for authentication. The two pre-
shared key modes differ in that the plain PSK handshake does not achieve forward secrecy while
the PSK-DHE handshake, mixing fresh ephemeral Diffie–Hellman keys into the key derivation,
does indeed establish forward-secret keys as envisioned.

Composition with the record protocol. When it comes to the overall security of TLS 1.3,
we follow a compositional approach. More specifically, we leverage our generic composition
theorem for the multi-stage key exchange model (see Section 4.6) to establish that all forward-
secret external keys (i.e., those not used in the handshake itself) established can safely be used
in any subsequent symmetric-key protocol. We can deduce such guarantees for the application
traffic key tkapp as well as the resumption and exporter master secrets RMS resp. EMS of the
full and PSK-(EC)DHE handshakes.20 This means that, in particular, the cascading usage
of the resumption master secret of the full handshake as an input to later PSK/PSK-DHE
handshake runs is safe. Likewise, it allows an independent analysis of the record layer using the
application traffic key; e.g., by applying the security models and results for channels presented
in Part II of this thesis.

6.2 The TLS 1.3 draft-10 Full (EC)DHE Handshake Protocol
The TLS 1.3 full (EC)DHE handshake protocol can be conceptually subdivided into three
phases:

Key exchange. In the key exchange phase, parties negotiate the ciphersuites and key-exchange
parameters to be used and establish shared key material as well as traffic keys to encrypt
the remaining handshake.

Server parameters. In the server parameters phase, further handshake parameters (as, e.g.,
whether client authentication is demanded) are fixed by the server.

Authentication. In the authentication phase, both the server and client can (based on the
aspired authentication) authenticate, verify that they share the same view of the handshake,
and derive (authenticated) application traffic keys as well as resumption and exporter
keys.

Figure 6.1 shows the message flow and relevant cryptographic computations as well as the
key schedule for the full (EC)DHE handshake in draft-10. The handshake messages are the
following:

• ClientHello (CH)/ServerHello (SH) contain the supported versions and ciphersuites for
negotiation purposes, as well as random nonces rc resp. rs. Both CH and SH can also

20In our original analysis of draft-10 we debated an additional NewSessionTicket used for session resumption
and sent encrypted under tkapp after the full handshake impaired the compositional guarantees for that key.
In the light of follow-up revisions of TLS 1.3, we here consider NewSessionTicket as one of several so-called
“post-handshake messages” (cf. Section 6.2) which can be sent at an arbitrary later point in time after the full
handshake, and hence do not treat it as part of the main handshake we analyze here.

60

6.2. The TLS 1.3 draft-10 Full (EC)DHE Handshake Protocol

Client Server

ClientHello: rc $←− {0, 1}256

+ ClientKeyShare: X ← gx

ServerHello: rs $←− {0, 1}256

+ ServerKeyShare: Y ← gy

H1 ← H(CH‖SH) (incl. CKS & SKS)
ES← Y x ES← Xy

xES← HKDF.Extract(0,ES)
tkhs ← HKDF.Expand(xES, label1‖H1) stage 1

{EncryptedExtensions}
{ServerConfiguration∗}

{ServerCertificate∗}: pkS
{CertificateRequest∗}

H2 ← H(CH‖ . . . ‖CR∗)
{ServerCertificateVerify∗}:

SCV← Sign(skS , H2)
SS← Y x SS← Xy

xSS← HKDF.Extract(0,SS)
H3 ← H(CH‖ . . . ‖SCV∗)

FS← HKDF.Expand(xSS, label2‖H3)
{ServerFinished}:

SF← HMAC(FS, label3‖H3)
check Verify(pkS , H2, SCV) = 1
check SF = HMAC(FS, label3‖H3)
{ClientCertificate∗}: pkC

H4 ← H(CH‖ . . . ‖CCRT∗)
{ClientCertificateVerify∗}:
CCV← Sign(skC , H4)

Hsess ← H(CH‖ . . . ‖CCV∗)
{ClientFinished}:
CF← HMAC(FS, label4‖Hsess)

check Verify(pkC , H4, CCV) = 1
check CF = HMAC(FS, label4‖Hsess)

mES← HKDF.Expand(xES, label5‖H3)
mSS← HKDF.Expand(xSS, label6‖H3)

MS← HKDF.Extract(mSS,mES)
tkapp ← HKDF.Expand(MS, label7‖Hsess) stage 2
RMS← HKDF.Expand(MS, label8‖Hsess) stage 3
EMS← HKDF.Expand(MS, label9‖Hsess) stage 4

record layer (application data), using AEAD with key tkapp

ES SS

Ext

xSS

0Ext

xES

0

Exp

mSS

H3Exp

mES

H3

Ext

MS

Exp

FS

H3

Exptkhs

H1

Exptkapp

Hsess

ExpEMS

Hsess

Exp RMS

Hsess

(resum
ption)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message
MSG∗ message is situation-dependent and not always sent

Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 6.1: The TLS 1.3 draft-10 full (EC)DHE handshake protocol (left) and key schedule (right).

include various extension fields, for the full (EC)DHE mode at least the following one
must to be present.

• ClientKeyShare (CKS)/ServerKeyShare (SKS) are extensions sent within the ClientHello
resp. ServerHello messages which contain the ephemeral Diffie–Hellman shares X = gx

resp. Y = gy for one or more (in case of the client) groups.

Both parties can now compute the ephemeral secret ES as the Diffie–Hellman shared value gxy.
Key derivation is then done using HKDF in the extract-then-expand paradigm [Kra10, KE10],
computing first an extracted value xES from which the handshake traffic key tkhs is expanded;
both are unauthenticated at this point. We adopt here the standard notation for the two HKDF
functions as introduced in Section 3.2.3.

All subsequent messages are encrypted using tkhs:

• EncryptedExtensions (EE), sent by the server, allows to specify further extensions.

61

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

• ServerConfiguration (SC) contains a server configuration (cryptographically a semi-static
Diffie–Hellman share) which allows a client to later run an abbreviated (0-RTT) handshake
(see the description of the Diffie–Hellman-based 0-RTT handshake in Section 7.4).

• ServerCertificate (SCRT)/ClientCertificate (CCRT) contain the public-key certificate
of the respective party.

• CertificateRequest (CR) is sent by the server if it demands that the client authenticates
using a certificate.

• ServerCertificateVerify (SCV)/ClientCertificateVerify (CCV) contain a digital sig-
nature over the handshake hash (the hash of all handshake messages sent and received at
that point in the protocol run).

• ClientFinished (CF)/ServerFinished (SF) contain an HMAC message authentication
code computed over the handshake hash keyed with the finished secret FS. The finished
secret in turn is derived from the extracted version xSS of the static secret SS. While the
static secret takes different values in other handshake variants, it equals the ephemeral
secret (SS = ES) in the full (EC)DHE handshake.

Both parties can now compute the master secret MS (as an extraction of expanded ephemeral
and static secrets). From the master secret, the application traffic key tkapp as well as the
resumption master secret RMS for use in future session resumptions and the exporter master
secret EMS allowing the potential derivation of further keying material are computed through
HKDF expansion steps which include the final handshake hash value, which is also called the
session hash Hsess.

On 0.5-RTT data and post-handshake messages. In our analysis of the TLS 1.3 hand-
shake candidates we focus on the main components of the handshake and hence in particular
do not capture the following two more advanced options specified or envisioned in the draft
standards.

First, instead of deriving the application traffic key tkapp at the end of the handshake (as
depicted in Figure 6.1), the server might already do so after sending the ServerFinished
message in order to send so-called 0.5-RTT data directly following his handshake messages,
i.e., without waiting for the ClientFinished response. We omit analyzing this variant of the
handshake but expect that results for it with potentially weaker authentication guarantees
for tkapp can be obtained in our model.

Second, TLS 1.3 introduces post-handshake messages that can be sent encrypted under tkapp
(potentially long) after the initial handshake was completed in order to update the used traffic
key, authenticate the client, or issue tickets for session resumption.21 Here, we focus on the
main handshake and do not consider post-handshake messages.

6.3 Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake
As discussed above, we employ our (public-key) multi-stage key exchange (MSKE) model (cf.
Chapter 4) for the analysis of TLS 1.3’s full (EC)DHE handshake mode in draft-10, which
we shorten to draft-10-(EC)DHE here. We will establish that draft-10-(EC)DHE provides key
independence and forward secrecy for all keys derived along with the following protocol-specific
properties (M,AUTH,USE,REPLAY):

21TLS 1.3 draft-10 specifies only the last one, the NewSessionTicket message to issue resumption tickets.
The other post-handshake messages were introduced in draft-11 [Res15f].

62

6.3. Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake

• M = 4: draft-10-(EC)DHE consists of four stages deriving the handshake and application
traffic keys tkhs and tkapp, the resumption master secret RMS, and the exporter master
secret EMS (in this order).

• AUTH =
{
(unauth, authfin, authfin, authfin) | authfin ∈ {unauth, unilateral,mutual}

}
: the

first-stage key tkhs is always unauthenticated, the remaining three keys (tkapp, RMS, and
EMS) can be (all) either unauthenticated22, unilaterally (server-only) authenticated, or
mutually authenticated.

• USE = (internal, external, external, external): The handshake traffic key is used internally
within draft-10-(EC)DHE to encrypt the second part of the handshake; all other keys are
not used within the main handshake.

• REPLAY = (nonreplayable, nonreplayable, nonreplayable, nonreplayable): All stages’ keys are
non-replayable due to nonces included from both sides.

The draft-10 full (EC)DHE handshake does not involve semi-static keys in its key derivation
(but only possibly transmits them for a later 0-RTT handshake in a ServerConfiguration
message). We hence do not have to treat such keys in the notation of our model and can thus
ignore the NewSemiStaticKey and RevealSemiStaticKey queries in the following analysis.

Further, we need to define the session and contributive identifiers for the four stages of the
TLS 1.3 draft-10 full handshake. We let the session identifiers for the two stages deriving the
handshake traffic key tkhs and the application traffic key tkapp be the unencrypted messages
sent and received excluding the finished messages:

sid1 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare) and
sid2 = (ClientHello, ClientKeyShare, ServerHello, ServerKeyShare, EncryptedExtensions,

ServerConfiguration∗, ServerCertificate∗, CertificateRequest∗,

ServerCertificateVerify∗, ClientCertificate∗, ClientCertificateVerify∗).

Here, starred (∗) components are not present in all authentication modes. We capture the
further derived resumption master secret RMS and exporter master secret EMS in stages 3
and 4 and define the session identifier to be sid3 = (sid2, “RMS”) and sid4 = (sid2, “EMS”) which
are uniquely determined by the second-stage identifier sid2.

We stress that defining session identifiers over the unencrypted messages is necessary to
obtain key-independent Multi-Stage security. Otherwise, we would need to either resort to
key dependence, or guarantee that an adversary is not able to re-encrypt a sent message into
a different ciphertext even if it knows the handshake traffic key tkhs used (due to a Reveal
query)—a property generally not to be expected from a (potentially randomized) encryption
scheme.

Concerning the contributive identifiers, we let the client (resp. server) on sending (resp.
receiving) the ClientHello and ClientKeyShare messages set cid1 = sid1 = (CH, CKS) and
subsequently, on receiving (resp. sending) the ServerHello and ServerKeyShare messages,
extend it to cid1 = (CH, CKS, SH, SKS). The other contributive identifiers are set to cidi = sid1 for
stages i ∈ {2, 3, 4} by each party on sending its respective Finished message.

We are now ready to state our formal security result for the TLS 1.3 draft-10 full (EC)DHE
handshake.

22The TLS 1.3 draft-10 specification is not entirely clear whether a fully anonymous (EC)DHE handshake is
permissible. We include this option in our analyses in this thesis for completeness, establishing that TLS 1.3 can
achieve anonymous key exchange security.

63

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Theorem 6.1 (Match security of draft-10-(EC)DHE). The TLS 1.3 draft-10 full (EC)DHE
handshake is Match-secure with properties (M,AUTH,USE,REPLAY) given above. For any
efficient adversary A we have

AdvMatch
draft-10-(EC)DHE,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the
bit-length of the nonces.

Match security follows from the way the session identifiers are chosen (to include all un-
encrypted messages), in particular guaranteeing that partnered sessions derive the same key,
authenticity, and contributive identifiers. The given security bound takes into account the
probability that two honest sessions choose the same nonce and group element.

Proof. We need to show the six properties of Match security (cf. Definition 4.1).

1. Sessions with the same session identifier for some stage hold the same key at that stage.
For the first stage this follows as the session identifier contains the parties’ Diffie–Hellman
contributions gx and gy, which uniquely identify the Diffie–Hellman key, as well as all data
entering the key derivation step. Hence, equal session identifiers imply that both parties
compute the same ephemeral secret and the same session key on the first stage. For the
second, third, and fourth stage note that the identifier sid2 (and hence also sid3 and sid4)
contains the full sid1, implying that the parties have also computed the same ephemeral
secret. Since the key derivation for the stages 2–4 is only based on this secret value (and
the identical static secret SS = ES) and data from sid2, it follows that the session keys
must be equal, too.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
Observe that, for the first stage, the only admissible authenticity by design of TLS 1.3 is
auth1 = unauth on which, hence, all sessions will agree. For the other stages, the exchanged
messages (except for the finished messages) contained in the session identifier sid2 (and
hence also sid3 and sid4) uniquely determines the authenticity property for these stages.
More precisely, according to the protocol specification, both sessions will agree on sid2 =
(ClientHello, ClientKeyShare, ServerHello, ServerKeyShare, EncryptedExtensions) if
and only if both have auth2 = unauth. If sid2 additionally contains ServerConfiguration∗

(optional), ServerCertificate, and ServerCertificateVerify, they agree on auth2 =
unilateral. If it moreover contains messages CertificateRequest, ClientCertificate,
and ClientCertificateVerify, the sessions agree on mutual authentication. Moreover,
auth2 = auth3 = auth4 always holds hence same identifiers also imply agreement on
authenticity.

3. Sessions with the same session identifier for some stage share the same contributive
identifier.
This holds since, for each stage, the contributive identifier value is final and equals sid1
once the session identifier is set, and the messages in sid1 are contained in every session
identifier.

4. Sessions are partnered with the intended (authenticated) participant.
First of all observe that this case only applies to unilaterally or mutually authenticated
stages, hence the stages 2–4 only. In TLS 1.3, the client obtains the server’s identity within
the ServerCertificate message and vice versa the server obtains the client’s identity

64

6.3. Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake

(in case of mutual authentication) within the ClientCertificate message. Moreover,
honest clients and servers will not send a certificate attesting an identity different from
their own. Hence, as both messages are contained in the session identifiers of stages 2–4
(in the respective authentication mode), agreement on sid2 (and hence the same for sid3,
sid4) implies agreement on the respective partner’s identity.

5. Session identifiers are distinct for different stages.
This holds trivially as sid2 contains strictly more messages than sid1 and sid3 as well as
sid4 contain unique labels.

6. At most two sessions have the same session identifier at any non-replayable stage.
Observe that the group element for the Diffie–Hellman key, as well as a random nonce,
of both the initiator and the responder enter the session identifiers. Therefore, in order
to have a threefold collision among session identifiers of honest parties, the third session
would need to pick the same group element and nonce as one of the other two sessions.
The probability that there exists such a collision can hence be bounded from above by
n2
s · 1/q · 2−|nonce| where ns is the maximum number of sessions, q is the group order, and
|nonce| = 256 the nonces’ bit-length.

Theorem 6.2 (Multi-Stage security of draft-10-(EC)DHE). The TLS 1.3 draft-10 full (EC)DHE
handshake is Multi-Stage-secure in a key-independent and stage-1-forward-secret manner with
properties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient adversary A
against the Multi-Stage security there exist efficient algorithms B1, . . . , B6 such that

AdvMulti-Stage,D
draft-10-(EC)DHE,A ≤ 4ns ·

(
AdvCOLL

H,B1 + nu · AdvEUF-CMA
Sig,B2 + ns ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B3

+ AdvPRF-sec
HKDF.Expand,B4 + AdvPRF-sec

HKDF.Extract,B5 + AdvPRF-sec
HKDF.Expand,B6

))
,

where ns is the maximum number of sessions and nu is the maximum number of users.

Multi-Stage security essentially follows from a combination of two lines of reasoning about
the draft-10 (EC)DHE handshake. First, (unforgeable) signatures covering the (collision-
resistantly hashed) handshake messages ensure that, for authenticated stages, the exchanged
Diffie–Hellman shares gx and gy originate from an honest partner session (client, resp. server).
Then, from the joint Diffie–Hellman key gxy unknown to the adversary, all keys are derived via
HKDF and independently, allowing us to show that they are indistinguishable from random keys
(under the snPRF-ODH assumption and according assumptions on the Extract and Expand steps
of HKDF).

Proof. First of all we consider the case that the adversary A makes a single Test query only
(and denote the corresponding game as 1-Multi-Stage). This reduces its advantage, based on a
hybrid argument (which we delay for readability reasons to Lemma 6.3 below), by a factor at
most 1/4ns as there are four stages in each of the ns sessions. We from now on can speak about
the session label tested at stage i, which we know in advance.

In the following, we proceed via a sequence of games. Starting from the original Multi-Stage
game (with a single Test query), we bound the advantage difference of adversary A between any
two games by complexity-theoretic assumptions until we reach a game where the adversary A
cannot win, i.e., its advantage is at most 0.

Game 0. The initial game equals the Multi-Stage game with a single Test query. Combined
with the initial hybrid step we therefore have that

AdvMulti-Stage,D
draft-10-(EC)DHE,A ≤ 4ns · AdvG0

draft-10-(EC)DHE,A.

65

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Game 1. In this game, we let the challenger abort the game if any two honest sessions compute
the same hash value for different inputs in any evaluation of the hash function H.

Let abortH denote the event that the challenger aborts in this case. We can bound the
probability Pr[abortH] by the advantage AdvCOLL

H,B1 of an adversary B1 against the collision
resistance of the hash function H. To this extent, B1 acts as the challenger in Game 0, using
its description of H to compute hash values, and running adversary A as a subroutine. If the
event abortH occurs, B1 outputs the two distinct input values to H resulting in the same hash
value as a collision.

Note that B1 perfectly emulates the attack of A according to G0 up to the point where a
hash collision occurs. As B1 wins if abortH is triggered, we have that Pr[abortH] ≤ AdvCOLL

H,B1 and
thus

AdvG0
draft-10-(EC)DHE,A ≤ AdvG1

draft-10-(EC)DHE,A + AdvCOLL
H,B1 .

Our security analysis now separately considers the two (disjoint) cases that

A. the adversary tests a (client or server)23 session without honest contributive partner in
the first stage (i.e., for the test session label there exists no label′ 6= label with label.cid1 =
label′.cid1), and

B. the tested session has an honest contributive partner in stage 1 (i.e., there exists label′
with label.cid1 = label′.cid1).

This allows us to split the adversary’s advantage along these two cases:

AdvG1
draft-10-(EC)DHE,A ≤ AdvG1,test without partner

draft-10-(EC)DHE,A + AdvG1,test with partner
draft-10-(EC)DHE,A .

Case A. Test without Partner

We first consider the case that the tested session label (which might be a client/initiator or a
server/responder session) is without honest contributive partner in the first stage. Since cid1
is contained in sid1, we know that label also has no session partner in stage 1 (i.e., there is
no other label′ with label.sid1 = label′.sid1). Having an honest partner in the second (or later)
stage implies having also one in the first stage (as sid1 = cid2 = cid3 = cid4), hence the tested
session must actually be without honest partner in all stages. Observe that, by definition of
the model, the adversary cannot win in this case if the tested key is not authenticated by the
peer session. Hence, we can assume that, if the test session is a client session then the key is
responder-authenticated (i.e., label.authi ∈ {unilateral,mutual}), respectively if the test session
is a server session then the key is initiator-authenticated (i.e., label.authi = mutual). This allows
us to focus on Test queries in the stages 2–4 according to the authentication properties AUTH
provided.

Game A.0. This initial game equals Game 1 above where the adversary is, by our assumption,
restricted to test a session without honest contributive partner in the first stage. Therefore,

AdvGA.0draft-10-(EC)DHE,A = AdvG1,test without partner
draft-10-(EC)DHE,A .

Game A.1. In this game, we let the challenger abort if the tested session receives, within
the ServerCertificateVerify or ClientCertificateVerify message, a valid signature under
the public key pkU of some user U ∈ U such that the hash value message has not been signed

23The original analysis in [DFGS16] treated the client and server sub-cases separately; merging them here
allows us to slightly optimize the overall security bound.

66

6.3. Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake

by any of the honest sessions. Recall that due to the peer authentication of the tested session’s
stage i such CertificateVerify message must be received.

Let abortSig denote the event that the challenger aborts in this case. We bound the probability
Pr[abortSig] of its occurrence by the advantage of an adversary B2 against the EUF-CMA security
of the signature scheme Sig, denoted AdvEUF-CMA

Sig,B2 . In the reduction, B2 first guesses a user U ∈ U
which it associates with the challenge public key pk∗ in the EUF-CMA game, then generates all
long-term key pairs for the other users U ′ ∈ U \ {U} and runs the Multi-Stage game GA.0 for A,
including potentially an abort due to hash collisions (cf. Game 1). For any signature to generate
for user U in honest sessions for a hash value, B2 calls its signing oracle about the hash value.
When abortSig is triggered, B2 outputs the signature the tested session received together with
the hash value as a forgery.24

Since every honest session has a different session identifier than the tested session in the first
stage (as the latter has no partnered session in this stage), no honest party will seek to sign
the transcript value expected by the tested session. Moreover, by the modification in Game 1,
there is no collision between any two honest evaluations of the hash function, so in particular
there is none for the hash value computed by the tested session, implying that the hash value in
question has not been signed by an honest party before. If B2 correctly guessed the user under
whose public key the obtained signature verifies, that signature output by B2 is a valid forgery
in the sense that its message was never queried to the EUF-CMA oracle before. Hence, B2 wins
if abortSig occurs and it has guessed the correct user amongst the set of (at most) nu users and
we have that Pr[abortSig] ≤ nu · AdvEUF-CMA

Sig,B2 and thus

AdvGA.0draft-10-(EC)DHE,A ≤ AdvGA.1draft-10-(EC)DHE,A + nu · AdvEUF-CMA
Sig,B2 .

Now, if Game A.1 does not abort, we are assured that an honest session issued a sig-
nature on the (hashed) messages the test session expects within the CertificateVerify
message. This signature is computed over H2 = H(CH, CKS, SH, SKS, EE, SC∗, SCRT, CR∗) in case of
ServerCertificateVerify resp. H4 = H(CH, CKS, SH, SKS, EE, SC∗, SCRT, CR∗, SF, CCRT) in case
of ClientCertificateVerify, i.e., in particular contains all messages in sid1. Hence, the tested
session and the honest session outputting the signature agree on sid1, so also on cid1, and are
hence (contributively) partnered in the first stage.

The adversary A therefore cannot test a session without honest first-stage partner in
Game A.1 anymore, resulting in the test bit btest being unknown to A and hence

AdvGA.1draft-10-(EC)DHE,A ≤ 0.

Case B. Test with Partner

In the second case, the tested session (client or server) has an honest contributive partner in the
first stage, i.e., we know there exists another label′ such that label.cid1 = label′.cid1. This allows
Test queries to be potentially issued in any of the four stages.

Game B.0. We start with an initial game equal to Game 1 above, but restrict the adversary
to only test a session having an honest contributive partner in the first stage in order to have

AdvGB.0draft-10-(EC)DHE,A = AdvG1,test with partner
draft-10-(EC)DHE,A .

Game B.1. First, we guess a session label′ 6= label (among the at most ns sessions in the
game) and abort the game in case this session is not an honest contributive partner (in stage 1)

24Note that, although the CertificateVerify message containing the signature is sent encrypted, the honest
tested session is simulated by B2 and hence B2 can in particular decrypt this message.

67

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

of the tested session, i.e., we abort if label.cid1 6= label′.cid1. Note that we can assume that A
always issues a Test query, as this cannot decrease the adversary’s advantage. The guessing
strategy then reduces the adversary’s advantage by a factor of at most 1/ns.

AdvGB.0draft-10-(EC)DHE,A ≤ ns · AdvGB.1draft-10-(EC)DHE,A.

From now on, we can speak of the session label′ (contributively) partnered with the tested
session label in stage 1 and know label′ in advance.

Game B.2. At this point, having the (honest) contributions to the tested session fixed, we
can encode a Diffie–Hellman challenge in the shares gx and gy at the tested session. If a client
session is tested, we know that the partnered session label′ guessed in Game B.1 holds the same
shares. However, if a server session is tested, the client session label′ may obtain a modified
(and potentially adversarially-known) value gy′ in the ServerHello message. In order to be
able to compute the ephemeral secret ES of session label′ (and correctly answer to a Reveal
query on derived keys) without knowing exponents x or y′, we employ the PRF-ODH assumption
in its snPRF-ODH variant [JKSS12, BFGJ17] here (see Definition 3.6 in Section 3.2.2 for its
definition). More specifically, we assume HKDF.Extract satisfies the snPRF-ODH assumption
when considered as PRF deriving xES and xSS using ES = SS as key and salt 0 as label.

In Game B.2, we then replace the extracted ephemeral and static secrets xES and xSS (which
are equal as ES = SS) by a uniform and independent random string x̃ES = x̃SS $←− {0, 1}λ in
the tested session and, if derived there, in the partnered session. We bound the introduced
advantage difference for A by the advantage of an algorithm B3 against the snPRF-ODH security
of HKDF.Extract (using ES = SS as source key material and 0 as salt) as follows. First, B3
outputs 0 as the PRF challenge label. It obtains Diffie–Hellman shares gx and gy which it
encodes in the ClientKeyShare and ServerKeyShare message, respectively, of the tested and
contributively partnered session label and label′. It further obtains a PRF challenge value which
it uses as the extracted ephemeral and static secret xES = xSS in session label and, if using
the same Diffie–Hellman shares, session label′. In case label′ is a client session and obtains
within ServerKeyShare a value gy′ 6= gy, B3 uses its single ODHu query in the snPRF-ODH
game to compute xES = xSS← HKDF.Extract(0, gxy′).

The simulation B3 provides equals Game B.1 in case the PRF challenge value equals
HKDF.Extract(0, gxy) and Game B.2 if the challenge is a uniformly random value. Thus,

AdvGB.1draft-10-(EC)DHE,A ≤ AdvGB.2draft-10-(EC)DHE,A + AdvsnPRF-ODH
HKDF.Extract,G,B3 .

Game B.3. Next, we replace the handshake traffic key tkhs, the expanded ephemeral and
static secrets mES and mSS, and the finished secret FS derived in both the tested and its
partnered session by independent uniformly random values t̃khs, m̃ES, m̃SS, F̃S $←− {0, 1}λ. Recall
that in contrast to the extracted secrets xES and xSS that are derived using the same salt, the
expanded secrets mES and mSS are computed using distinct labels.

We can bound the difference in A’s advantage introduced through this step by the security
of the HKDF.Expand function which we model as a pseudorandom function keyed with uniformly
random bit strings from {0, 1}λ. The reduction B4 uses its PRF oracle for the evaluations
of HKDF.Expand under the key x̃ES = x̃SS in the tested and its partnered session. Observe that,
in case the oracle computes the PRF function, this equals Game B.2, whereas, if it computes
a random function, this equals Game B.3. The simulation is sound because the extracted
ephemeral and static secret x̃ES = x̃SS, by the change in Game B.2, is a random bit string
chosen independently of all other values in the game.

68

6.3. Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake

The advantage of B4 in the PRF security game therefore bounds the advantage difference
such that

AdvGB.2draft-10-(EC)DHE,A ≤ AdvGB.3draft-10-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B4 .

Game B.4. We now replace the master secret MS by a uniformly random value M̃S. This
again can be bounded by the advantage against the PRF security (with uniformly random keys)
of HKDF.Extract as MS is derived from key m̃ES and salt m̃SS, now independent uniformly
random bit strings. Therefore,

AdvGB.3draft-10-(EC)DHE,A ≤ AdvGB.4draft-10-(EC)DHE,A + AdvPRF-sec
HKDF.Extract,B5 .

Game B.5. Finally, we replace all HKDF.Expand evaluations using the (replaced) master
secret M̃S as key in the tested and its partnered session by a (lazy-sampled) random function.
This change affects the derivation of the handshake traffic key tkapp, the resumption master
secret RMS, and the exporter master secret EMS which are hereby replaced with independent
random values t̃kapp, R̃MS, ẼMS $←− {0, 1}λ in the tested session and, for same computations,
also its partnered session.

As in the previous steps, we can bound the difference in A’s advantage introduced through
this step by the PRF security of HKDF.Expand, again defined for keys being uniformly random
bit strings from {0, 1}λ. To this extent, the reduction B6 as above uses its PRF oracle for
all evaluations of HKDF.Expand under the key M̃S in the tested and its partnered session.
Depending on the oracles behavior, this perfectly simulates either Game B.4 or Game B.5,
as M̃S is a uniformly random and independent bit string and different labels are used in the
derivation of tkapp, RMS, and EMS.

We can hence can infer that

AdvGB.4draft-10-(EC)DHE,A ≤ AdvGB.5draft-10-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B6 .

In Game B.5, the session keys t̃khs and t̃kapp as well as the resumption and exporter master
secrets R̃MS and ẼMS are now chosen independently and uniformly at random. Note furthermore
that the adversary cannot reveal the partnered session without immediately losing the game and
cannot render the first-stage contributively partnered to derive the same keys while not being
partnered, as the (hashed) session identifier messages fully enter the key derivation in each stage.
As the response to its Test query is hence independent of the test bit btest, the adversary A
cannot distinguish whether it is given the real key or (another) independently chosen random
value and thus

AdvGB.5draft-10-(EC)DHE,A ≤ 0.

Combining the various bounds implied by the above sequence of game transitions yields the
stated security bound.

We complete our analysis of the TLS 1.3 draft-10 full (EC)DHE handshake by providing
the details of the hybrid argument showing that if we restrict the adversary in Theorem 6.2 to a
single Test query, this reduces its advantage by a factor at most 1/4ns (for the four stages in
each of the ns sessions).

Lemma 6.3. Restricting the adversary A in Theorem 6.2 to a single Test query reduces its
advantage by a factor at most 1/4ns (for the four stages in each of the ns sessions). Formally,
there exists an efficient algorithm B such that

AdvMulti-Stage,D
draft-10-(EC)DHE,A ≤ 4ns · Adv1-Multi-Stage

draft-10-(EC)DHE,B.

69

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Proof. The hybrid argument consists of a sequence of games Gn for n = 0, . . . , 4ns, where Gn
behaves like GMulti-Stage,D

draft-10-(EC)DHE,A except that the first n tested keys are the actual derived keys,
and the remaining ones are replaced by random ones (uniformly chosen from D). Here, however,
we assume consistent replacements in the sense that a Test query returns the previously returned
key if a partnered session has already been tested. In particular, if for a tested session there
is a partner session among the first n tested sessions, then we return the actual derived key,
even if the now tested session comes after the n’s Test query. Note that, by construction,
identical session identifiers yield identical keys, such that we cannot generate inconsistencies by
having partners (with identical identifiers) but different keys. Also observe that G4ns equals the
unmodified game GMulti-Stage,D

draft-10-(EC)DHE,A with test bit btest = 0 even if the adversary makes less than
4ns Test queries, and that in G0 all keys are chosen uniformly at random (but consistent over
partnered sessions). This means that G0 is identical to GMulti-Stage,D

draft-10-(EC)DHE,A with test bit btest = 1.
For the hybrid argument we construct a reduction B to the single-test Multi-Stage game

G1-Multi-Stage
draft-10-(EC)DHE,B as follows. Initially B chooses an index n at random between 1 and 4ns.

It initializes a counter c to c = 0 (indicating the number of tested session keys replaced by
random values so far) as well as (initially empty) sets SKEY1,SKEY2,SKEYe2,SKEY3,SKEYe3,
SKEY4,SKEYe4 ⊆ {0, 1}∗ × [D] for identifiers and keys in the support [D] of D, to keep track of
established session keys for a consistent simulation.25 Basically, SKEY1 corresponds to session
identifier–key pairs of the first stage which B has already collected, similarly SKEY2, SKEY3,
and SKEY4 are for the second, third, and fourth stage, and SKEYe2, SKEYe3, resp. SKEYe4 for
transcripts and second-stage, third-stage, resp. fourth-stage keys where B cannot decrypt the
data in the session identifier (yet), since the data entering the identifier are encrypted for
transmission. We usually write sid1 and sid2 = (sid1, sid+2) for the session identifiers for the
first and second stage, respectively, denoting the second part of the stage-two identifier as sid+2;
we also write {sid+2} to denote the fact that B only holds an encrypted version of the second
part. Recall that sid3 = (sid2, “RMS”) and sid4 = (sid2, “EMS”), hence we can also write them
as sid3 = (sid1, sid+2, “RMS”) resp. sid4 = (sid1, sid+2, “EMS”). All sets SKEY1, SKEY2, SKEY3,
and SKEY4 will be (individually and together) consistent during the entire simulation in the
sense that they do not contain entries with identical session identifiers but different keys. This
is clearly true upon initialization and remains so whenever we add elements to either set.

Algorithm B then runs A, relaying all queries and answers of A to its external oracles, with
one exception: if A makes one of its multiple Test queries (where we can assume that all such
queries are made for accepted executions only), then B increments c and checks c against n.

• If c < n then B simply makes a Reveal query for the corresponding stage and returns the
obtained key key. Additionally, B does the following updates to its lists SKEY1, SKEY2,
SKEYe2, SKEY3, SKEYe3, SKEY4, and SKEYe4.

If the inspected session is a stage-one session with identifier sid1 then B places the session
identifier and the returned key value into SKEY1. Then, for each element (sid′1, {sid′+2})
in SKEYe2 which carries sid′1 = sid1 as part of the session identifier, use the session key
for sid1 to recover the (decrypted) identifier sid′2 for the entry and put the identifier sid′2
with its key into SKEY2. Proceed analogously for each element (sid1′ , {sid′+2}, “RMS”) in
SKEYe3 and (sid1′ , {sid′+2}, “EMS”) in SKEYe4 with sid′1 = sid1.

If the inspected session is a stage-two session then B can recover the stage-two identifier
(sid1, {sid+2}) (with some stage-one identifier sid1 and some encrypted part). It checks

25As we will see, we can, by construction, always decide partnering in stages 3 and 4 (deriving the resumption
master secret RMS resp. exporter master secret EMS) whenever we can decide it in stage 2. We will nevertheless
state the according computations explicitly here for completeness.

70

6.3. Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake

if the stage-one identifier part sid1 (in clear) is already in SKEY1.26 If so, then use the
session key of the sid1 entry to recover the full identifier sid2 = (sid1, sid+2) of the inspected
session in clear, and put sid2 with the key into SKEY2. If there is no sid1 entry in SKEY1
then put the partly encrypted session identifier (sid1, {sid+2}) with the returned key into
SKEYe2.

For third-stage and fourth-stage queries, proceed as for stage 2 with the according identifier
(sid1, {sid+2}, “RMS”) resp. (sid1, {sid+2}, “EMS”).

Note that all four cases cannot introduce any inconsistencies in SKEY1, SKEY2, SKEY3,
or SKEY4 as the derived and revealed key is uniquely determined given sid1, sid2, sid3,
resp. sid4.

• If c = n then B proceeds as follows. Algorithm B first extracts the session identifier
of the tested session. This is trivial for a first-stage identifier sid1 as it consists of the
communication data in clear. For a second-, third-, or fourth-stage identifier sid2 =
(sid1, {sid+2}), sid3 = (sid1, {sid+2}, “RMS”), resp. sid4 = (sid1, {sid+2}, “EMS”), which
also contains messages sent encrypted under the first-stage handshake traffic key, algorithm
B will make a Reveal query for the first stage of the test session to get the handshake
traffic key. It puts the corresponding session identifier sid1 and the revealed key into
SKEY1 for future reference. Revealing this first-stage session key is admissible due to key
independence, despite the tested key in stage two, three, or four; it cannot force B with its
single Test query to lose. At the same time it allows B to decrypt and recover the values
for sid+2 in clear. Algorithm B also checks if one can now decrypt and move any entries in
SKEYe2 to SKEY2, from SKEYe3 to SKEY3, resp. from SKEYe4 to SKEY4 (by checking for
entries in SKEYe2, SKEYe3, resp. SKEYe4 which carry the same stage-one identifier sid1).

Given that B now holds the session identifier (in clear) it can check if there already
exists an entry in SKEY1, SKEY2, SKEY3, or SKEY4. If so, it returns the corresponding
stored key. Else, B uses its single external Test query to get a key key, adds this key
with the recovered identifier to the corresponding set SKEY1, SKEY2, SKEY3, or SKEY4,
and returns the key to A. Note that here SKEY1, SKEY2, SKEY3, and SKEY4 are still
consistent in any case as B, if at all, adds a new session identifier.

• If c > n then B first recovers the session identifier of the requested test session. For a stage-
one identifier sid1 this is again easy by inspecting the communication so far. For a stage-two,
stage-three, or stage-four identifier sid2 = (sid1, {sid+2}), sid3 = (sid1, {sid+2}, “RMS”),
resp. sid4 = (sid1, {sid+2}, “EMS”) algorithm B first checks if there already exists an entry
in SKEY1 for the contained stage-one part sid1 of the identifier of the inspected session
and, if so, uses it to recover the full (unencrypted) sid+2 part of the identifier. If there
is no entry then B makes a Reveal query for the stage-one key to again recover the full
identifier sid2, sid3, resp. sid4 and places sid1 and the returned key into SKEY1. Note that
such a Reveal query cannot infringe with B’s single Test query, because either the Test
query was for a stage-two, -three, or -four session (and key independence enables us to
reveal any stage-one key then), or the Test query was for a stage-one identifier in which
case it must already be included in SKEY1 and the Reveal query is not made.

Given that B now knows the session identifier of the requested test session it checks if
there is already an entry in SKEY1, SKEY2, SKEY3, or SKEY4 for it. If so, it returns the
same key as in the entry. Else it picks a key key at random from D, returns it to A, and
adds the obtained session identifier with the key value key to the corresponding set SKEY1,

26Recall that any such entry would be unique.

71

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

SKEY2, SKEY3, or SKEY4. Note again that there cannot exist such an entry in the lists if
B adds some value, such that consistency remains intact.

Note that B provides a consistent simulation as any pair of Test queries for partnered sessions
return identical answers: For Test queries of A for partnered sessions, both with c < n, this is
clear as the Reveal queries make B return consistent keys. If the second query is for c = n then B
either has the identifier already in SKEY1, SKEY2, SKEY3, or SKEY4 and answers consistently,
or the values for the first Test query are at least in SKEYe2, SKEYe3, or SKEYe4 and are now moved
to SKEY2, SKEY3, resp. SKEY4 because B learns the key to sid1 and first checks membership in
SKEY1, SKEY2, SKEY3, or SKEY4 before possibly making the Test query. If the second Test
query is for c > n then the same argument as in the previous case applies. The latter is also
true if the first Test query has been for c = n or for c > n, because then the session identifier
will be in SKEY1, SKEY2, SKEY3, or SKEY4 already.

Up to the finalization step B’s simulation is perfect (except for potentially the state of the
lost flag, see below). In particular, B loses according to the lost flag, either set during the
processing of a Test query or in the finalization step, only if A in the simulation (and thus in a
genuine execution) would lose. Conversely, as is, it can happen that B even avoids a loss which
A would trigger with a Test query for a revealed partner, but B omits this Test query since
it provides the answer differently. This corresponds to the finalize condition of Definition 4.2.
Remarkably, this causes the following problem: if A decides to create a difference between the
two cases, genuine keys or random ones in Test queries, by deliberately losing via, say, a Reveal
query for a tested partner, this difference could vanish in B’s simulation. In order to avoid this,
we let B eventually run the internal finalization step and check if A loses (and if so, forcing a
loss in its simulation by making a Reveal query to the same key the Test query was issued on).

To check for the condition in the finalization step note that all Test requests of A insert some
values in the sets SKEY1, SKEY2, SKEYe2, SKEY3, SKEYe3, SKEY4, or SKEYe4. Only for those
entries in SKEYe2, SKEYe3, and SKEYe4 algorithm B cannot (yet) recover the session identifier;
in particular there is no entry in SKEY1 for those values, else they would have been moved
to SKEY2, SKEY3, SKEY4 already. Algorithm B can now “clean up” the sets SKEYe2, SKEYe3,
and SKEYe4 and move all entries to SKEY2, SKEY3, resp. SKEY4, by making a-posteriori Reveal
queries for the first-stage keys for all sessions in SKEYe2, SKEYe3, and SKEYe4 to get the session
key which allows us to decrypt the stage-two, stage-three, and stage-four identifier. These
Reveal queries cannot force B to lose as the session identifier of the single tested session must be
different (otherwise there would be an entry in SKEY1). So we can from now on assume that B
knows all session identifiers of A’s requested test sessions in clear, and holds candidates for all
first-stage keys of the tested sessions.

It remains that B checks the condition of the finalization (i.e., that A has not made a Reveal
query to a partner of a tested session) as follows. Algorithm B recovers all the session identifiers
of the revealed sessions (excluding the Reveal queries which only B made). For a stage-one
Reveal request this is trivial, for a stage-two, -three, or -four request (with partial identifier sid1)
algorithm B checks if sid1 appears among the tested sessions. If not, then this Reveal query
clearly does not infringe with the Test queries. If it does appear, however, then we already have
the first-stage key for sid1 and can recover the full session identifier of the Reveal query and
compare it to the set of tested sessions. If and only if B finds some match for some Reveal query
then it forces a loss in its game.

Next, we check the losing condition within the Test query triggered when A requests some
test such that another honest execution has already used this session key (in which case the
adversary could potentially distinguish a random key). This check is easy to perform for B
because, in handling the Test query, it always establishes the according session identifier sidi of

72

6.4. The TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake Protocol

the tested session’s stage i. Hence, B can simply check whether there exists a partnered session
in stage i whose execution state is already beyond acceptedi and force a loss in this case.

To check the condition within the Test query that A has not tested a session for which the
partner is unauthenticated but which does not have an honest contributive partner, B can, for
the first stage, simply inspect the the transcript as the elements of the contributive identifier cid1
for the first stage are sent in clear. For stages 2–4 recall that cid2 = cid3 = cid4 = sid1 and hence
B can again leverage the established session identifier of the tested session’s stage to check if
there exists an honest contributive partner for these stages upon finalization. In each case, if no
contributive partnered session exists, then B provokes a loss.

With the final checks we have made sure that B loses due to some inadmissible query if and
only if A would in the real attack. In particular, it follows that for fixed n = 0 the simulation
of B has exactly the same success probability as A in game G0, and analogously for n = 4ns. A
standard counting argument, basically considering the conditional probabilities for fixed choices
of n, now shows that the advantage of A is at most a factor 4ns of the advantage of B. More
formally, noting that for some fixed n and test bit btest = 0 we actually run the game for btest = 1
and n− 1, we obtain:

Pr
[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣btest = 1

]
− Pr

[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣btest = 0

]
= 1

4ns
·

4ns∑
n0=1

(
Pr
[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣n = n0, btest = 1

]
− Pr

[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣n = n0, btest = 0

])

= 1
4ns
·

4ns∑
n0=1

(
Pr
[
G1-Multi-Stage

draft-10-(EC)DHE,B= 1
∣∣∣n = n0,btest = 1

]
−Pr

[
G1-Multi-Stage

draft-10-(EC)DHE,B= 1
∣∣∣n = n0 − 1,btest = 1

])
= 1

4ns
·
(

Pr
[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣n = 4ns, btest = 1

]
− Pr

[
G1-Multi-Stage

draft-10-(EC)DHE,B = 1
∣∣∣n = 0, btest = 1

])
= 1

4ns
· (Pr [G4ns = 1]− Pr [G0 = 1]) .

Noticing that the first and last differences of probabilities in both cases, for B and for A,
correspond to 2 · Adv1-Multi-Stage

draft-10-(EC)DHE,B and 2 · AdvMulti-Stage,D
draft-10-(EC)DHE,A, the claim follows.

6.4 The TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake
Protocol

Beyond the main, full handshake, TLS 1.3 specifies an abbreviated handshake based on pre-
shared keys (PSKs) which, in its core structure, follows the main handshake structure, but omits
some steps, especially the comparatively expensive signature-based authentication. Pre-shared
keys may be established out-of-band or derived from the resumption master secret established
in a full (EC)DHE handshake. TLS 1.3 specifies a pure pre-shared key–based mode (PSK) as
well as a combined PSK and (ephemeral) Diffie–Hellman mode (PSK-(EC)DHE).

As the full handshake (cf. Section 6.2), the PSK-based handshakes are subdivided into the
key exchange phase (including new ClientPreSharedKey and ServerPreSharedKey messages
described below), the server parameters phase (reduced to server extensions), and the authenti-
cation phase (purely based on the Finished messages). Figure 6.2 shows the message flow and
relevant cryptographic computations for the PSK and PSK-(EC)DHE handshake in draft-10.
The new handshake message is the following:

• ClientPreSharedKey (CPSK)/ServerPreSharedKey (SPSK) are mandatory extensions for
the PSK-based handshakes in which the client announces one (or multiple) pre-shared key
identifier(s) (psk_id), of which the server selects one to be used as the pre-shared secret
(pss) in the handshake.

73

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Client Server

ClientHello: rc $←− {0, 1}256

[+ ClientKeyShare: X ← gx]†
+ ClientPreSharedKey: psk_id1, . . .

ServerHello: rs $←− {0, 1}256

[+ ServerKeyShare: Y ← gy]†
+ ServerPreSharedKey: psk_id

H1 ← H(CH‖ . . . ‖SPSK)
[ES← Y x]† [ES← Xy]†

[ES← PSK[psk_id]]�
xES← HKDF.Extract(0,ES)

tkhs ← HKDF.Expand(xES, label1‖H1) stage 1

{EncryptedExtensions}
SS← PSK[psk_id] SS← PSK[psk_id]

xSS← HKDF.Extract(0,SS)
H3 ← H(CH‖ · · · ‖EE)

FS← HKDF.Expand(xSS, label2‖H3)
{ServerFinished}:

SF← HMAC(FS, label3‖H3)
check SF = HMAC(FS, label3‖H3)

H5 ← H(CH‖ . . . ‖SF)
{ClientFinished}:
CF← HMAC(FS, label4‖H5)

check CF = HMAC(FS, label4‖H5)
mES← HKDF.Expand(xES, label5‖H3)
mSS← HKDF.Expand(xSS, label6‖H3)

MS← HKDF.Extract(mSS,mES)
tkapp ← HKDF.Expand(MS, label7‖H5) stage 2
EMS← HKDF.Expand(MS, label9‖H5) stage 3

record layer (application data), using AEAD with key tkapp

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message
[. . .]† message/computation only in PSK-(EC)DHE
[. . .]� message/computation only in PSK

Figure 6.2: The TLS 1.3 draft-10 PSK and PSK-(EC)DHE handshake protocol. The figural key
schedule is identical to that of Figure 6.1, except that no RMS is derived.

The key schedule is almost identical to that of the full (EC)DHE handshake (see Figure 6.1), with
the following three differences. First, in PSK(-only) mode the ephemeral secret ES is set to be
the pre-shared secret pss = PSK[psk_id] agreed upon by the pre-shared key identifier psk_id.
Second, the static secret SS in PSK modes is always the pre-shared secret pss = PSK[psk_id].
Third, the PSK-based handshakes do not derive a resumption master secret RMS, making the
derivation of the exporter master secret EMS the third and last stage in the protocol.

6.5 Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE
Handshake

We use the pre-shared secret variant of our multi-stage key exchange model (MS-PSKE) to
assess the security of both PSK and PSK-(EC)DHE handshake modes of TLS 1.3 draft-10,
treating the pre-shared keys used to run the handshakes as the long-term secrets.

We begin by defining the session identifiers for the three stages (note that RMS is not
derived in PSK and PSK-(EC)DHE handshakes) establishing the handshake traffic key tkhs,
the application traffic key tkapp, and the exporter master secret EMS. As in the (EC)DHE
handshake, we let them contain the unencrypted messages sent and received excluding the

74

6.5. Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake

finished messages:

sid1 = (ClientHello, ClientKeyShare†, ClientPreSharedKey,

ServerHello, ServerKeyShare†, ServerPreSharedKey)
sid2 = (ClientHello, ClientKeyShare†, ClientPreSharedKey,

ServerHello, ServerKeyShare†, ServerPreSharedKey, EncryptedExtensions)
sid3 = (sid2, “EMS”).

Messages indicated with † are only included in the PSK-(EC)DHE handshake mode.
The contributive identifiers are incrementally set with each flow of messages sent and received

by each party for stage 1. So cid1 = (ClientHello, ClientKeyShare, ClientPreSharedKey)
after the client’s first messages is extended to cid1 = sid1, and cid2 = cid3 = sid1, similarly to
draft-10-(EC)DHE.

As the two modes provide distinct security guarantees, we discuss them separately below.

6.5.1 Security of the PSK Handshake

The TLS 1.3 draft-10 PSK(-only) handshake (draft-10-PSK) provides key independence but
no forward secrecy (as we will see, due to the lack of any ephemeral key material), along with
the following protocol-specific properties (M,AUTH,USE,REPLAY):

• M = 3: draft-10-PSK consists of three stages deriving the handshake and application
traffic keys tkhs and tkapp and the exporter master secret EMS (in this order).

• AUTH = {(mutual,mutual,mutual)}: all three derived keys are mutually authenticated
(down to the pre-shared secret used).

• USE = (internal, external, external): The handshake traffic key is used internally within
draft-10-PSK to encrypt the second part of the handshake; the two other keys are not
used within the main handshake.

• REPLAY = (nonreplayable, nonreplayable, nonreplayable): All stages’ keys are non-replayable
due to nonces included from both sides.

As the draft-10 PSK-based handshakes do not involve semi-static keys, we can omit the
NewSemiStaticKey and RevealSemiStaticKey queries in the following.

The formal security results for the TLS 1.3 draft-10 PSK handshake are as follows.

Theorem 6.4 (Match security of draft-10-PSK). The TLS 1.3 draft-10 PSK handshake is
Match-secure with properties (M,AUTH,USE,REPLAY) given above. For any efficient adver-
sary A we have

AdvMatch
draft-10-(EC)DHE,A ≤ n

2
s · 2−|nonce|,

where ns is the maximum number of sessions and |nonce| = 256 is the bit-length of the nonces.

Similar to the full handshake, Match security follows from the choice of session identifiers to
include all unencrypted messages, in particular guaranteeing that partnered sessions agree on
the same key, authenticity, and contributive identifiers. The given security bound is for identifier
collisions due to two honest sessions colliding in their nonce.

75

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Proof. We need to show the six properties of Match security (cf. Definition 4.1). Note that the
only condition that is changed from the public-key (MSKE) to the pre-shared secret setting
(MS-PSKE) is the fourth one, which now also requires agreement on the pre-shared secret
identifier psid.

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifier in each stage fixes all data entering the key derivation step and the
pre-shared secret identifier psid. Hence, equal session identifiers imply that both parties
compute the same intermediate and session keys.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
Since draft-10-PSK only specifies (mutual,mutual,mutual) as authentication as this is
trivially true.

3. Sessions with the same session identifier for some stage share the same contributive
identifier.
This holds since the contributive identifier values cid1, cid2, and cid3 are final and equal sid1
contained in the respective session identifiers once the latter are set.

4. Sessions are partnered with the intended (authenticated) participant and for mutual au-
thentication share the same pre-shared secret index.
Honest sessions are assured of a peer’s identity and key index as the pre-shared secret iden-
tifier psid is included within ClientPreSharedKey and ServerPreSharedKey, contained
in all stages’ session identifiers. Since each party knows the mapping of key index k and
psid, a party can determine the peer identity via this mapping, and agreement on the
session identifiers implies agreement on the partner identities.

5. Session identifiers are distinct for different stages.
This holds trivially as the different stages’ identifiers have unique length.

6. At most two sessions have the same session identifier at any non-replayable stage.
Both client and server nonces are included in all stages’ session identifier and thus
the probability of three-fold colliding session identifiers is bound by the probability of
two nonces colliding: n2

s · 2−|nonce|, where ns is the maximum number of sessions and
|nonce| = 256 is the nonces’ bit-length.

Theorem 6.5 (Multi-Stage security of draft-10-PSK). The TLS 1.3 draft-10 PSK hand-
shake is Multi-Stage-secure in a key-independent and non-forward-secret manner with proper-
ties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient adversary A against the
Multi-Stage security there exist efficient algorithms B1, . . . , B5 such that

AdvMulti-Stage,D
draft-10-PSK,A ≤ 3ns ·

(
AdvCOLL

H,B1 + np ·
(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3

+ AdvPRF-sec
HKDF.Extract,B4 + AdvPRF-sec

HKDF.Expand,B5

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared
secrets.

Proof. As in the proof of Theorem 6.2 for the full handshake, we first restrict the adversary A
to make only a single Test query, reducing its advantage by a factor at most 1/3ns via a hybrid
argument that also fixes the tested session label and stage i.

76

6.5. Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake

Game 0. This initial game equals the Multi-Stage game with a single Test query, so

AdvG0
draft-10-PSK,A = Adv1-Multi-Stage

draft-10-PSK,A.

Game 1. In this game, the challenger aborts the game if any two honest sessions compute the
same hash value for different inputs in any evaluation of the hash function H. We can break the
collision resistance of H in case of this event by letting a reduction B1 output the two distinct
input values to H. Hence:

AdvG0
draft-10-PSK,A ≤ AdvG1

draft-10-PSK,A + AdvCOLL
H,B1 .

Game 2. As the next step, we guess the pre-shared secret pss (among the np secrets established)
that the tested session will use, and the challenger aborts the game if that guess was wrong.
This reduces the adversary’s advantage by a factor of at most 1/np, thus

AdvG1
draft-10-PSK,A ≤ np · AdvG2

draft-10-PSK,A.

Let pssU,V,k be the guessed pre-shared secret.

Game 3. We next replace the pseudorandom function HKDF.Extract in all evaluations using
the tested session’s pre-shared secret pssU,V,k as key by a (lazy-sampled) random function. This
in particular affects the derivation of both the extracted ephemeral static secrets xES = xSS in
the tested (and any potential partnered) session, which is replaced by a random value x̃ES =
x̃SS $←− {0, 1}λ.

We can bound the difference this step introduces in the advantage of A by the security
of HKDF.Extract as a pseudorandom function. Notice here that for any successful adversary
(which hence cannot invoke Corrupt on pssU,V,k used in the tested session), the pre-shared key is
an unknown and uniformly random value. Hence, the simulation is sound and we establish

AdvG2
draft-10-PSK,A ≤ AdvG3

draft-10-PSK,A + AdvPRF-sec
HKDF.Extract,B2 .

Game 4. We can now replace the HKDF.Expand applications in the tested and other sessions
running on the same pre-shared key (and, hence, same x̃ES and x̃SS values) with a random
function. Thereby, we in particular replace the handshake traffic key tkhs, the expanded
ephemeral and static secrecy mES, mSS, and the finished secret FS in the tested (and any
partnered) session by random values t̃khs, m̃ES, m̃SS, F̃S $←− {0, 1}λ.

These values are moreover independent of any value derived in a non-partnered session
(which the adversary may reveal). The Expand evaluations include the (hashed) session identifiers
and, due to Game 1, different session identifiers cannot collide on the same hash value. Any
non-partnered session sharing the same pre-shared secret hence derives independent keys.

We can, as before, bound the advantage difference introduces by this step by the PRF
security of HKDF.Expand and obtain

AdvG3
draft-10-PSK,A ≤ AdvG4

draft-10-PSK,A + AdvPRF-sec
HKDF.Expand,B3 .

Game 5. Randomness and independence of m̃ES in the tested session then allows us to replace
the derived master secret by a random value M̃S $←− {0, 1}λ, a step which is again reducible to
the PRF security of HKDF.Extract:

AdvG4
draft-10-PSK,A ≤ AdvG5

draft-10-PSK,A + AdvPRF-sec
HKDF.Extract,B4 .

77

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Game 6. As the last change, we can now replace the application traffic key tkapp and the
exporter master secret EMS derived from M̃S by random values, which is undetectable given
the PRF security of HKDF.Expand:

AdvG5
draft-10-PSK,A ≤ AdvG6

draft-10-PSK,A + AdvPRF-sec
HKDF.Expand,B5 .

Finally, in Game 6 we reached a situation where all stages’ keys in the tested session are
chosen uniformly at random. Moreover, any non-partnered session (which A could potentially
reveal) using the same pre-shared secret key material derives distinct session keys. Hence, A is
left with no better chance then guessing:

AdvG6
draft-10-PSK,A ≤ 0.

Combining the given bounds yields the overall security statement.

6.5.2 Security of the PSK-(EC)DHE Handshake

We now turn to the combined PSK and Diffie–Hellman mode, the TLS 1.3 draft-10 PSK-
(EC)DHE handshake (draft-10-PSK-(EC)DHE). As the PSK-only mode it provides key indepen-
dence, but the ephemeral Diffie–Hellman values added enable forward secrecy (from the first
stage on). The remaining protocol-specific properties (M,AUTH,USE,REPLAY) are as follows:

• M = 3: draft-10-PSK-(EC)DHE also has three stages (for tkhs, tkapp and EMS).

• AUTH = {(unauth,mutual,mutual)}: the handshake traffic key tkhs is unauthenticated,
the other two keys are mutually authenticated (down to the pre-shared secret used).

• USE = (internal, external, external): The handshake traffic key is again used internally
within draft-10-PSK-(EC)DHE; the two other keys are not used within the main handshake.

• REPLAY = (nonreplayable, nonreplayable, nonreplayable): All stages’ keys are non-replayable
due to nonces included from both sides.

As before, we can omit the NewSemiStaticKey and RevealSemiStaticKey queries as no semi-static
keys are involved in the PSK modes.

Let us now state the formal security results for the TLS 1.3 draft-10 PSK-(EC)DHE
handshake.

Theorem 6.6 (Match security of draft-10-PSK-(EC)DHE). The TLS 1.3 draft-10 PSK-(EC)DHE
handshake is Match-secure with properties (M,AUTH,USE,REPLAY) given above. For any effi-
cient adversary A we have

AdvMatch
draft-10-(EC)DHE,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the
bit-length of the nonces.

Match security follows similar to the result for draft-10-PSK (see Theorem 6.4). The only
differences are due to the added Diffie–Hellman values gx and gy, which are agreed upon by
matching session identifiers (hence yielding same keys) and lower the probability of three honest
sessions having colliding session identifiers by a factor of the group order q. We hence do not
repeat a full proof here.

78

6.5. Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake

Theorem 6.7 (Multi-Stage security of draft-10-PSK-(EC)DHE). The TLS 1.3 draft-10 PSK-
(EC)DHE handshake is Multi-Stage-secure in a key-independent and stage-1-forward-secret
manner with properties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient
adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . , B8 such
that

AdvMulti-Stage,D
draft-10-PSK-(EC)DHE,A ≤ 3ns ·

(
AdvCOLL

H,B1

+ ns · np ·
(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3 + AdvEUF-CMA

HMAC,B4

)
+ ns ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B5 + AdvPRF-sec
HKDF.Expand,B6 + AdvPRF-sec

HKDF.Extract,B7 + AdvPRF-sec
HKDF.Expand,B8

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared
secrets.

Proof. As in our previous proofs, we consider the case that the adversary A makes a single Test
query, reducing the advantage of A by a factor of 1/3ns (as RMS is not derived in pre-shared
key modes). Additionally, we now know the session with label label that is to be tested in stage i.
We proceed via the following sequence of games.

Game 0. The initial game equals the Multi-Stage game with a single Test query, yielding in
combination with the initial hybrid step that

AdvMulti-Stage,D
draft-10-PSK-(EC)DHE,A ≤ 3ns · AdvG0

draft-10-PSK-(EC)DHE,A.

Game 1. We first of all let the challenger abort the game if any two honest sessions compute
the same hash value for different inputs in any evaluation of the hash function H. As in the proofs
for draft-10-(EC)DHE and draft-10-PSK we can bound the probability of such and abort by the
advantage AdvCOLL

H,B1 of an adversary B1 against the collision resistance of the hash function H:

AdvG0
draft-10-PSK-(EC)DHE,A ≤ AdvG1

draft-10-PSK-(EC)DHE,A + AdvCOLL
H,B1 .

From this point on, our analysis considers two disjoint cases:

A. The adversary tests a session without honest contributive partner in the first stage.27

B. The adversary tests a session with an honest contributive partner in the first stage.

Case A. Test Session without Partner

We first consider the case that the tested session is without honest contributive partner in
the first stage. Since for draft-10-PSK-(EC)DHE the first stage is always unauthenticated, the
adversary cannot test a session in the first stage without an honest contributive partner, this
restricts our focus to Test queries in stage 2 and 3.

Game A.0. This initial game equals Game 1, with the single Test query issued to a session
without honest contributive partner in stage 1. That is,

AdvGA.0draft-10-PSK-(EC)DHE,A = AdvG1,test without partner
draft-10-PSK-(EC)DHE,A .

27Note that this tested session may be a client or a server session.

79

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Game A.1. In this game, the challenger aborts immediately if a session accepts in the second
stage without an honest contributive partner in stage 1. Let abortGA.1,Aacc denote this event this
occurs. Then ∣∣∣AdvGA.0draft-10-PSK-(EC)DHE,A − AdvGA.1draft-10-PSK-(EC)DHE,A

∣∣∣ ≤ Pr[abortGA.1,Aacc].

We can immediately bound AdvGA.1draft-10-PSK-(EC)DHE,A. Throughout this proof case we assume
that the Test query is directed to a session without honest contributed partner in stage 1.
Because the authentication type of the protocol is (unauth,mutual,mutual), the Test query can
only be directed to stage-2 or stage-3 keys of that session. As Game A.1 is aborted when the first
such session accepts (in stage 2), there is after all no moment in that game where a successful
adversary could issue a Test query. Hence,

AdvGA.1draft-10-PSK-(EC)DHE,A ≤ 0.

It remains to bound Pr[abortGA.1,Aacc]. We do so via a sequence of games that continues on
from Game A.1.

Game A.2. In this game, the challenger guesses a session (from at most ns sessions in the
game) and aborts if the guessed session is not the first session which accepts in the second stage
without an honest contributive partner in stage 1. If the challenger guesses correctly (which
happens with probability at least 1/ns), then this game aborts at exactly the same time as the
previous game:

Pr[abortGA.1,Aacc] ≤ ns · Pr[abortGA.2,Aacc].

Note that, in this game, the guessed session, which is the first stage-2 session that accepts
without honest contributive partner in the first stage, could not have been issued any Corrupt
query, nor could a Corrupt query have been issued to any other session sharing the same pre-
shared secret. This is because sessions using that pre-shared secret do not continue execution
once the secret is corrupted, and this session has accepted, so no Corrupt could have happened
before it accepted in stage 2. Since the game terminates once stage 2 has accepted, no Corrupt
query could have been issued after, either.

This allows us, in the following games, to replace the unexposed pre-shared secret pss in
the guessed and all other sessions sharing the same pss value without being inconsistent or
detectable with regards to the Corrupt query.

Game A.3. In this game we guess the pre-shared secret pss (among the np secrets established)
that the guessed session will use, and the challenger aborts the game if that guess was wrong.
This reduces the adversary’s advantage by a factor of at most 1/np, thus:

Pr[abortGA.2,Aacc] ≤ np · Pr[abortGA.3,Aacc].

Let pssU,V,k be the guessed pre-shared secret.

Game A.4. We next replace the pseudorandom function HKDF.Extract in all evaluations
using the guessed session’s pre-shared secret pssU,V,k as key by a lazy-sampled random function.
Beyond other sessions using the same pre-shared secret, this in particular affects the derivation
of xSS in the guessed session, which is replaced with a random value x̃SS $←− {0, 1}λ.

We bound this difference in the advantage of A by the security of HKDF.Extract as a pseudo-
random function, via a reduction B2 using its PRF oracle whenever HKDF.Extract(·, pssU,V,k) is to
be evaluated. In the case of the oracle computing the function, the simulation equals Game A.3,
but if it computes a random function, the simulation equals Game A.4. For any successful

80

6.5. Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake

adversary (note that a successful adversary by Games A.2 and A.3 cannot corrupt pssU,V,k, i.e.,
cannot issue Corrupt(label) queries where label.pss = pssU,V,k) the pre-shared secret is uniformly
random and unknown to A, so the simulation is sound. Thus

Pr[abortGA.3,Aacc] ≤ Pr[abortGA.4,Aacc] + AdvPRF-sec
HKDF.Extract,B2 .

Game A.5. In this step we replace the evaluations of HKDF.Expand using x̃SS as key in the
guessed session by a lazy-sampled random function, thereby exchanging the finished secret value
FS and the expanded static secret mSS with independent random values F̃S, m̃SS $←− {0, 1}λ.
We can bound this difference in the same manner as above, and thus:

Pr[abortGA.4,Aacc] ≤ Pr[abortGA.5,Aacc] + AdvPRF-sec
HKDF.Expand,B3 .

Finally, we show how any adversary that manages to make the abortGA.5,Aacc event happen
can be transformed into an adversary B4 that breaks the existential unforgeability of the HMAC
scheme.

To this extent, let B4 simulate Game A.5 for A as specified, but when the guessed session or
partner session requires a MAC computation using F̃S, B4 invokes its MAC oracle to generate
that value. Since F̃S is uniformly random and independent of all other values in the game, this
simulation is sound.

Assume now A triggers abortGA.5,Aacc . In this case, the accepting session must have re-
ceived a ServerFinished (respectively, ClientFinished) message (when role = initiator,
resp. responder) that is a valid MAC tag over the session hash H3 = H(CH, ..., EE), resp.
H5 = H(CH, ..., SF). Since every other honest session holds a different session identifier (as there
exists no honest contributive partner in the first stage of the accepting session), no honest party
will have issued a MAC tag on that session hash. Moreover, there exist no hash collisions by
Game 1, so the MAC input is distinct to any other MAC input for any honest party. Therefore,
this message was never queried to the MAC oracle and hence constitutes a MAC forgery. This
allows us to conclusively bound the probability for abortion due to a stage-2 accepting session
without stage-1 contributive identifier by

Pr[abortGA.5,Aacc] ≤ AdvEUF-CMA
HMAC,B4 .

Summing the probabilities accumulated over the sequence of games, we obtain the bound
for Case A:

AdvG1,test without partner
draft-10-PSK-(EC)DHE,A ≤ ns · np ·

(
AdvPRF-sec

HKDF.Extract,B2 + AdvPRF-sec
HKDF.Expand,B3 + AdvEUF-CMA

HMAC,B4

)
.

Case B. Test Session with Partner

We now come to the case where the tested session has an honest contributive partner in the
first stage.

Game B.0. This initial game equals Game 1, with the single Test query issued to a session
having an honest contributive partner in stage 1. Thus,

AdvGB.0draft-10-PSK-(EC)DHE,A = AdvG1,test with partner
draft-10-PSK-(EC)DHE,A.

Game B.1. Our first modification is to guess a session (from the at most ns sessions in the
game) and abort if the session guessed is not the honest contributive partner in stage 1 of the
tested session. This reduces the adversary’s advantage by a factor of at most 1/ns.

AdvGB.0draft-10-PSK-(EC)DHE,A ≤ ns · AdvGB.1draft-10-PSK-(EC)DHE,A.

81

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

Game B.2. In this game, we replace the extracted ephemeral secret xES derived in the tested
and (potentially) its contributive partner session with a uniformly random and independent
string x̃ES $←− {0, 1}λ. As in Game B.2 of the proof for draft-10-(EC)DHE (cf. Theorem 6.2
in Section 6.3), we employ the snPRF-ODH assumption in order to be able to simulate the
computation of xES in a partnered client session for a modified ServerKeyShare message when
encoding a DDH challenge tuple.

More precisely, we can turn any adversary capable of distinguishing the change in this
game into an adversary B5 against the snPRF-ODH security of the HKDF.Extract function
(keyed with ES on label 0). For this, B5 asks for a PRF challenge on 0. It uses the obtained
Diffie–Hellman shares gx and gy within ClientKeyShare and ServerKeyShare, respectively, of
the tested and contributive partner session, and the PRF challenge value as xES in the test
session. If necessary, B5 uses its single ODHu query in the snPRF-ODH game to derive xES in
the partnered session on differing gy′ 6= gy.

Providing a sound simulation of either Game B.1 (if the PRF challenge value is real) or
Game B.2 (if the PRF challenge value is random), this bounds the advantage difference of A as

AdvGB.1draft-10-PSK-(EC)DHE,A ≤ AdvGB.2draft-10-PSK-(EC)DHE,A + AdvsnPRF-ODH
HKDF.Extract,G,B5 .

Game B.3. In this game, we replace the handshake traffic key tkhs and the expanded ephemeral
secret mES derived in both the tested and its contributive partner session with a uniformly
random and independent strings t̃khs, m̃ES $←− {0, 1}λ in the tested and partner session. We
can turn any adversary capable of distinguishing this change into an adversary B6 against the
PRF security of the HKDF.Expand function keyed with x̃ES. We let B6 simulate the previous
game as the challenger, except that it queries its PRF oracle for the derivation of tkhs and mES
from x̃ES. If the oracle computes the PRF, we are in Game B.2, but if it computes a random
function, we are in Game B.3 as x̃ES is uniformly random and independent bit string. The
advantage of B6 in the PRF security game bounds the advantage of this change, such that

AdvGB.2draft-10-PSK-(EC)DHE,A ≤ AdvGB.3draft-10-PSK-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B6 .

Game B.4. In this game, we replace the master secret MS derived from m̃ES in both
the tested and its contributive partner session with a uniformly random and independent
string M̃S $←− {0, 1}λ in the tested and partner session. We can turn any adversary capable
of distinguishing this change into an adversary B7 against the security of the HKDF.Extract
function which we again model as a pseudorandom function. Via a similar argument to the
previous games we find

AdvGB.3draft-10-PSK-(EC)DHE,A ≤ AdvGB.4draft-10-PSK-(EC)DHE,A + AdvPRF-sec
HKDF.Extract,B7 .

Game B.5. In this game, we replace the application traffic key tkapp and the exporter master
secret EMS derived from M̃S in both the tested and its contributive partner session with a
uniformly random and independent strings t̃kapp, ẼMS $←− {0, 1}λ in the tested and partner
session. We can turn any adversary capable of distinguishing this change into an adversary
B8 against the security of the HKDF.Expand function which we still model as a pseudorandom
function. Via a similar argument as the previous games we find

AdvGB.4draft-10-PSK-(EC)DHE,A ≤ AdvGB.5draft-10-PSK-(EC)DHE,A + AdvPRF-sec
HKDF.Expand,B8 .

82

6.6. Composition

Full (EC)DHE handshake

tkapp record protocol

EMS generic usage

RMS
PSK handshake

tkapp record protocol

EMS
no

n-
fs

generic usage

PSK-(EC)DHE handshake
tkapp record protocol

EMS generic usage

Figure 6.3: Illustration of the compositional guarantees for external keys in the full (EC)DHE and
PSK-based handshakes of TLS 1.3 draft-10. Derived keys are connected to the handshake by solid
lines, their usage in protocols is indicated by an arrow. Dashed boxes indicate an application of the
composition result (Theorem 4.4) to the usage of a specific key in a subsequent symmetric-key protocol.

Note that now t̃khs, t̃kapp and ẼMS are uniformly random bit strings independent of all
other values. Moreover, any non-partnered session (that the adversary might reveal) derives
different keys, as the distinct (hashed) session identifier enters the key derivation for each stage’s
key. The response to the Test query therefore is now independent of the test bit btest, so A
cannot distinguish the real from the random case and thus

AdvGB.5draft-10-PSK-(EC)DHE,A ≤ 0.

This yields the following security bound for Case B:

Adv1-Multi-Stage,session with partner
draft-10-PSK-(EC)DHE,A ≤ ns ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B5 + AdvPRF-sec
HKDF.Expand,B6

+ AdvPRF-sec
HKDF.Extract,B7 + AdvPRF-sec

HKDF.Expand,B8

)
.

6.6 Composition
Leveraging our composition theorem established for the multi-stage key exchange model in
Section 4.6, we can now establish compositional guarantees for the external keys of both the full
(EC)DHE and the PSK-based handshakes of TLS 1.3 draft-10, illustrated in Figure 6.3.

Recall that for the generic composition theorem to apply to some stage i key, we need that the
key exchange protocol is Multi-Stage-secure providing key independence, stage-j forward secrecy
for j ≤ i, multi-stage session matching, and the stage i keys to be external and non-replayable
(cf. Theorem 4.4). It is easy to see that all handshake modes have multi-stage session matching,
as the session identifier for any stage can always be computed from the public transcript and
the keys of previous stages. We established the remaining conditions for the external keys, i.e.,
the application traffic key tkapp, the exporter master secret EMS, and the resumption master
secret RMS in the Multi-Stage security results for the (EC)DHE and PSK-(EC)DHE handshake
(cf. Theorems 6.2 and 6.7). Note that keys derived in a PSK-only handshake do not meet the
conditions for composition as this handshake mode lacks forward secrecy.

The compositional result hence supports the security of using the application traffic key in the
TLS 1.3 record protocol (for which our result enables an independent analysis) and the generic
use of the exporter master secret. Moreover, it allows us to cascade the security analysis of the
PSK-based handshakes using the resumption master secret of a full handshake as pre-shared
key, treating our pre-shared secret multi-stage key exchange security model (MS-PSKE) as an
instance of a generic symmetric-key protocol.

83

Chapter 6. The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys

6.7 Comments on the TLS 1.3 Handshake Design

As part of our analysis effort in parallel to the development of the TLS 1.3 draft standards
we provided comments to the community and in particular the IETF TLS working group,
e.g., through its mailing list [Gün15], workshops on the status of TLS 1.3 [TRO16a, TRO16b,
TLS17], or direct contribution to the RFC draft [Res18]. Overall and as established in this
chapter, TLS 1.3 (in draft-10) achieves its main cryptographic goals, including session-key
indistinguishability and independence as well as privacy of (the key used for) encrypted handshake
messages. In the following, we furthermore note aspects that enable or facilitate our proofs as
well as comments on some cryptographic choices in the TLS 1.3 draft handshakes. We focus
here on the full (EC)DHE and PSK-based handshakes and remark that, while some notes are
informed by changes in later draft versions, our comments mainly refer to common design
aspects shared by draft-10. We provide further comments and discussion on the low-latency
0-RTT handshake modes (both Diffie–Hellman- and PSK-based) in Chapter 7, specifically on
the handling of replays in Section 7.6.

Soundness of key separation. Earlier versions of TLS used the same session key to encrypt
application data as well as the Finished messages at the end of the handshake. This made
it impossible to show that the TLS session key satisfied standard Bellare–Rogaway-style key
indistinguishability security [BR94]. We confirm that the change in keys for encryption of
handshake messages allows the TLS 1.3 drafts to achieve standard key indistinguishability
security.

Key independence. The discussed TLS 1.3 drafts achieve key independence in the multi-
stage security setting, which heavily strengthens their overall security. (Recall key independence
is the property that one can reveal a session key without endangering the security of later-stage
keys.) Beyond making it amenable to generic composition, key independence safeguards the
usage of derived keys against inter-protocol effects of security breakdowns.

In particular, deriving separate resumption and exporter master secret (beyond the applica-
tion traffic key) enhances modularity and composability: exported key material to arbitrary
external applications is fully detached from the main master secret, which is in contrast to
previous TLS versions where the exporting processes requires separate cryptographic treatment
(e.g., [BJS16]).

Signing the session hash. In the TLS 1.3 full handshake, authenticating parties (the server,
and sometimes the client) sign (the hash of) all handshake messages up to when the signature is
issued. This is different from TLS 1.2 and earlier, where the server’s signature is only over the
client and server random nonces and the server’s ephemeral public key. Signing the transcript
for authentication facilitates our proofs of the protocol’s authentication properties.

Encryption of handshake messages. The TLS 1.3 drafts encrypt the second part of the
handshake using the initial handshake traffic key tkhs, aiming to provide some form of privacy
(against passive adversaries) for these messages, in particular for the server and client certificates.
Our analysis shows that the handshake traffic key does indeed have security against passive
adversaries and hence increases the handshake’s privacy. The secrecy of the final session keys
however does not rely on the handshake being encrypted and would remain secure even if it was
done in clear. Our analysis considers the encrypted case, showing that this encryption does not
negatively affect the security goals.

84

6.7. Comments on the TLS 1.3 Handshake Design

Finished messages. The Finished messages in both drafts are computed as an HMAC MAC
value to the (hash of the) handshake transcript. Interestingly, in our proof for draft-10 the
Finished messages do not contribute to the session key secrecy in the full handshake in the
sense that the key exchange would be secure without these messages. This is mainly because
the signatures already authenticate the transcript. This contrasts with the case of RSA key
transport in the TLS 1.2 full handshake: the analyses of both Krawczyk et al. [KPW13] and
Bhargavan et al. [BFK+14] note potential weaknesses or require stronger security assumptions if
Finished messages are omitted. From an engineering perspective, the Finished messages may
still be interpreted as providing some form of (explicit) session key confirmation (cf. Section 8.3),
and for PSK-based handshakes they provide the only form of (explicit) authentication.

Notably, with the introduction of a 0.5-RTT communication option (where the server can
send data to the client along with its handshake flight), deriving the application traffic key from
a truncated transcript makes the (existential unforgeability of the) Finished MACs a necessary
component for key secrecy again. We will see and discuss this further in our analysis of the
Diffie–Hellman-based 0-RTT handshake for TLS 1.3 draft-12 in Section 7.5.

Session hash in key derivation. The TLS 1.3 drafts include a hash of all messages exchanged
so far in the derivation of most session key (but see the discussion on truncated transcripts in
the derivation of (early) application keys from draft-12 on, Section 7.5). This session hash
was introduced in response to the triple handshake attack [BDF+14] on TLS 1.2 and earlier.
Our analyses confirm its usefulness in ensuring that sessions with different session identifiers
have different master secrets and session keys.

Upstream hashing in signatures, MACs, and key derivation. In signing (resp. MAC-
ing) the transcript for authentication as well as in deriving keys via HKDF, TLS 1.3 uses the
hash of the current transcript as input; if, e.g., the signature algorithm is a hash-then-sign
algorithm, it will then perform an additional hash. From a cryptographic point of view, it would
be preferable to insert the full (unhashed) transcript and let the respective signature, MAC,
or KDF algorithms opaquely take care of processing this message. For engineering purposes,
however, it may be desirable to hash the transcript iteratively, only storing the intermediate
values instead of entire transcript. In our security proof, this upstream hashing leads to an
additional assumption about the collision resistance of the hash function (which would otherwise
be taken care of by the signature, MAC, resp. KDF scheme).

85

Chapter 7
The TLS 1.3 Protocol:

Zero Round-Trip Time and Replays

Summary. In this chapter we present our security analysis of the low-latency zero round-trip
time (0-RTT) handshake mode candidates of TLS 1.3, both in its (deprecated) Diffie–Hellman-
based variant from version draft-12 [Res16a] and its (remaining) pre-shared key–based variant
from draft-14 [Res16c]. We begin by discussing general concepts for 0-RTT key establishment
and the effects of only one side actively contributing to the derived key on the security level
achievable. A particular focus is on replay protection and which kind of guarantees can (not) be
expected. We then describe the TLS 1.3 0-RTT handshake candidates with their differences
in cryptographic operations compared to the standard Diffie–Hellman and PSK handshakes.
Subsequently, we give our security results in the multi-stage key exchange model, reflecting the
reduced replay protection guarantees. We furthermore compare the 0-RTT key exchange design
of TLS 1.3 with that of Google’s QUIC protocol. The results in this chapter are based on a
work published at IEEE EuroS&P 2017 [FG17].

7.1 Introduction
While efficiency has always been a relevant aspect for key exchange protocols, optimization
traditionally focused on cryptographic operations which for a long time dominated the overall
cost (in time) for executions. With the technological progress in speed of computation, but also
advances and, equally important, the deployment of elliptic-curve cryptography, researchers
and practitioners managed to reduce the cost of (even asymmetric) cryptographic operations
drastically over the last decades. As a result, the communication complexity has become a more
and more dominant factor for the overall efficiency of key exchange protocols.

7.1.1 Zero Round-Trip Time

While steadily increasing bandwidth on the Internet renders the data complexity aspect of
communication subordinate, speed of light prepares to set a definitive lower bound for the time a
message needs to be sent back and forth between two parties (called round-trip time). Reducing
the round complexity has hence become a major design criteria in the last years, with several low-
latency designs for key exchange proposed by researchers [PZS+13, KW16, WTSB16, HJLS17]
as well as by practitioners. Prominent practical examples are in particular Google’s QUIC
protocol [QUI] incorporated into the Chrome browser (see also Chapter 5) and the upcoming
TLS version 1.3 [Res18], the latter being based on the OPTLS key exchange protocol by
Krawczyk and Wee [KW16]. Those designs set out to establish an initial key in zero round-trip

87

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

time (0-RTT) that allows one party (usually the client) to send “early” data already along with
the first key exchange message to a (previously visited) server.

Without the server being able to contribute, it is well understood that such an approach
cannot achieve equally strong security guarantees for the initial key as classical key exchange
protocols are able to provide with a full round-trip (and hence contributions from both parties).
In particular, the initial key cannot provide (forward) secrecy in a setting where no state is
shared between sessions and all but the ephemeral keying material is compromised after the key
exchange run.28 The common strategy is, hence, that both parties switch to a stronger key (e.g.,
achieving forward secrecy) after the server contributed in a second step of the key exchange and
protect any further communication under this key.

Diffie–Hellman-based 0-RTT. One main concept to derive a 0-RTT key based on a Diffie–
Hellman-style key exchange and to later upgrade to a stronger, forward-secret key, is shared
by both recent prominent instances QUIC and TLS 1.3 (up to draft-12 [Res16a]).29 From a
high-level perspective (i.e., omitting necessary mechanisms to protect, e.g., against replays or
man-in-the-middle attacks which both protocols employ), this concept works as follows. Prior
to the actual key exchange, the client is assumed to have talked to the server before and, in
that communication, obtained a so-called server configuration. Cryptographically speaking, this
configuration includes a semi-static Diffie–Hellman share gs, for which the server stores the
secret exponent s for a certain time. In QUIC, authentication of this server configuration is via
an (offline) signed structure announced by the server, in TLS 1.3 it is signed (online) during a
prior handshake.

Within its first message in subsequent executions, the client then sends an ephemeral Diffie–
Hellman share gx, derives the 0-RTT key key1 as (a function of) (gs)x = gxs, and is hence
immediately able to, e.g., send encrypted data under the key. The server then computes the
same key as (gx)s (enabling decryption of the 0-RTT data) and responds with its own ephemeral
share gy for the stronger shared key. Both parties derive a second key key2 as (a function of)
gxy, which can then enjoy forward secrecy in the sense that it remains secure even if gs or the
parties long-term secrets are later compromised.

Pre-shared key–based 0-RTT. Another concept for establishing a key in zero round-trip
time is based on pre-shared keys (PSKs) and, from draft-13 [Res16b] on, forms the basis of
the only 0-RTT handshake mode specified for TLS 1.3 (i.e., the option for Diffie–Hellman-based
0-RTT was deferred in draft-13). Here, the 0-RTT key key1 is derived from a previously
established secret key (e.g., in TLS 1.3 the resumption master secret established in a regular
handshake). The client can perform this computation without interaction with the server and
hence is able to immediately send encrypted data under key1. Later, both parties update to a
second key key2 derived from the pre-shared secret and possibly further exchanged material,
e.g., fresh Diffie–Hellman shares to ensure forward secrecy.

7.1.2 The Problem with Replays and How It Is (Not) Solved in QUIC and
TLS 1.3

The standard approach in key exchange protocols to prevent a man-in-the-middle attacker from
replaying messages in order to make a party derive the same key twice is to include a nonce in
both the client’s and the server’s messages and let the nonce contribute to the derived key. For

28We remark that forward secrecy is achievable in 0-RTT when sessions can share state, as we show in our
work on forward-secret 0-RTT key exchange based on (forward-secret) puncturable encryption [GHJL17].

29We refer here to the (EC)DHE 0-RTT variant in TLS 1.3 draft draft-12 [Res16a] and the original QUIC
proposal in Revision 20130620 [LC13].

88

7.1. Introduction

Client Attacker Server

0-RTT key-exchange messages
0-RTT data "request"

process "request"
accept 0-RTT

key-exchange response messages

enforce loss of state (e.g., reboot)

replay 0-RTT key-exchange messages
replay 0-RTT data "request"

reject after state loss
for security reasons

reject 0-RTT
key-exchange response messages

final key exchange messages
resend data "request" under final key
(to ensure reliable transmission) process "request"

(again)

Figure 7.1: Generic replay attack discovered by Daniel Kahn Gillmor in the IETF TLS working group
discussion around TLS 1.3 [Res15a]. The 0-RTT data "request" could, e.g., be an HTTP request "POST
/buy-something".

a 0-RTT key exchange, which is essentially a one-pass (i.e., one-message) key exchange protocol
[BWM99a], messages (and hence keys) are—at first glance—inevitably replayable30.

The QUIC protocol side-stepped the replay problem in its original cryptographic de-
sign [LC13] (Revision 20130620) by demanding the server to store all nonces seen in a so-called
“strike register”—restricted in size by a server-specific “orbit” prefix and current time contained
in the nonces—and rejecting any recurring nonce. As our security analysis in Chapter 5 as
well as the one by Lychev et al. [LJBN15] confirmed, this approach indeed allows to establish
a secure 0-RTT key which is non-replayable in the sense that no adversary can make a party
derive the same key twice. However, while this approach succeeds to prevent replays on the
key-exchange level (in terms of preventing double-derivation of keys), it is not sufficient to
prevent (logical) replays of the actual data exchanged, in particular when it comes to real-world
settings where a server entity is implemented in a cluster of (potentially distributed) servers, as
we explain next. Let us stress that this problem with replays is independent of whether the
0-RTT key exchange is based on Diffie–Hellman or on pre-shared keys.

As discovered by Daniel Kahn Gillmor in the discussion around the upcoming TLS ver-
sion 1.3 [Res15a] (see also the discussion in the TLS 1.3 draft [Res18, Section 8]), any 0-RTT
anti-replay mechanism deployed at the key exchange level may become void when combined
within an overall channel protocol that aims to provide reliable delivery of data messages (like,
e.g., QUIC or TLS). The reason is that such a protocol may automatically resend rejected
0-RTT data under the second (final) key derived in order to ensure delivery. A generic attacker
can then, for any client sending 0-RTT key-exchange messages together with some encrypted
data, make this data be delivered twice in the following attack, also illustrated in Figure 7.1

30We use the notion of replays interchangeably for both messages and the keys computed based on those
replayed messages.

89

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

(see [Res15a] for a more detailed description of the attack).
The attacker first conveys the client’s 0-RTT messages and encrypted data to the server

(which processes it), but drops the server’s key exchange response. It then forces the server to
lose its state, e.g., through rebooting, and presents the same messages again to the server. The
server, with knowledge about its reset, has to conservatively decline the 0-RTT part of the key
exchange for security reasons, but will reply with its own key exchange contribution for the final
key which the attacker now simply relays to the client. The client derives the final key and, to
ensure reliable delivery, sends the desired data again under this key, which the server will hence
decrypt and process a second time. This constitutes a replay of the contained application data
and might, e.g., result in a web transaction being processed twice.

Note that the contrived requirement that the attacker is able to reboot the server (while the
client keeps waiting for a response) vanishes in a real-world scenario with distributed server
clusters, where the attacker instead simply forwards the 0-RTT messages to two servers and drops
the first server’s response. The described attack hence in particular affects the cryptographic
design of QUIC, which (among others) specifically targets settings with distributed clusters.
Holding up the originally envisioned 0-RTT full replay protection being impossible, Langley and
Chang write in the specification of December 2016 [LC16] (Revision 20161206) that this design
is “destined to die” and will be replaced by (an adapted version of) the TLS 1.3 handshake (see
also [LRW+17, TT17]). We, however, argue here that QUIC’s strategy in Revision 20130620
still supports some kind of replay resistance, only at a different level. In contrast, TLS 1.3 in
principle forgoes cryptographic protection mechanisms and instead accepts replays as inevitable
(on the channel level). Yet, recent changes in the latest TLS 1.3 drafts [Res18, Section 8]
re-added certain optional anti-replay techniques as recommended based on discussions on 0-RTT
security in applications [Mac17], supporting our argument in favor of key-exchange–level replay
protection.

There is, then, a significant conceptual gap between replays (of key-exchange messages and
keys) on the key-exchange level, and the replay of user data faced on the level of the overall
secure channel protocol in the 0-RTT setting. While the former can effectively be prevented
within the key exchange protocol, this does not necessarily prevent the latter which can be (and
in practice is) induced by the network stack of the channel actively and automatically re-sending
(presumably) rejected 0-RTT data under the main key. The latter type of logical, network-stack
replays is hence fundamentally beyond of what key exchange protocols can protect against.

7.1.3 0-RTT Security in TLS 1.3 and a Comparison with QUIC

In this chapter, we take a look at the 0-RTT handshake modes of TLS 1.3 and provide a
comparison with the QUIC design, especially with respect to the issues with replays. We
analyze both the pre-shared key–based (PSK-based) 0-RTT handshake mode from TLS 1.3
draft-14 [Res16c] as well as the previously abandoned Diffie–Hellman-based (DH-based) 0-RTT
handshake mode in its last specified form in draft-12 [Res16a]. While doing so, we discuss
the commonalities and differences between (the original version of) QUIC and the two TLS 1.3
modes in this respect.

As mentioned, the Diffie–Hellman-based ((EC)DHE) 0-RTT handshake was removed from
the TLS 1.3 draft specification in draft-13, leaving only a PSK-based 0-RTT mode (with or
without additional Diffie–Hellman exchange) in the latest drafts. Still, the (EC)DHE 0-RTT
variant is much closer to the QUIC and OPTLS proposals, and it may be used as a TLS
extension [Res16e], especially since it provides some kind of forward secrecy [Kra16a]. We
hence also provide an analysis of the DH-based variant to enable a comparison of the security
guarantees provided, but focus on the PSK-based 0-RTT handshake specified for draft draft-14.

90

7.1. Introduction

Multi-stage key exchange with replayable 0-RTT keys. As the original QUIC key
exchange Revision 20130620 [LC13] ensures non-replayability (on the key-exchange level), our
analysis in Chapter 5 in the multi-stage setting did not need to consider replays. The TLS 1.3
0-RTT handshake candidates (both draft-12 DH-based and draft-14 PSK-based) however, as
discussed, do not include any cryptographic anti-replay mechanisms even on the key-exchange
level.

We hence now make use of the replayability components introduced with the multi-stage key
exchange model in Chapter 4. The distinction between replayable and non-replayable stages
(and, hence, keys) allows us to capture that the TLS 1.3 0-RTT key exchange messages of a
client session can be replayed to multiple server sessions which will all derive the same key. In
order to capture the effects of exposures of the semi-static keys used in a DH-based handshake
to non-interactively derive the 0-RTT keys, the model allows them to be compromised and
defines how this affects both 0-RTT keys (which will be compromised) and non–0-RTT keys
(which are required to remain secure).

Security analysis of the TLS 1.3 draft-14 PSK/PSK-(EC)DHE 0-RTT and draft-12
(EC)DHE 0-RTT handshakes. We apply our model (in Sections 7.3 and 7.5) to analyze
the PSK and PSK-(EC)DHE 0-RTT handshake modes specified in TLS 1.3 draft-14, which
we describe in Section 7.2 first, as well as the (EC)DHE 0-RTT handshake mode of draft-12,
described in Section 7.4. For the analysis of the other specified handshake modes of TLS 1.3,
full (EC)DHE and pre-shared key, in the (relatively close) draft-10 see Chapter 6. Our
analysis shows that all three 0-RTT handshakes are secure (multi-stage) key exchange protocols,
establishing random-looking keys. In particular, the two 0-RTT keys derived to protect the early
handshake messages and application data, tkehs resp. tkeapp, achieve the desired unilateral resp.
mutual authentication, and are—as expected—replayable. Furthermore, we confirm that the
second parts of the handshakes (essentially a full (EC)DHE resp. a regular PSK/PSK-(EC)DHE
handshake), achieve security similar to that when run without 0-RTT prelude in draft-10. Our
model allows us to show that security holds for the different authentication options of TLS 1.3
running in parallel and that all keys derived are independent in the sense of that leaking one of
them does not affect any other key.

Our security results hold under mostly standard cryptographic assumptions like the un-
forgeability of the signature and MAC scheme, collision resistance of the hash function, and
pseudorandomness properties of the key derivation function. The handshakes’ security fur-
ther relies on the pseudorandom-function oracle Diffie–Hellman (PRF-ODH) assumption (in its
snPRF-ODH variant), introduced and used earlier for the analysis of several Diffie–Hellman–based
modes of TLS 1.2 [JKSS12, KPW13]. Notably, for technical reasons that we detail in our proof,
we furthermore need to employ a slightly strengthened, double-sided variant of the PRF-ODH
assumption which we defined under the name of msPRF-ODH in Definition 3.6 (Section 3.2.2)
for the analysis of the (EC)DHE 0-RTT handshake (in draft-12); we refer to our study of the
PRF-ODH assumption for a detailed comparison of its different variants [BFGJ17].

Comparison of QUIC and TLS 1.3. We point out, in passing and explicitly in Section 7.6,
how the designs of QUIC and TLS 1.3 differ in the way of handling 0-RTT, replay attacks,
and data, and how this affects the security. This testifies that, although there may be an
agreement on the general goals which should be achieved with 0-RTT, the technical details can
vary significantly. One major difference has already been discussed above, carving out that
both protocols treat replays differently. Another difference is that QUIC basically restarts the
key exchange for an invalid (rejected) 0-RTT request, whereas TLS 1.3 instead only skips over
to the regular handshake part. Both protocols also employ different approaches to derive the

91

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

session keys: While QUIC uses the early key for transmitting both key-exchange messages and
application data, TLS 1.3 uses a more versatile approach to create early keys for designated
purposes and thus achieves stronger security guarantees and better modularity.

7.2 The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT
Handshake Protocols

Starting from draft-13, TLS 1.3 only specifies PSK-based 0-RTT handshake modes, abandoning
the (EC)DHE-based variant predominant in earlier drafts. We hence first present our analysis of
the pre-shared key–based variants, PSK(-only) 0-RTT and PSK-(EC)DHE 0-RTT, as specified in
TLS 1.3 draft-14 [Res16c]. In the PSK 0-RTT mode, keys are solely derived from a beforehand
established pre-shared key (usually the resumption master secret RMS derived in a full TLS 1.3
handshake, cf. Section 6.2). In the PSK-(EC)DHE 0-RTT mode, (elliptic curve) Diffie–Hellman
shares additionally enter the key derivation.

Compared to the regular PSK-based TLS 1.3 handshake (cf. Section 6.4), the PSK-based
0-RTT handshakes are augmented with an additional conceptual phase, now comprising the
following four phases:

Key exchange. In the key exchange phase, parties as before negotiate the ciphersuites and
key-exchange parameters to be used and establish shared key material as well as traffic
keys to encrypt the remaining handshake.

0-RTT. In the added 0-RTT (data) phase, which is interleaved with the key exchange phase,
the client can send application data already in its first flight. For this purpose, traffic keys
for encrypting the early handshake and application data are established.31

Server parameters. In the server parameters phase, further handshake parameters (as, e.g.,
whether client authentication is demanded) are fixed by the server, as before.

Authentication. In the authentication phase, both the server and client can (based on the
aspired authentication) authenticate, verify that they share the same view of the handshake,
and derive (authenticated) application traffic keys. This phase is also like in the regular
handshake.

We illustrate the protocol flow (with the cryptographically relevant computations) and the
key schedule for both the PSK(-only) and PSK-(EC)DHE 0-RTT handshakes in Figure 7.2. The
handshake messages ClientHello, ServerHello, ClientPreSharedKey, ServerPreSharedKey,
EncryptedExtensions, ClientFinished, and ServerFinished are as for the full (EC)DHE
and non–0-RTT PSK-based handshakes; we refer to Sections 6.2 and 6.4 for their description.
In the following we hence focus on the new handshake messages for 0-RTT and the draft-14
key schedule, which contains some notable changes compared to TLS 1.3 draft-10.

• ClientEarlyData (CEAD)/ServerEarlyData (SEAD) are extensions to the Hello messages
sent to announce a 0-RTT handshake. The client includes the (masked) age ticket_age
of the (ticket issuing the) used resumption secret. The server signals accepting the 0-RTT
exchange with an empty ServerEarlyData extension.
TLS 1.3 draft-14 [Res16c, Section 4.2.6.2] recommends that servers should use the
ticket_age value to check that client messages are not replayed. Depending on how well
clocks are synchronized, this can prevent delayed replays, but not immediate replays. We

31For comparison, omitting the 0-RTT phase essentially yields the TLS 1.3 full resp. PSK-based handshake.

92

7.2. The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake Protocols

Client Server
PSK← HKDF.Expand(RMS, label1)
rctxt← HKDF.Expand(RMS, label2)

ClientHello: rc $←− {0, 1}256

+ ClientEarlyData: ticket_age
+ ClientPreSharedKey: psk_id1, . . .
[+ ClientKeyShare: X ← gx]†

ES← HKDF.Extract(0,PSK)
H1 ← H(CH)‖H(rctxt)

ETS← HKDF.Expand(ES, label3‖H1)
tkehs ← HKDF.Expand(ETS, label4) stage 1

(ClientFinished0):
FS0 ← HKDF.Expand(ETS, label5)

CF0 ← HMAC(FS0, H1)
check CF0 = HMAC(FS0, H1)

tkeapp ← HKDF.Expand(ETS, label6) stage 2

record layer (application data), using AEAD with key tkeapp

ServerHello: rs $←− {0, 1}256

+ ServerEarlyData
+ ServerPreSharedKey: psk_id

[+ ServerKeyShare: Y ← gy]†

H2 ← H(CH‖SH)‖H(rctxt)
[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

HS← HKDF.Extract(ES,DHE)
HTS← HKDF.Expand(HS, label7‖H2)
tkhs ← HKDF.Expand(HTS, label8) stage 3

{EncryptedExtensions}
H3 ← H(CH‖SH‖EE)‖H(rctxt)

FSS ← HKDF.Expand(HTS, label9)
{ServerFinished}:

SF← HMAC(FSS, H3)
check SF = HMAC(FSS, H3)

H4 ← H(CH‖SH‖EE‖SF)‖H(rctxt)
FSC ← HKDF.Expand(HTS, label5)

{ClientFinished}:
CF← HMAC(FSC, H4)

check CF = HMAC(FSC, H4)
H5 ← H(CH‖SH‖EE‖SF‖CF)‖H(rctxt)

MS← HKDF.Extract(HS, 0)
TS← HKDF.Expand(MS, label10‖H4)
tkapp ← HKDF.Expand(TS, label11) stage 4

EMS← HKDF.Expand(MS, label12‖H5) stage 5

record layer (application data), using AEAD with key tkapp

RMS
(from previous handshake)

Exp

PSK

Ext

ES

0

ExpETS

H1

DHE

Ext

HSExpHTS

H2

Ext

MS

0

ExpTS

H4

Exp

FS0

Exp

FSS

Exp

FSC

Exptkehs

(stage 1)

Exptkeapp

(stage 2)

Exptkhs

(stage 3)

Exptkapp

(stage 4)

ExpEMS
(stage 5)

H5

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
(MSG) message MSG AEAD-encrypted with tkehs

{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message
[. . .]† message/computation only in PSK-(EC)DHE 0-RTT
[. . .]� message/computation only in PSK 0-RTT

Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 7.2: The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT handshake protocols (left) and
key schedule (right).

93

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

do not rely on this check in our analysis but conservatively treat the 0-RTT key exchange
messages as arbitrarily replayable.

• For ClientPreSharedKey/ServerPreSharedKey, focusing on 0-RTT handshakes only, we
only consider the case where client and server agree on the first announced psk_id, the
one used to derive 0-RTT keys.

Based on the ClientHello message and extensions both sides can already derive the 0-RTT
keys. First, from the shared pre-shared secret (the resumption master secret established in a
previous handshake) pss = RMS a pre-shared key PSK and a resumption context value rctxt
are derived using the Expand component of HKDF [Kra10, KE10]. In the key derivation, PSK
serves as the starting secret while rctxt binds the derived keys to the previous handshake that
established RMS. Then, the early secret ES is computed from PSK using HKDF.Extract. Via
an intermediate (expanded) early traffic secret ETS both the 0-RTT handshake and application
traffic keys tkehs and tkeapp are finally expanded. We again adopt here the standard notation
for the two HKDF functions as introduced in Section 3.2.3.

The client then completes its first flight by sending a 0-RTT Finished message, sent
encrypted under tkehs:

• ClientFinished0 (CF0) consists of an HMAC (message authentication code) value which
is computed using the 0-RTT finished secret FS0 on the (hashed) 0-RTT messages and
the resumption context rctxt.

Following ClientFinished0, the client can use tkeapp to encrypt and send 0-RTT application
data.32

After receiving the client’s first flight, the server sends its ServerHello message along
with the indicated extensions. At this point (resp. after receiving ServerHello for the client)
both sides extract from ES the handshake secret HS (incorporating the joint Diffie–Hellman
share DHE = gxy in the PSK-(EC)DHE 0-RTT handshake). Again via first expanding an
intermediate handshake traffic secret HTS, the handshake traffic key tkhs is derived.

Server and client then complete the handshake by EncryptedExtensions and the Finished
messages (keyed with distinct client resp. server finished secrets FSC/FSS which are both
expanded from HTS), encrypted under tkhs.

At the end of the handshake, the master secret MS is extracted from HS and used to expand
the application traffic key tkapp (via an intermediate traffic secret TS), used to protect the
(non–0-RTT) application data sent, as well as the exporter master secret EMS which can be
used to derive further key material outside of TLS.

On client authentication, 0.5-RTT data, and post-handshake messages. When ana-
lyzing the (PSK-based) 0-RTT handshake candidates for TLS 1.3, we—as in Chapter 6—focus
on the main components of the handshake and hence do not capture the following more advanced
options specified in draft-14 (resp. draft-12, discussed below).

First, in draft-14 the server can optionally ask the client to authenticate (beyond the shared
secret key) by sending a public-key certificate and signing the transcript (i.e., by signature-based
authentication as employed in the (EC)DHE-based handshakes of TLS 1.3). This option was
removed again in later drafts and we omit it here but note that our multi-stage key exchange
model can in principle be augmented to capture combined authentication under multiple
long-term secrets.

32The server may decide to not derive any 0-RTT keys (and not accept any 0-RTT data). In that case it
would, in our model, simply set the first two session identifiers sid1, sid2 and keys key1, key2 to ⊥ and continue
with deriving the third key.

94

7.3. Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes

Second, instead of deriving the application traffic key tkapp at the end of the handshake
(as depicted in Figure 7.2), the server might already do so after sending the ServerFinished
message in order to send so-called 0.5-RTT data directly following his flight, i.e., without waiting
for the ClientFinished response. We omit analyzing this variant of the handshake but expect
that results for it with potentially weaker authentication guarantees for tkapp can be obtained
in our model.

Third, TLS 1.3 introduces post-handshake messages that can be sent (potentially long) after
the initial handshake was completed in order to update the used traffic key, authenticate the
client, or issue tickets for session resumption. Here, we focus on the main handshake and do not
consider post-handshake messages.

7.3 Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE
0-RTT Handshakes

Our security analysis of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT handshakes
(draft-14-PSK-0RTT resp. draft-14-PSK-(EC)DHE-0RTT) is carried out in the preshared-secret
variant (MS-PSKE) of our multi-stage key exchange model. We begin with stating the protocol-
specific properties (M,AUTH,USE,REPLAY) mostly shared by both handshakes:

• M = 5: the PSK-based 0-RTT handshakes have five stages (deriving, in that order, traffic
keys tkehs, tkeapp, tkhs, tkapp, and the exporter master secret EMS).

• the authentication properties AUTH differ between the PSK(-only) and the PSK-(EC)DHE
0-RTT handshakes:

– for PSK 0-RTT, AUTH =
{
(mutual,mutual,mutual,mutual,mutual)

}
: all keys estab-

lished are mutually authenticated (wrt. the established pre-shared secret).

– for PSK-(EC)DHE 0-RTT, AUTH =
{
(mutual,mutual, unauth,mutual,mutual)

}
: the

handshake traffic key tkhs is unauthenticated, all other keys are mutually authenti-
cated (wrt. the established pre-shared secret).33

• USE = (internal, external, internal, external, external): the (0-RTT and main) handshake
traffic keys tkehs and tkhs are used to protect messages within the handshake while the
application traffic keys tkeapp and tkapp as well as the exporter master secret EMS are
only used externally.

• REPLAY = (replayable, replayable, nonreplayable, nonreplayable, nonreplayable): the 0-RTT
stages 1 and 2 are replayable, the other stages are not.

Both TLS 1.3 draft-14 PSK-based 0-RTT handshakes enjoy key independence for all keys.
Expectedly, the PSK(-only) 0-RTT handshake provides no forward secrecy. The PSK-(EC)DHE
0-RTT handshake instead ensures forward secrecy for the non–0-RTT keys (i.e., from stage 3
on), but not for the 0-RTT keys.

33Although including the pre-shared secret its derivation, tkhs cannot enjoy both forward secrecy and mutual
authentication as the involved Diffie–Hellman shares are only authenticated after its derivation. We remark that
alternatively to considering tkhs being unauthenticated but forward-secret (a security property close to the notion
of “weak (perfect) forward secrecy” [Kra05]), one might instead also consider tkhs to be non–forward-secret but
mutually authenticated.

95

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

Session matching is defined via the following session identifiers, consisting of the unencrypted
messages exchanged up to each stage:

sid1 = (ClientHello),
sid2 = (sid1, “EAD”),
sid3 = (ClientHello, ServerHello),
sid4 = (ClientHello, ServerHello, EncryptedExtensions, ServerFinished), and
sid5 = (sid4, “EMS”).

Here, Hello messages also comprise the sent EarlyData, KeyShare, and PreSharedKey exten-
sions. We remark that, as for the analyses of the TLS 1.3 full and PSK-based handshakes
(cf. Chapter 6), we too define the session identifiers over the unencrypted messages. This
diverges from the common practice to set the session identifier as the concatenation of the
(here encrypted) protocol transmissions, but is necessary to achieve key independence in the
multi-stage security for such protocols.

For the contributive identifiers, we need to ensure that a server session can in any case
be tested when receiving an honest client contribution (even if that client never receives
the ServerHello response), analogously to the full handshake analysis. Hence, for stage 3,
on sending resp. receiving the ClientHello message, client resp. server initially sets cid3 =
(ClientHello) and subsequently, on receiving (resp. sending) the ServerHello message, extend
it to cid3 = sid3 = (ClientHello, ServerHello). The other contributive identifiers are set to
cidi = sidi for i ∈ {1, 2} and to cidi = sid3 for i ∈ {4, 5} when the respective stage’s session
identifier is set.

We are now ready to state our security results for the PSK and PSK-DHE 0-RTT handshakes
of TLS 1.3 draft-14. Naturally, the proof aspects concerning the non–0-RTT parts of the
handshakes are structurally close to the proofs for the draft-10 PSK-based handshakes in
Section 6.5, but need to take the modified key schedule into account.

7.3.1 PSK(-only) 0-RTT Handshake

Theorem 7.1 (Match security of draft-14-PSK-0RTT). The TLS 1.3 draft-14 PSK 0-RTT
handshake is Match-secure with properties (M,AUTH,USE,REPLAY) given above. For any
efficient adversary A we have

AdvMatch
draft-14-PSK-0RTT,A ≤ n2

s · 2−|nonce|,

where ns is the maximum number of sessions and |nonce| = 256 is the bit-length of the nonces.

Proof. We need to prove six properties for Match security.

1. Sessions with the same session identifier for some stage hold the same key at that stage.
Containing the ClientHello message, all session identifiers fix the used pre-shared secret
identifier psk_id and hence the used secret pss = RMS, determining the values PSK
and rctxt. Each stage’s session identifier moreover fixes all messages included in the
(handshake) hashes used in the key derivation of that stage’s key, which is hence uniquely
determined by the session identifier.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
This trivially holds as the PSK 0-RTT handshake fixes mutual authentication for all
stages.

96

7.3. Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes

3. Sessions with the same session identifier for some stage share the same contributive
identifier.
For stages i ∈ {1, 2} this follows immediately from cidi = sidi. For stages i ∈ {3, 4, 5}, the
contributive identifier is set to its final value cidi = sid3 when both sides set the session
identifier, which each include the messages in sid3.

4. Sessions are partnered with the intended (authenticated) participant and for mutual au-
thentication share the same pre-shared secret index.
As honest sessions only used their own pre-shared secret identifier psk_id, this value
included (via ClientHello) in all session identifiers ensures agreement of both the intended
partner and key index.

5. Session identifiers are distinct for different stages.
This holds trivially since session identifiers sid1, sid3, and sid4 contain distinct (non-optional)
messages and sid2 and sid5 include separating identifiers.

6. At most two sessions have the same session identifier at any non-replayable stage.
We only need to consider the non-replayable stages 3–5 here.34 The according session
identifiers contain (through the Hello messages) randomly chosen nonces rc and rs (of
bit-length |nonce| = 256) from each side, one of which a third session would need to pick
by coincidence. This probability can be upper-bounded by n2

s · 2−|nonce| for ns being the
maximum number of sessions.

Theorem 7.2 (Multi-Stage security of draft-14-PSK-0RTT). The TLS 1.3 draft-14 PSK
0-RTT handshake is Multi-Stage-secure in a key-independent and non–forward-secret manner
with properties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient adversary A
against the Multi-Stage security there exist efficient algorithms B1, . . . , B9 such that

AdvMulti-Stage,D
draft-14-PSK-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1 + np ·
(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4

+ AdvPRF-sec
HKDF.Expand,B5 + AdvPRF-sec

HMAC,B6 + AdvPRF-sec
HKDF.Expand,B7

+ AdvPRF-sec
HKDF.Expand,B8 + AdvPRF-sec

HKDF.Expand,B9

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared
secrets.

Proof. We first restrict the adversary A to a single Test query. By a hybrid argument (following
the detailed one for the full handshake proof from Lemma 6.3 in Section 6.3) this reduces A’s
advantage by a factor at most 1/5ns for the five stages in the at most ns sessions. It also allows
to speak about the session label tested at stage i, which we now know in advance.

Our proof then proceeds via the following sequence of games.

Game 0. We begin with G0 identical to the Multi-Stage game restricted to a single test query:

AdvG0
draft-14-PSK-0RTT,A = Adv1-Multi-Stage

draft-14-PSK-0RTT,A.

Game 1. In a first step, we exclude hash collisions by aborting whenever during the execution
of honest sessions the same hash value under hash function H is computed for two distinct

34Observe that an adversary can indeed replay the client’s first messages to multiple server sessions, resulting
in the same session identifier and derived keys.

97

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

inputs. By having an algorithm B1 act as the challenger in Game 0 and output, when they
occur, these two inputs as a collision for H, we can bound the probability of aborting by B1’s
advantage in breaking the collision resistance of H:

AdvG0
draft-14-PSK-0RTT,A ≤ AdvG1

draft-14-PSK-0RTT,A + AdvCOLL
H,B1 .

Game 2. Next, we guess the (index psk_id of the) pre-shared secret pss employed in the
tested session (i.e., the resumption master secret RMS used for this PSK handshake). Aborting
on an incorrect guess, this reduces the advantage of A by a factor of at most the number of
pre-shared secrets np:

AdvG1
draft-14-PSK-0RTT,A ≤ np · AdvG2

draft-14-PSK-0RTT,A.

We can now, one at a time, replace the outputs of HKDF.Expand and HKDF.Extract eval-
uations using RMS and derived keys by random values, leading to a sequence of according
advantage bounds for their PRF security or randomness bounds of the underling HMAC function.

Game 3. We begin by replacing any HKDF.Expand application using pss = RMS by evaluations
of a (lazy-sampled) random function, which in particular leads to PSK and rctxt being replaced
by random values P̃SK, r̃ctxt $←− {0, 1}λ in the tested session and any other session using the
same pss.

The introduced difference in the advantage of A can be bounded by an adversary B2 against
the PRF security of HKDF.Expand as follows. Algorithm B2 simulates Game 2 faithfully, but
uses its PRF oracle for evaluating HKDF.Expand under RMS. Note that all keys derived in the
PSK 0-RTT handshake are non–forward-secret and hence any (successful) adversary A cannot
issue a Corrupt query on pss = RMS used in the tested session. The employed pre-shared key is
hence an unknown and uniformly random value to A and hence B2 perfectly simulates Game 2
in case its oracle computes HKDF.Expand and Game 3 in case its oracle is a random function.

This leads to following bound:

AdvG2
draft-14-PSK-0RTT,A ≤ AdvG3

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B2 .

Game 4. Next, we replace values ES computed as HKDF.Extract(0, P̃SK) by a random
value ẼS $←− {0, 1}λ, in particular in the tested session and partnered sessions.

Recall from Section 3.2.3 that HKDF.Extract(XTS,SKM) is defined as HMAC(XTS,SKM).
Assuming that for any polynomial-time algorithm B3 it is computationally hard to distin-
guish HMAC(0,SKM) from X $←− {0, 1}λ for uniformly random chosen values SKM $←− {0, 1}λ,
we can bound this step by B3’s distinguishing advantage AdvHMAC(0,$)-$

HMAC,B3
(cf. Definition 3.7 in

Section 3.2.3). We let B3 simulate Game 3 as the challenger, but using its challenge value as
ES = HKDF.Extract(0, P̃SK). In case this challenge is HMAC(0,SKM) for SKM ∈ {0, 1}λ, B3
simulates Game 3, if the challenge is a uniformly random value X $←− {0, 1}λ, B3 simulates
Game 4.

We can hence bound this step as

AdvG3
draft-14-PSK-0RTT,A ≤ AdvG4

draft-14-PSK-0RTT,A + AdvHMAC(0,$)-$
HMAC,B3

.

Game 5. We next replace evaluations of HKDF.Expand keyed with ẼS as well as HKDF.Extract
using ẼS as salt by random functions. This in particular replaces, in the tested and partnered

98

7.3. Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes

sessions, the early traffic and handshake secret in these sessions by random values ẼTS,
H̃S $←− {0, 1}λ.

Observe that in both replaced Extract and Expand evaluations, ẼS is (by definition of HKDF)
used to key the HMAC function, applied to a fixed label and H1 (when expanding ETS), resp.
to a fixed value 0 (when extracting HS), i.e., distinct inputs. We can hence bound the difference
in the advantage of A introduced by this step by the advantage of an adversary B4 against
the PRF security of HMAC, having B4 use its PRF oracle to compute the replaced Expand and
Extract evaluations as detailed for Game 3. The resulting bound is thus:

AdvG4
draft-14-PSK-0RTT,A ≤ AdvG5

draft-14-PSK-0RTT,A + AdvPRF-sec
HMAC,B4 .

Note that from now on, ẼTS is independent of any value computed in sessions that are not
partnered (in stage 1 and 2) with the tested session: as such sessions do not hold the same
identifiers sid1, sid2 and hence not the same ClientHello and as, by Game 1, there are no hash
collisions, no non-partnered session will compute the same hash value H1 which hence serves as
a unique label in the tested and partnered sessions.

Game 6. As the next step, we replace HKDF.Expand evaluations keyed with ẼTS (in the
tested and partnered session) by a lazy-sample random function, in particular replacing in those
sessions the early handshake and data traffic keys as well as the client’s 0-RTT finished secret
by random values t̃kehs, t̃keapp, F̃S0

$←− {0, 1}λ.
Similar to Game 3 the advantage difference induced for A by this step can be bound by the

advantage of an adversary B5 against the PRF security of HKDF.Expand:

AdvG5
draft-14-PSK-0RTT,A ≤ AdvG6

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B5 .

Game 7. We again in parallel replace both HKDF.Expand and HKDF.Extract evaluations, this
time keyed, resp. salted, with H̃S by random function, replacing the handshake traffic secret and
master secret with random values H̃TS, M̃S $←− {0, 1}λ, in particular in the tested and partnered
sessions.

As for Game 5, both evaluations are HMAC invocations keyed with H̃S and applied to distinct
values (fixed label and H2, resp. 0). We can hence likewise bound the advantage difference
introduced by the PRF security of HMAC as

AdvG6
draft-14-PSK-0RTT,A ≤ AdvG7

draft-14-PSK-0RTT,A + AdvPRF-sec
HMAC,B6 .

Again, as sid3 uniquely determines the message inputs to hash value H2 entering the
derivation of HTS and, by Game 1, there are no hash collisions, H̃TS is independent of values
computed in sessions not partnered with the tested session in stage 3.

Game 8. We now replace evaluations of HKDF.Expand using H̃TS (in the tested and partnered
sessions) by a random function, leading to random values t̃khs, F̃SS, F̃SC

$←− {0, 1}λ in those
sessions. This step is again bounded by the PRF security of HKDF.Expand:

AdvG7
draft-14-PSK-0RTT,A ≤ AdvG8

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B7 .

Game 9. Next, we replace HKDF.Expand evaluations keyed with M̃S by a random function, in
particular leading to uniformly random values T̃S, ẼMS $←− {0, 1}λ in the tested and partnered

99

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

sessions. These are moreover independent of any other values computed in sessions not partnered
in stages 4 and 5, due to Game 1 and sid4 and sid5 fixing the inputs to H4 and H5. Again,

AdvG8
draft-14-PSK-0RTT,A ≤ AdvG9

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B8 .

Game 10. Finally, we replace the HKDF.Expand evaluations using T̃S (in the tested and
partnered sessions) by a random function, resulting in a random application traffic key t̃kapp $←−
{0, 1}λ, again bounded by PRF security:

AdvG9
draft-14-PSK-0RTT,A ≤ AdvG10

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B9 .

In Game 10, all keys derived in the tested session (t̃kehs, t̃keapp, t̃khs, t̃kapp, and ẼMS) are
now chosen uniformly at random, making the Test query independent of the test bit btest.

Observe furthermore that replaying a ClientHello message to multiple server sessions leads
to all these sessions being partnered to the originating client session (and hence prevents Reveal
queries). In contrast, sessions that are not partnered with the tested session (even if using the
same pre-shared secret) by definition hold different session identifiers and hence use different
handshake hashes (due to Game 1) as label inputs to HKDF.Expand in the key derivation. The
resulting keys therefore are independent random values themselves, uncorrelated with the keys
established in the tested session.

Therefore, A learns no information on the test bit btest and hence

AdvG10
draft-14-PSK-0RTT,A ≤ 0.

7.3.2 PSK-(EC)DHE 0-RTT Handshake

Theorem 7.3 (Match security of draft-14-PSK-0RTT). The TLS 1.3 draft-14 PSK-(EC)DHE
0-RTT handshake is Match-secure with properties (M,AUTH,USE,REPLAY) given above. For
any efficient adversary A we have

AdvMatch
draft-14-PSK-(EC)DHE-0RTT,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the
bit-length of the nonces.

Proof. For conditions 2–5 of Match security, the arguments are as for the Match security of the
PSK(-only) 0-RTT handshake (cf. Theorem 7.1). We hence focus on conditions 1 and 6.

1. Sessions with the same session identifier for some stage hold the same key at that stage.
Beyond the arguments from Theorem 7.1, the ClientHello and ServerHello messages
contained in all session identifiers from stage 3 on also fix the chosen Diffie–Hellman
shares gx and gy. This ensures agreement on HS and hence also on the keys for stages 3–5
derived (also) from these Diffie–Hellman shares.

6. At most two sessions have the same session identifier at any non-replayable stage.
Again we can focus on the non-replayable stages 3–5 here. For the same argument as
in Theorem 7.1, three (honest) sessions sharing the same session identifier requires (at
least) two sessions pick the same nonce and, for PSK-(EC)DHE, also the same Diffie–
Hellman share. We can upper-bound this probability by n2

s · 1/q · 2−|nonce|, where ns is the
maximum number of sessions, q is the group order, and |nonce| = 256 is the bit-length of
the nonces.

100

7.3. Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes

Theorem 7.4 (Multi-Stage security of draft-14-PSK-(EC)DHE-0RTT). The TLS 1.3 draft-14
PSK-(EC)DHE 0-RTT handshake is Multi-Stage-secure in a key-independent and stage-3-
forward-secret manner with properties (M,AUTH,USE,REPLAY) given above. Formally, for any
efficient adversary A against the Multi-Stage security there exist efficient algorithms B1, . . . ,
B16 such that

AdvMulti-Stage,D
draft-14-PSK-(EC)DHE-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1

+ np ·
(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4 + AdvPRF-sec

HKDF.Expand,B5

)
+ ns · np ·

(
AdvPRF-sec

HKDF.Expand,B6 + AdvHMAC(0,$)-$
HMAC,B7

+ AdvPRF-sec
HMAC,B8

+ AdvPRF-sec
HMAC,B9 + AdvPRF-sec

HKDF.Expand,B10 + AdvEUF-CMA
HMAC,B11

)
+ ns · np ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HMAC,B13 + AdvPRF-sec

HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Expand,B15 + AdvPRF-sec

HKDF.Expand,B16

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared
secrets.

Proof. Again we first restrict the adversary A to a single Test query (for which we now know
label and stage in advance), inducing a security loss of at most 5ns by a hybrid argument.

Game 1. We next exclude hash collisions by aborting the game whenever the challenger
would (in honest sessions) compute the same hash value for distinct inputs. As in Game 1 for
Theorem 7.2 the caused difference in the advantage can be bounded by that of an adversary B1
against the collision resistance of the hash function:

Adv1-Multi-Stage
draft-14-PSK-(EC)DHE-0RTT,A ≤ AdvG1

draft-14-PSK-(EC)DHE-0RTT,A + AdvCOLL
H,B1 .

Our proof then treats the following three (disjoint) cases separately:

A. the adversary tests a stage-1 or stage-2 key,

B. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a session without honest contributive
partner in the third stage (i.e., there does not exist a session label′ with label.cid3 =
label′.cid3 when the Test query is issued on label), and

C. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a session with honest contributive
partner in the third stage.

Case A. Test in Stage 1–2

In the first proof case we are concerned with a Test query on a 0-RTT key (in stage 1 or 2).
As both stages are non–forward-secret, we know that is this case no Corrupt query can have
been issued for the pre-shared secret pss employed in the tested session (neither before nor after
the Test query), as the adversary would otherwise lose. This allows us to apply the same proof
strategy as for the Multi-Stage security of the draft-14 PSK(-only) 0-RTT handshake in the
proof Theorem 7.2. Via the very same sequence of games G2–G6 (starting after excluding hash
collisions) we reach a game where both 0-RTT keys tkehs and tkeapp are replaced by independent
and uniformly random values (leaving the adversary A no change to win). The introduced

101

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

differences in advantage of A are bound as for Theorem 7.2, yielding the following overall bound
for tests in stage 1 or 2 in Game 1:

AdvG1,test 1–2
draft-14-PSK-(EC)DHE-0RTT,A ≤ np ·

(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4 + AdvPRF-sec

HKDF.Expand,B5

)
,

where B2, . . . , B5 are the reduction algorithms given in the proof of Theorem 7.2.

Case B. Test in Stage 3–5 without Contributive Stage-3 Partner

We now consider the case that the Test query is issued on stage 3–5 in a (client or server)
session without honest contributive partner in stage 3. Since stage 3 is unauthenticated, testing
this stage would lead to immediately losing the Multi-Stage game, hence we can focus on
stages 4 and 5. As we will see, given the HMAC values in the exchanged Finished messages
are unforgeable, we can ultimately exclude that such Test queries are issued via the following
sequence of games.

Game B.0. We begin with the Multi-Stage game restricted to a single Test query in stage 3–5
without contributive stage-3 partner, where collisions are excluded:

AdvGB.0draft-14-PSK-(EC)DHE-0RTT,A = AdvG1,stage 3–5,no cid3-partner
draft-14-PSK-(EC)DHE-0RTT,A.

Game B.1. We now introduce an abortion of the game as soon as a session accepts in stage 4
without honest contributive partner in stage 3. Denoting this event as abortGB.1,Aacc we can bound
the induced advantage difference of A as∣∣∣AdvGB.0draft-14-PSK-(EC)DHE-0RTT,A − AdvGB.1draft-14-PSK-(EC)DHE-0RTT,A

∣∣∣ ≤ Pr[abortGB.1,Aacc].

Observe that we can immediately bound AdvGB.1draft-14-PSK-(EC)DHE-0RTT,A ≤ 0, as the game aborts
before A has the chance to issue a Test query (recall that Test queries may only be issued to
stage 4 or 5 of session without contributive stage-3 partner). We hence continue by bounding
Pr[abortGB.1,Aacc] in the remaining game sequence.

Game B.2. Next, we guess the first session that accepts in stage 4 without honest contributive
stage-3 partner (i.e., the session causing abortGB.1,Aacc) and abort if we guessed incorrectly. Observe
that Game B.2 equals Game B.1 for a correct guess and we can hence bound

Pr[abortGB.1,Aacc] ≤ ns · Pr[abortGB.2,Aacc],

where ns is the maximum number of sessions.
Moreover, no Corrupt query can have been issued to the guessed session (or any other session

using the same pre-shared secret pss): On the one hand, sessions stop execution on Corrupt and
thus no such query could have been issued before the guessed session accepted in stage 4 (as
otherwise it would not have accepted). On the other hand, the game aborts when the guessed
session accepts in stage 4, so there is no chance for A to issue a Corrupt query afterwards. The
pre-shared secret pss employed in the guessed session hence remains an unknown, random value
for A which we can leverage in the following games.

Game B.3. We can now first guess the pre-shared secret pss = RMS employed in the guessed
session. Aborting on an incorrect guess introduces a factor of at most the number of pre-shared
secrets np:

Pr[abortGB.2,Aacc] ≤ np · Pr[abortGB.3,Aacc].

102

7.3. Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes

Game B.4. Applying to the guessed session the steps introduced in the Games 3, 4, 5, 7, and 8
from the proof of draft-14 PSK(-only) Multi-Stage security (Theorem 7.2), we (in particular)
replace the values PSK, ES, HS, HTS, and finally FSS and FSC by uniformly random values
sampled from {0, 1}λ. Denoting the resulting game by Game B.4, the introduced advantage
difference is bounded as

Pr[abortGB.3,Aacc] ≤Pr[abortGB.4,Aacc] + AdvPRF-sec
HKDF.Expand,B6 + AdvHMAC(0,$)-$

HMAC,B7

+ AdvPRF-sec
HMAC,B8 + AdvPRF-sec

HMAC,B9 + AdvPRF-sec
HKDF.Expand,B10 ,

where B6, . . . , B10 are the algorithms B2, B3, B4, B6, and B7 given for Games 3, 4, 5, 7, and 8
in the proof of Theorem 7.2.

At this point, both server and client finished secrets used in the guessed session are replaced
by uniformly random random values F̃SS resp. F̃SC. As the final step, we show how this allows
to turn any adversary triggering the abortGB.4,Aacc event in Game B.4 into an (EUF-CMA) MAC
forger B11 for HMAC. To this extent, we let B11 act as the challenger in Game B.4, but instead
of computing HMAC values using keys F̃SS or F̃SC on its own, relay them to MAC oracles of
two EUF-CMA security instances for HMAC. As F̃SS and F̃SC are uniformly random values, this
provides a sound simulation of Game B.4 for A.

Recall that abortGB.4,Aacc is triggered as soon as the first (guessed) session accepts in stage 4
without contributive partner in stage 3. This in particular means that there is no session holding
the same cid3 = (ClientHello, ServerHello) value. However, in order for the guessed session
to accept in stage 4, it must have received (within ServerFinished or ClientFinished) an
HMAC value on a hash covering also the messages contained in cid3. As no session holds the
same cid3, and as there are no hash collisions (by Game 1), no honest session will have issued
this HMAC value. It hence was not queried to the MAC oracle in the EUF-CMA security game
(used for client resp. server messages) which allows B11 to output it as a valid forgery in the
respective game. Algorithm B11 hence being successful whenever A triggers abortGB.4,Aacc , this
finally bounds

Pr[abortGB.4,Aacc] ≤ AdvEUF-CMA
HMAC,B11 .

In summary, this provides the following advantage bounds for this proof case:

AdvG1,stage 3–5,no cid3-partner
draft-14-PSK-(EC)DHE-0RTT,A ≤ ns · np ·

(
AdvPRF-sec

HKDF.Expand,B6 + AdvHMAC(0,$)-$
HMAC,B7

+ AdvPRF-sec
HMAC,B8

+ AdvPRF-sec
HMAC,B9 + AdvPRF-sec

HKDF.Expand,B10 + AdvEUF-CMA
HMAC,B11

)
.

Case C. Test in Stage 3–5 with Contributive Stage-3 Partner

In the last proof case we treat test sessions accepting in stages 3–5 that have an honest contribu-
tive partner in stage 3. In contrast to Case B this in particular allows the (unauthenticated)
stage-3 key to be tested. Our proof strategy is geared towards leveraging the availability of
honest Diffie–Hellman shares gx and gy (through honest cid3-partnering) as source of randomness
(unknown to A) which ensures (forward) secrecy of the keys derived from it in stages 3–5, even
if the involved pre-shared secret pss is corrupted.

Game C.0. Our initial game is the Multi-Stage game restricted to a single Test query in
stage 3–5 with contributive stage-3 partner, where collisions are excluded:

AdvGC.0draft-14-PSK-(EC)DHE-0RTT,A = AdvG1,stage 3–5,cid3-partner
draft-14-PSK-(EC)DHE-0RTT,A.

103

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

Game C.1. We first guess the (index of the) session contributively partnered in stage 3 with
the tested session and abort on an incorrect guess, inducing a factor of ns (the numbers of
sessions):

AdvGC.0draft-14-PSK-(EC)DHE-0RTT,A ≤ ns · AdvGC.1draft-14-PSK-(EC)DHE-0RTT,A.

Game C.2. Next, we guess the pre-shared secret pss = RMS used in the tested session (and
abort on an incorrect guess), reducing the advantage of A by a factor of np (the number of
pre-shared secrets):

AdvGC.1draft-14-PSK-(EC)DHE-0RTT,A ≤ np · AdvGC.2draft-14-PSK-(EC)DHE-0RTT,A.

Game C.3. Knowing the (honest) session that contributes in particular the Diffie–Hellman
share to stage 3 of the tested session and the used pre-shared secret in advance now allows us to
encode a Diffie–Hellman challenge in the shares gx and gy used at the tested session.

If the tested session is a client session, we know that both it and the partnered session guessed
in Game C.1 hold the same shares gx, gy. If the tested session however is a server session, we are
not ensured that the contributive (client) partner from Game C.1 will receive the test session’s
share gy unmodified.35 It might instead receive an adversarially-controlled value gy′ for which we
then, for a correct simulation, need to be able to compute gxy′ (while knowing neither x nor y′).
To this extent, we model the security of the HKDF.Extract function deriving HS using ES as
salt and DHE = gxy as source key material using the PRF-ODH assumption [JKSS12] in its
single-query snPRF-ODH variant. This allows us to replace HS in the tested session with a
random value while still being able to compute the (potentially different) handshake secret HS′
derived from gxy

′ (for an arbitrary gy′ 6= gy).
More precisely, in Game C.3 we replace the handshake secret HS derived from ES and DHE =

gxy in the tested and (potentially) its partnered session by a uniformly random value H̃S $←−
{0, 1}λ. The introduced advantage difference for A can be bound by the advantage of an
algorithm B12 against the snPRF-ODH security of HKDF.Extract (using ES as salt and DHE = gxy

as source key material). To this extent, B12 outputs ES (precomputed from the test session’s
pre-shared secret guessed in Game C.2) as the PRF challenge label. It then employs the obtained
Diffie–Hellman shares as values gx and gy in the ClientKeyShare resp. ServerKeyShare message
of the tested session and the contributive stage-3 partner session (guessed in Game C.1). It
furthermore uses the obtained PRF challenge value as the handshake secret HS in the tested
session and, potentially, the partnered session (obtaining the same Diffie–Hellman shares). In
case the guessed contributive partner session from Game C.1 is a client session and obtains, within
ServerKeyShare, a value gy′ 6= gy, B12 leverages its (single) ODHu query in the snPRF-ODH
game to compute HS from gxy

′ (without knowing x or y′).
Recall that B12 is free to replace values gx and gy in the tested and contributive-partnered ses-

sion at will as A can only passively observe them. The simulation B12 provides to A hence equals
Game C.2 in case the PRF challenge value B12 obtains is computed as HKDF.Extract(ES, gxy)
while, if the challenge is a uniformly random value it equals Game C.3. Therefore,

AdvGC.2draft-14-PSK-(EC)DHE-0RTT,A ≤ AdvGC.3draft-14-PSK-(EC)DHE-0RTT,A + AdvsnPRF-ODH
HKDF.Extract,G,B12 .

Observe that in this reduction we do not rely on (the secrecy of) the early secret ES at all.
This in particular allows ES to be known to A through issuing a Corrupt query on the pre-shared
secret pss = RMS involved in the tested session at any time, thereby ensuring forward secrecy
(from stage 3 on).

35Observe that the server’s MAC value in ServerFinished is only processed after deriving the stage-3 key.

104

7.4. The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol

We complete this proof case by applying to the tested session (and its potential partner) the
steps described for the Games 7, 8, 9, and 10 from the proof of draft-14 PSK(-only) Multi-Stage
security (Theorem 7.2). Thereby, we in particular replace the session keys for stages 3–5, tkhs,
tkapp, and EMS, by independent and uniformly random values sampled from {0, 1}λ. As the
key derivation in each stage contains that stage’s full session identifier, any non-partnered
session moreover derives (from shared secrets) independent keys, rendering Reveal queries on
such sessions useless. This leaves the adversary A with no chance to determine btest better than
through guessing and hence bounds its advantage in Game C.3 as

AdvGC.3draft-14-PSK-(EC)DHE-0RTT,A ≤ AdvPRF-sec
HMAC,B13 + AdvPRF-sec

HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Expand,B15 + AdvPRF-sec

HKDF.Expand,B16 .

where B13, . . . , B16 are the algorithms B6, B7, B8, and B9 given for Games 7, 8, 9, and 10 in
the proof of Theorem 7.2.

To conclude, the advantage bounds for this proof case sum up to:

AdvG1,stage 3–5,cid3-partner
draft-14-PSK-(EC)DHE-0RTT,A ≤ ns · np ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HMAC,B13 + AdvPRF-sec

HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Expand,B15 + AdvPRF-sec

HKDF.Expand,B16

)
.

7.4 The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake
Protocol

The latest TLS 1.3 drafts do not specify a Diffie–Hellman-based ((EC)DHE) 0-RTT handshake
anymore, the last draft doing so is draft-12 [Res16a]. We nevertheless provide a security
analysis of this 0-RTT mode (as specified in draft-12) for two reasons: For one, it is much
closer to the QUIC and OPTLS protocols and our analysis hence enables a comparison with
those designs. For another, it provides slightly stronger forward secrecy properties [Kra16a] as
reflected in our analysis and may (for that or other reasons) be re-established as a TLS 1.3
extension [Res16e].

On a high level, the (EC)DHE 0-RTT handshake goes through the same four phases as
the PSK-based 0-RTT modes: key exchange, 0-RTT, server parameters, and authentication
(cf. Section 7.2). A notable difference though is that, in draft-12, the client may perform
signature-based authentication in the 0-RTT step, an option that was abandoned in later drafts.
We provide the protocol flow (and cryptographic computations) as well as the key schedule
of the (EC)DHE 0-RTT handshake in Figure 7.3. To avoid repetitions, we only explain the
new handshake messages for 0-RTT client authentication and the novelties in the key schedule
(compared to the relatively close draft-10 schedule), and refer to the description in Sections 6.2,
6.4, and 7.3 for the identical components in draft-12.

• ClientEarlyData (CEAD)/ServerEarlyData (SEAD) are extensions sent to announce a
0-RTT handshake. For draft-12 (EC)DHE 0-RTT, the client includes an identifier
config_id for a previously obtained server configuration (including a semi-static public
key S = gs for which the server holds the secret exponent s) along with a matching
ciphersuite used for deriving (and encrypting under) the 0-RTT keys.36 The server signals
accepting the 0-RTT exchange with an empty ServerEarlyData extension.

36TLS 1.3 draft-12 again does generally not provide protection against replay of 0-RTT data between multiple
connections, but allows inclusion of an optional context value within the CEAD message to implement unique
per-connection configuration identifiers delivered out-of-band as an anti-replay measurement outside of TLS (cf.
[Res16a, Section 6.3.2.5.2]). We do not consider this special mechanism in our analysis.

105

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

Client Server

ClientHello: rc $←− {0, 1}256

+ ClientKeyShare: X ← gx

+ ClientEarlyData: config_id

H1 ← H(CH‖SC†‖SCRT†) (incl. CKS, CEAD)
SS← Sx SS← XsxSS← HKDF.Extract(0,SS)

tkehs ← HKDF.Expand(xSS, label1‖H1) stage 1

(ClientCertificate∗0): pkC
(ClientCertificateVerify∗0):

H2 ← H(CH‖SC†‖SCRT†‖CR†‖CCRT∗0)
CCV0 ← Sign(skC , H2)
(ClientFinished0):

H3 ← H(CH‖SC†‖SCRT†‖CR†‖CCRT∗0‖CCV∗0)
FS0 ← HKDF.Expand(xSS, label2)

CF0 ← HMAC(FS0, H3)
check Verify(pkC , H2, CCV0) = 1

check CF0 = HMAC(FS0, H3)
tkeapp ← HKDF.Expand(xSS, label3‖H1) stage 2

record layer (application data), using AEAD with key tkeapp

ServerHello: rs $←− {0, 1}256

+ ServerEarlyData
+ ServerKeyShare: Y ← gy

H4 ← H(CH‖SH)
ES← Y x ES← XyxES← HKDF.Extract(0,ES)

tkhs ← HKDF.Expand(xES, label4‖H4) stage 3

{EncryptedExtensions}
{CertificateRequest∗}
{ServerConfiguration∗}

{ServerCertificate∗}: pkS
H5 ← H(CH‖SH‖ . . . ‖SCRT∗)

{ServerCertificateVerify∗}:
SCV← Sign(skS , H5)

H6 ← H(CH‖SH‖ . . . ‖SCV∗)
mES← HKDF.Expand(xES, label5‖H6)
mSS← HKDF.Expand(xSS, label6‖H6)

MS← HKDF.Extract(mSS,mES)
FSS ← HKDF.Expand(MS, label7)

{ServerFinished}:
SF← HMAC(FSS, H6)

check Verify(pkS , H5, SCV) = 1
check SF = HMAC(FSS, H6)
{ClientCertificate∗}: pkC

H7 ← H(CH‖SH‖ . . . ‖CCRT∗)
{ClientCertificateVerify∗}:
CCV← Sign(skC , H7)

H8 ← H(CH‖SH‖ . . . ‖CCV∗)
FSC ← HKDF.Expand(MS, label8)

{ClientFinished}:
CF← HMAC(FSC, H8)

check Verify(pkC , H7, CCV) = 1
check CF = HMAC(FSC, H8)

Hsess ← H(CH‖SH‖ . . . ‖CF)
tkapp ← HKDF.Expand(MS, label9‖H6) stage 4

RMS← HKDF.Expand(MS, label10‖Hsess) stage 5
EMS← HKDF.Expand(MS, label11‖Hsess) stage 6

record layer (application data), using AEAD with key tkapp

ES

SS

Ext

xSS

0

Exp

FS0

Ext

xES

0

Exp

mSS

H6Exp

mES

H6

Ext

MS

Exp FSC

Exp FSS

Exptkehs

(stage 1)

H1

Exptkeapp

(stage 2)

H1

Exptkhs

(stage 3)

H4

Exptkapp

(stage 4)

H6

ExpEMS
(stage 5)

Hsess

ExpRMS
(stage 6)

Hsess

(resum
ption)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
(MSG) message MSG AEAD-encrypted with tkehs

{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message
MSG∗ message is situation-dependent and not always sent
MSG† message from previous handshake that established SC

Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 7.3: The TLS 1.3 draft-12 (EC)DHE 0-RTT handshake protocol (left) and key schedule (right).

106

7.4. The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol

After sending its ClientHello and extensions, the client can already derive one of the two
main secret inputs for key derivation, namely the static secret SS, as the Diffie–Hellman shared
value gxs. The initial 0-RTT keys are then derived using HKDF in the extract-then-expand
paradigm [Kra10]: first, an extracted value xSS is computed from which, in a second step, the
0-RTT handshake and 0-RTT application data traffic keys tkehs and tkeapp are expanded. We
again use the common notation for the two HKDF functions as introduced in Section 3.2.3.

The following three messages of the 0-RTT phase are then sent encrypted using tkehs,
which is unilaterally (server-side) authenticated. They are conceptually similar to the client’s
authentication messages sent later (as in the full handshake), but marked with a subscript 0 for
distinction.

• ClientCertificate0 (CCRT0) contains the client’s public-key certificate and is optionally
sent if the client wishes to authenticate its 0-RTT data.

• ClientCertificateVerify0 (CCV0) is sent only if ClientCertificate0 is sent and con-
tains a digital signature over the handshake hash (the hash of all sent and received
handshake messages at this point, i.e., here only the client’s messages CH (incl. extensions)
and CCRT0), as well as the server configuration used by the client, and further messages
from the previous handshake in which the client received this server configuration.

• ClientFinished0 (CF0) contains an HMAC value, a message authentication code computed
over (a hash of) the same messages as for CCV0 and the CCV0 message itself; keyed with
the 0-RTT finished secret FS0 derived from xSS.

At this point, the client can send early (0-RTT) application data, encrypted under tkeapp (which
is server- and optionally also client-authenticated).

After receiving the client’s first flight, the server can derive the same 0-RTT keys using
its stored configuration for the semi-static key gs and process the client’s 0-RTT handshake
and application data. The server can also decide to reject 0-RTT keys and data (setting sid1,
sid2, key1, and key2 to ⊥ in our model); it must in particular do so if the server configuration
identifier config_id sent by the client is invalid, unknown, or expired. In either case, the server
continues the handshake by sending out its ServerHello message and extensions.

Both parties can then compute the second secret input, the ephemeral secret ES, as the
shared Diffie–Hellman value gxy, and an extracted value xES from which the (unauthenticated)
handshake traffic key tkhs is expanded. The key tkhs is then used to encrypt the remaining
handshake, which is as for in the draft-10 full (EC)DHE handshake (see Section 6.2).

After the ServerCertificateVerify message is sent resp. received, both parties derive the
master secret MS, extracted from the intermediate expanded versions mES and mSS of the
(extracted) ephemeral and static secrets xES and xSS). At the end of the handshake, three
final keys are derived from the master secret through HKDF expansion steps: the application
traffic key tkapp for protecting the (non–0-RTT) application data sent37, the resumption mas-
ter secret RMS for later pre-shared key–based session resumption, and the exporter master
secret EMS from which further key material for usage outside of TLS can be derived.

As for the PSK-based 0-RTT handshakes, our analysis of the draft-12 (EC)DHE 0-RTT
handshake focuses on its core components and we hence do not treat 0.5-RTT data and
post-handshake messages.

37More precisely, TLS 1.3 derives an intermediate traffic secret from which the actual application traffic
key tkapp is expanded. This is done in order to allow for later key updates, where first an updated traffic secret is
computed from which then the new traffic key is derived. We do not capture this key update mechanism and
hence omit the intermediate traffic secret derivation here for simplicity.

107

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

7.5 Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT
Handshake

We conduct our security analysis of the TLS 1.3 draft-12 (EC)DHE 0-RTT handshake
(draft-12-(EC)DHE-0RTT) in the public-key variant (MSKE) of the multi-stage key exchange
model. First, we need to state the (formalized) protocol-specific properties (such as the available
authentication modes, its replayability properties, etc.) as well as how session matching is
defined via the session and contributive identifiers for each stage. The properties are captured
as follows:

• M = 6: the (EC)DHE 0-RTT handshake has six stages (deriving, in that order, traffic
keys tkehs, tkeapp, tkhs, tkapp, as well as resumption and exporter master secrets RMS
and EMS).

• AUTH =
{
(unilateral, autheapp, unauth, authfin, authfin, authfin) | autheapp ∈ {unilateral,

mutual}, authfin ∈ {unauth, unilateral,mutual}
}
: the first-stage key is always unilaterally

authenticated, the second-stage (early-data) key can bei unilaterally or mutually authenti-
cated, the traffic handshake key is always unauthenticated, and the final three keys (tkapp,
RMS, and EMS) share the same authentication property which can be no authentication,
unilateral authentication, or mutual authentication.

• USE = (internal, external, internal, external, external, external): the early-data and regular
handshake traffic keys tkehs and tkhs are used within the handshake, whereas the early-data
and main application traffic keys tkeapp and tkapp as well as the resumption and exporter
master secret RMS and EMS are used only externally.

• REPLAY = (replayable, replayable, nonreplayable, nonreplayable, nonreplayable, nonreplayable):
the early-data stages 1 and 2 are replayable, the other stages are not.

As we will see, the TLS 1.3 draft-12 0-RTT handshake furthermore enjoys key independence
and forward secrecy (wrt. compromise of the long-term signing secrets) for all keys. For the
forward secrecy of the early-data (0-RTT) keys tkehs and tkeapp, recall that our model treats
compromises of long-term and semi-static secrets independently through the Corrupt resp.
RevealSemiStaticKey query. While those keys remain (forward) secret after a long-term key
compromise, they are replayable and hence become insecure when the involved semi-static key
is revealed.38

For session matching, we define the session identifiers for the first four stages to be essen-
tially the unencrypted messages sent and received up to (excluding) Finished that enter the
handshake hash for the respective key’s derivation, including (for the early-data stages) the
ServerConfiguration and accompanying messages the client received earlier. Notably, we treat
the stage-4 application traffic key tkapp as mutually authenticated despite being derived from a
handshake hash only up to ServerFinished (to enable 0.5-RTT communication), and hence
include in sid4 the client’s certificate and signature. As we will see in the proof of Multi-Stage
security, the key derivation of tkapp not including the client’s authentication message will induce
an additional EUF-CMA security bound for HMAC compared to the proof for draft-10 (we
remark that this addition corrects the original proof in [FG17]).

38For this reason, our result in particular does not contradict the statement in draft-12 that “[t]his [0-RTT]
data is not forward secret, because it is encrypted solely with the server’s semi-static (EC)DH share” [Res16a,
Section 6.2.2]. The draft merely requires a forward-secret key to be resilient against compromises of both long-term
and semi-static keys.

108

7.5. Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake

The session identifiers are hence defined as follows:

sid1 = (ClientHello, ServerConfiguration†, ServerCertificate†),
sid2 = (ClientHello, ServerConfiguration†, ServerCertificate†, CertificateRequest†,

ClientCertificate∗0, ClientCertificateVerify∗0),
sid3 = (ClientHello, ServerHello), and
sid4 = (ClientHello, ServerHello, EncryptedExtensions, CertificateRequest∗,

ServerConfiguration∗, ServerCertificate∗, ServerCertificateVerify∗,

ServerFinished, ClientCertificate∗, ClientCertificateVerify∗).

Here, Hello messages always contain the according KeyShare and EarlyData extensions, com-
ponents marked with † are those enabling the 0-RTT exchange received by the client in an
earlier handshake, and starred (∗) components are not present in all authentication modes. For
the two final stages, we define the session identifiers to contain a distinguishing label beyond
the full stage-4 identifier, namely sid5 = (sid4, “RMS”) and sid6 = (sid4, “EMS”).

As for the PSK-based handshakes (cf. Section 7.3), we define the contributive identifiers
such that a server session can be tested when receiving an honest client contribution. That is,
for stage 3 (deriving the handshake traffic key), we let the client (resp. server) on sending (resp.
receiving) the ClientHello message (including the ClientKeyShare and ClientEarlyData
extension) initially set cid3 = (ClientHello) and subsequently, on receiving (resp. sending) the
ServerHello message (incl. SKS, SEAD), extend it to cid3 = sid3 = (ClientHello, ServerHello).
The other contributive identifiers are set to cidi = sidi, for stages i ∈ {1, 2} when sending resp.
receiving the 0-RTT ClientFinished message and to cidi = sid3 for stages i ∈ {4, 5, 6} by each
party on sending its respective Finished message.

Finally, we capture as semi-static public and private keys the values gs, resp. s, incorporated
in the derivation of the static secret SS and 0-RTT key derivation, issued by servers and learned
by clients via some ServerConfiguration (SC) message in an earlier (EC)DHE full or 0-RTT
handshake. This message is sent together with a ServerCertificate (SCRT) and, optionally,
CertificateRequest (CR) message (the latter enabling 0-RTT client authentication) and is
signed within the ServerCertificateVerify message. In our model, we let the adversary
control the generation of semi-static keys through the NewSemiStaticKey query, deciding whether
a CR message is sent or not by setting the optional input sskauxpre = CR. The NewSemiStaticKey
query then samples an exponent value s at random to generate a new semi-static key, and
outputs the auxiliary information sskaux = (SC, SCRT), resp. sskaux = (SC, SCRT, CR), along with
sspk = gs and a key identifier sskid. When instantiating a new session (through NewSession),
the adversary controls which semi-static key a client session uses for the 0-RTT exchange
via the sskidV identifier and determines whether a server issues a new semi-static key in a
ServerConfiguration message (and which key this is) via the server sessions’ sskidU identifier.39
Finally, the RevealSemiStaticKey query allows the adversary to learn the secret exponent s for
semi-static keys of its choice, at the price of not being allowed to test stage-1 and stage-2 (i.e.,
early-data) keys anymore for which this semi-static key was used.

We are now able to provide our security results for the TLS 1.3 draft-12 (EC)DHE 0-RTT
handshake.

Theorem 7.5 (Match security of draft-10-(EC)DHE). The TLS 1.3 draft-12 (EC)DHE 0-RTT
handshake is Match-secure with properties (M,AUTH,USE,REPLAY) given above. For any

39Note that in TLS 1.3 only servers hold semi-static keys. In particular, NewSession queries in our model will
hence have the client’s semi-static key identifier (sskid) parameter set to ⊥.

109

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

efficient adversary A we have

AdvMatch
draft-12-(EC)DHE-0RTT,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the
bit-length of the nonces.

Proof. We need to show that the six conditions for Match security hold:

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifiers for stages 1–2 and stages 3–6 contain the client’s resp. the client’s
and the server’s Hello messages and hence fix the Diffie–Hellman shares gx and gs

(through the unique semi-static key/con-figuration identifier sskid = config_id) resp.
also gy. Therefore, coinciding session identifiers imply agreement on the static secret SS
(in stages 1–2) and, for stage 3–4, also the ephemeral secret ES (i.e., the input keying
material). As each session identifier in particular furthermore fixes all messages exchanged
that enter the handshake hash within the key derivations, the session keys are uniquely
determined by the session identifier in each stage.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication
level.
For stages 1 and 3, the authentication level is fixed to unilateral resp. unauth. For the
other stages, unilateral authentication is indicated (exactly) by the exchange of SCRT and
SCV messages, whereas mutual authentication requires messages CCRT and CCV (as well
as, for stages 4–6, also the server’s messages). Hence, agreement on the session identifier
(including theses messages) implies agreement on that stage’s authentication.

3. Sessions with the same session identifier for some stage share the same contributive
identifier.
For stages i ∈ {1, 2} this follows immediately from sidi = cidi. For stages i ∈ {3, 4, 5, 6},
note that when both sides set the session identifier, the contributive identifier is also set
to its final value cidi = sid3, with the messages in sid3 being contained in sidi.

4. Sessions are partnered with the intended (authenticated) participant.
As sessions of honest parties will not attest a different identity than their own in the
SCRT and CCRT messages nor accept such a message for an identity different from the
intended partner, agreement on these messages (which are included in the respective
session identifiers for unilaterally and mutually authenticated stages) in particular implies
agreement on each partner’s identity.

5. Session identifiers are distinct for different stages.
This holds trivially since session identifiers sid1–sid4 contain distinct (non-optional) mes-
sages and sid5 and sid6 include a separating identifier.

6. At most two sessions have the same session identifier at any non-replayable stage.
As stages 1 and 2 are replayable, we need to consider this condition only for the stages 3–
6.40 Observe that the session identifiers for those stages contain the client’s and server’s
Hello message and, hence, for each side a randomly chosen nonce (rc, resp. rs) as well as

40Note that, indeed, a server has no means to check whether the client’s first-flight messages (being the only
content of the first two stages’ session identifiers) have been transmitted to another server before. This allows an
adversary to replay those messages and, hence, make one client session be partnered with multiple server sessions,
all deriving the same session key. As we will see in a moment, this still does not allow the adversary to break
those keys’ secrecy.

110

7.5. Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake

a randomly chosen group element (gx, resp. gy). Therefore, in order for a third session to
agree on the same session identifier it needs to, at least, pick the same nonce and group
element as the client or server, which can be upper bounded by the probability of any two
parties colliding on the same nonce and group element. This probability can be bounded
from above by n2

s · 1/q · 2−|nonce|, where ns is the number of all (client or server) sessions,
q is the group order, and |nonce| = 256 the bit-length of the nonces.

Theorem 7.6 (Multi-Stage security of draft-12-(EC)DHE-0RTT). The TLS 1.3 draft-12 (EC)DHE
0-RTT handshake is Multi-Stage-secure in a key-independent and stage-1-forward-secret manner
with properties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient adversary A
against the Multi-Stage security there exist efficient algorithms B1, . . . , B11 such that

AdvMulti-Stage,D
draft-12-(EC)DHE-0RTT,A ≤ 6ns ·

(
AdvCOLL

H,B1

+ nu · AdvEUF-CMA
Sig,B2

+ ns · nss ·
(
AdvmsPRF-ODH

HKDF.Extract,G,B3 + AdvPRF-sec
HKDF.Expand,B4 + AdvEUF-CMA

HMAC,B5

)
+ nu · AdvEUF-CMA

Sig,B6

+ ns ·
(
AdvsnPRF-ODH

HKDF.Extract,G,B7 + AdvPRF-sec
HKDF.Expand,B8 + Advst-Extract

HKDF.Extract,B9

+ AdvPRF-sec
HKDF.Expand,B10 + AdvEUF-CMA

HMAC,B11

))
,

where nu is the maximum number of users, ns is the maximum number of sessions, and nss is
the maximum number of semi-static keys.

Proof. First of all we consider that the adversary A makes a single Test query only. This reduces
its advantage, based on a hybrid argument, by a factor at most 1/6ns for the six stages in each
of the ns sessions. We can now speak about the session label tested at stage i, and that we know
the index of the session and the stage in advance.

Game 1. We first, as in the proofs before, exclude hash collisions by aborting the game
whenever the challenger in the game with a single test query would (in honest sessions) compute
the same hash value for distinct inputs. The caused difference in the advantage can be bounded
by that of an adversary B1 against the collision resistance of the hash function:

Adv1-Multi-Stage
draft-12-(EC)DHE-0RTT,A ≤ AdvG1

draft-12-(EC)DHE-0RTT,A + AdvCOLL
H,B1 .

In our analysis, we then separately treat the (disjoint) cases that the adversary tests an
early-data (stage-1 or stage-2) key or a regular key (stages 3–6). For tests on stages 1 and 2, we
further distinguish between the following two (again disjoint) sub-cases that

A. the adversary tests a server session without honest (contributive) partner in the first stage
(i.e., label.role = responder for the test session label and there exists no label′ 6= label with
label.cid1 = label′.cid1) and

B. the adversary tests a server session with honest (contributive) partner in the first stage
or a client session (i.e., label.role = initiator or label.role = responder and there exists a
label′ 6= label with label.cid1 = label′.cid1).

For tests on stages 3–6, we split our analysis along the same two (sub)cases used in the analysis
of the full (EC)DHE handshake for draft-10 (cf. Theorem 6.2 in Section 6.3). As we detail in

111

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

the proof, the analysis mostly follows closely the one for draft-10, so that we obtain similar
security bounds, except for an added EUF-CMA security bound for HMAC due to the modified
0.5-RTT key derivation of tkapp (we remark that this added bound was missing in the original
proof in [FG17] which we correct here).

C. the adversary tests a (client or server) session without honest contributive partner in the
third stage (i.e., for the test session label there exists no label′ 6= label with label.cid3 =
label′.cid3), and

D. the tested session has an honest contributive partner in stage 3 (i.e., there exists label′
with label.cid3 = label′.cid3).

This allows us to split the adversary’s advantage along these four cases:

AdvMulti-Stage,D
draft-12-(EC)DHE-0RTT,A ≤ 6ns ·

(
AdvG1,test 1–2,server without partner

draft-12-(EC)DHE-0RTT,A

+ AdvG1,test 1–2,server with partner/client
draft-12-(EC)DHE-0RTT,A

+ AdvG1,test 3–6,test without partner
draft-12-(EC)DHE-0RTT,A

+ AdvG1,test 3–6,test with partner
draft-12-(EC)DHE-0RTT,A

)
.

For the proof of each case we will proceed in a sequence of games. We start from the original
Multi-Stage game with a single Test query and excluded hash collision (i.e., Game 1), restricted
to the case in question, and modify this game in each step, showing that the difference in
the adversary’s advantage between the two games can be bounded by complexity-theoretic
assumptions. Finally, in the last game the advantage of A will be at most 0 and the advantage
for the considered case hence bound by combination of the intermediate bounds.

Case A. Stage 1–2: Test Server without Stage-1 Partner

For the case that the adversary tests a server (responder) session in stage 1 or 2 without
contributive partner in the first stage, we recall that cidi = sidi for i ∈ {1, 2} and hence, as all
messages in sid1 are also contained in sid2, the tested session also cannot have a (contributive)
partner in the second stage. In order to not lose immediately, the adversary can test responder
session stages without contributive partner only if they are mutually authenticated. Since the
stage-1 keys are unilaterally authenticated we can focus on the second stage to be tested and
assume label.auth2 = mutual.

Game A.0. We begin with the initial game GA.0 which equals the Multi-Stage game with
excluded hash collisions and one Test query which must be issued on a stage-1 or stage-2 key of
a server session without honest contributive identifier. Therefore,

AdvGA.0draft-12-(EC)DHE-0RTT,A = AdvG1,test 1–2,server without partner
draft-12-(EC)DHE-0RTT,A .

Game A.1. Our only change now is to let the challenger abort the game if the tested server
session receives a ClientCertificateVerify0 message which contains a valid signature (under
some public key pkU) over the expected (hashed) messages H2 = H(CH‖SC†‖SCRT†‖CR†‖CCRT∗0)
for which no honest (client) session ever computed a signature.

We can bound the probability of such an event by the advantage of an adversary B2 against
the unforgeability (in the sense of EUF-CMA) of the signature scheme Sig. In the reduction,

112

7.5. Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake

B2 first needs to guess the identity U ∈ U under whose public key the obtained signature will
verify, replacing that user’s public key with the challenge public key in the EUF-CMA game
and generating signatures using the signing oracle. All other keys are generated by B2 during
the game setup. When the tested session receives a valid CCV0 message causing an abort, B2
outputs the contained signature as forgery.

As the tested session has no honest partner, no honest client signed the contained handshake
hash before. Otherwise, this client would agree on all messages up to CCRT0 and hence also on
the first-stage session identifier (which we excluded in this proof case). Moreover, no party with
a different session identifier signed the same handshake hash, as this would constitute a hash
collision which we excluded in Game 1. Given that B2 correctly guessed the used public key pkU
(among the keys of the at most nu users), its output constitutes a valid forgery and hence

AdvGA.0draft-12-(EC)DHE-0RTT,A ≤ AdvGA.1draft-12-(EC)DHE-0RTT,A + nu · AdvEUF-CMA
Sig,B2 .

At this point, we are ensured that an honest client issued a ClientCertificateVerify0
signature on H2 = H(CH‖SC†‖SCRT†‖CR†‖CCRT∗0) hold by the tested session. As there are no
hash collisions, this client hence in particular agrees on all messages included in the stage-1
contributive identifier cid1 = sid1 = (CH, SC†, SCRT†). Therefore, the tested (server) session
cannot be without (contributive) partner in stage 1 and hence A cannot issue a Test query
anymore at this point, leaving the test bit unknown to A and thus

AdvGA.1draft-12-(EC)DHE-0RTT,A ≤ 0.

Case B. Stage 1–2: Test Server with Stage-1 Partner or Client

In the second case for tests on early-data keys, we know that a tested server session always has
a partnered session and that, for client sessions, the server is always authenticated (through the
server configuration of some previous communication). A Test query can in this case be issued
in any of the two stages.

Game B.0. We start with the unmodified initial game GB.0:

AdvGB.0draft-12-(EC)DHE-0RTT,A = AdvG1,test 1–2,server with partner/client
draft-12-(EC)DHE-0RTT,A .

Game B.1. First, we guess the (index of the) client session involved in the test (i.e., the client
session itself if the client-side is tested, or the client session partnered with the server session
if the server side is tested) and abort if this guess is incorrect. Note that in both cases, this
client session is an honest session simulated by the challenger. This can reduce the adversary’s
advantage by a factor of at most the number of sessions ns:

AdvGB.0draft-12-(EC)DHE-0RTT,A ≤ ns · AdvGB.1draft-12-(EC)DHE-0RTT,A.

Game B.2. Next, we additionally guess the (index of the) configuration identifier config_id
(i.e., in terms of our model, the semi-static key identifier sskid resp. the NewSemiStaticKey query
through which it is issued) the involved client session will use within its ClientHello message.
Again, this reduces the advantage of A by a factor of at most the number of semi-static keys nss:

AdvGB.1draft-12-(EC)DHE-0RTT,A ≤ nss · AdvGB.2draft-12-(EC)DHE-0RTT,A.

113

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

Game B.3. At this point, we know in advance which semi-static key the involved client session
will employ, enabling us to encode a Diffie–Hellman challenge in the static secret SS derived
from the client’s ephemeral share gx and the server’s semi-static share gs (selected through the
server configuration identifier).

As the server’s semi-static key gs is potentially used in more than one session, we need to
be able to compute (keys from) further static secrets SS′ from the same gs but a different gx′ ,
even when knowing neither s nor x′. Moreover, when the client session continues, it might
obtain, within the ServerKeyShare message, an ephemeral Diffie–Hellman share gy′ different
from the value gy chosen by the honest server session partnered in the early-data stages.41 We
hence, once, need to compute (keys from) the ephemeral secret ES (resp. xES) in the client
session, even without knowing x or y′. To this end, we model the HKDF.Extract function as a
pseudorandom function keyed (as source key material) with elements from group G and employ
the PRF-ODH assumption in its msPRF-ODH variant (cf. Definition 3.6 in Section 3.2.2). The
latter allows us to replace a HKDF/PRF value under SS = gxs with a random value while
providing oracle access to evaluate the PRF under further keys SS′ = gx

′s (for gx′ 6= gx) as well
as, once, under a key ES′ = gxy

′ (for an arbitrary gy′ 6= gs, without knowing x).
More in detail, in Game B.3 we replace the extracted static secret xSS by a uniformly

random string x̃SS $←− {0, 1}λ in both the tested and its potentially partnered session(s), as well
as in any session that sends or receives within the ClientHello message the same ephemeral
key gx and (identifier for the) semi-static key gs (and ignore the SS value in those sessions).
We can bound the difference in advantage of adversary A through this modification by the
advantage of an algorithm B3 in winning the msPRF-ODH game as follows.

Initially, B3 receives a group element gu in the msPRF-ODH game and immediately issues
the challenge query x? = 0 for which it obtains a response (gv, y?) where y? is either the
value PRF(guv, 0) or a uniformly random string. It then acts as the challenger in the Multi-Stage
game for A, choosing a test bit btest

$←− {0, 1} at random and simulating it according to the
description except for the following changes.

• When A issues the NewSemiStaticKey query guessed in Game B.2, algorithm B3 uses gu
for the returned semi-static public key sspk (implicitly setting gs = gu for the tested
session).

• For the tested session and its potential partnered session(s), B3 uses gv as the ephemeral
Diffie–Hellman share of the guessed tested client session resp. partnered client session of
the tested server session, implicitly setting gx = gv for the tested session. Furthermore, we
use xSS = y? as the extracted semi-static secret in both the tested and potential partnered
session(s) as well as in server sessions obtaining the same ephemeral gx and previous
ServerConfiguration for gs.

• For any server session using the guessed semi-static key that obtains a client ephemeral
Diffie–Hellman share gx′ 6= gx, algorithm B3 does not compute SS explicitly but uses xSS←
PRF((gx′)u, 0) directly as the response of a query ODHu(gx′ , 0).

• For the client session tested or partnered with the tested server session in stage 1,
algorithm B3 does not explicitly compute the ephemeral secret ES. Instead, it directly
uses the response PRF((gy′)v, 0) = PRF((gy′)x, 0) to one single query ODHv(gy

′
, 0) as

xES ← PRF((gy′)x, 0), where gy′ is the server’s key share obtained by the client within
the ServerKeyShare message.

41Observe that, while the server might sign its share, this signature is only checked after the (always
unauthenticated) handshake traffic key is computed and, hence, might contain an adversarially controlled server
share gy

′
.

114

7.5. Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake

In the special case that gy′ = gs (resulting in SS = ES for the client session), algorithm B3
however does not issue a query, but simply (re-)uses the challenge xES = xSS = y?.

Finally, B3 outputs 1 if A wins in the Multi-Stage game and otherwise 0.
In case y? = PRF(guv, 0) this approach equals Game B.2 while if y? is a uniformly random

value, it equals Game B.3. For this, let us see why B3 provides correct simulations for A in both
cases.

First of all, recall that implicitly gs = gu and gx = gv in the tested and partnered sessions,
hence xSS← PRF(guv, 0) = PRF(gxs, 0) is chosen as in the real Game B.2 in case b = 0 in the
msPRF-ODH game (recall that HKDF.Extract is our pseudorandom function). In case b = 1, the
value xSS $←− {0, 1}λ is a randomly chosen element as specified for Game B.3.

Moreover, B3 is free to replace these two values at will, as A is only able to passively observe
them and does not get to learn the discrete logarithms: For one, gs needs to be unrevealed
(i.e., stssk,sskid = fresh) in order for Test queries on 0-RTT keys derived from it to be allowed.
This holds as a RevealSemiStaticKey query on a tested replayable stage would set the lost flag
to true. At the same time, Corrupt queries do not reveal semi-static keys. Then, if the client
side is tested, this side necessarily is honest and hence picks gx, while, if the server side is
tested, it must have an honest partnered client session, which means A cannot have modified
the honestly picked ephemeral gx on the way. Finally, both gx and gs are chosen independently
of the other ephemeral and semi-static values (which B3, hence, can still select on its own),
which in particular implies that B3 can detect a differing behavior of A in case, coincidentally,
the same Diffie–Hellman shares are picked independently in another session.

Using the queries provided in the msPRF-ODH security game, B3 is moreover able to correctly
compute keys from both further static secrets SS′ for server sessions using the same semi-static
key gs (without knowing s), as well as (once) the ephemeral secret ES′ in the involved client
session (without knowing x). Hence, it can in particular correctly answer Reveal queries to any
of these sessions.

Therefore, the advantage difference of A between Game B.2 and Game B.3 is, through B3’s
output, transformed into a difference of outputting 1 in the two cases of the msPRF-ODH game
and, hence, we can bound the former difference as

AdvGB.2draft-12-(EC)DHE-0RTT,A ≤ AdvGB.3draft-12-(EC)DHE-0RTT,A + AdvmsPRF-ODH
HKDF.Extract,G,B3 .

Game B.4. In the next step, we replace the HKDF.Expand evaluations keyed with x̃SS, in
particular in the tested and matching sessions, by a (lazy-sampled) random function. This
in particular results in the early-data handshake and application traffic keys tkehs and tkeapp,
the 0-RTT finished secret FS0, and the expanded static secret mSS in the tested session being
replaced by independent random values t̃kehs, t̃keapp, F̃S0, m̃SS $←− {0, 1}λ.

We can turn any adversary A distinguishing this change (with non-negligible probability) into
an adversary B4 against the PRF security of HKDF.Expand. Again, B4 acts as the Multi-Stage
challenger for A, this time using its PRF oracle for any HKDF.Expand evaluation under key x̃SS,
while performing evaluations under different keys on its own. In case the PRF oracle computes
the real function, this simulation equals Game B.3; if the oracle computes a random function, it
equals Game B.4. Moreover, the simulation is sound as x̃SS is an independent random value
(due to the change in Game B.3) and hence chosen like the key in the PRF security game.

Thus, B4’s distinguishing advantage in the PRF game bounds the difference of A in the two
games:

AdvGB.3draft-12-(EC)DHE-0RTT,A ≤ AdvGB.4draft-12-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Expand,B4 .

115

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

With the change in Game B.4, both potentially tested keys t̃kehs and t̃keapp are now chosen
independently at random. It remains to argue that the adversary cannot learn either value
through a Reveal query.

Note first of all that a Reveal query is permissible only on non-partnered sessions. In order
for such a session to derive the same key, it must hold the same key material and handshake
messages entering the key derivation. For tkehs, the full session identifier sid1 = (CH, SC†, SCRT†)
enters the key derivation, any non-partnered session hence necessarily derives a distinct key tkehs
and a Reveal query thus does not affect the independent test session keys. For tkeapp, messages
CCRT∗0 and CCV∗0 are part of sid2 but do not enter the key derivation (with no reason given for
this design choice in the draft specification). In principle, the adversary A could hence modify
these messages (e.g., by corrupting the client and sending a re-randomized CCV0 message) in
order to have the server session holding SS = gxs and hence also t̃keapp accept with a session
identifier sid2 different from the (tested) client session. This would allow A to issue a Reveal
query on the server session and learn t̃keapp. As we will see through the next and final game
hop, a non-partnered session holding t̃keapp however implies a forged ClientFinished0 message
(i.e., a MAC forgery), as that value fixes all messages in the session identifier sid2 established.

Game B.5. Let Game B.5 be as before except that the challenger aborts if there accepts
a session holding the same (replaced) extracted static secret x̃SS and stage-2 key t̃keapp, but
which does not share the stage-2 session identifier sid2 with the tested session. We show that in
this case, the adversary made the server session of the two sessions accept with a forged MAC
value in the ClientFinished0 message.

First of all observe that both sessions agree on the 0-RTT finished key FS0 derived from x̃SS.
The 0-RTT finished keys has moreover been replaced by a random value F̃S0 in Game B.4). This
enables the following reduction B5 to the EUF-CMA unforgeability of the HMAC scheme, showing
that non-partnering while deriving the same key t̃keapp implies a successful MAC forgery.

In the reduction, B5 uses its MAC oracle to compute the ClientFinished0 message under
key F̃S0 (which it does not sample itself) overH3 = H(sid2) = H(CH‖SC†‖SCRT†‖CR†‖CCRT∗0‖CCV∗0).
Now, if the described abort event above occurs, the server session holds some sid′2 = (CH′, SC†′,
CCRT†′, CR†′, CCRT∗′0 , CCV∗′0) which does not match the sid2 on the client side. In order to accept
the stage-2 key, the server hence must have obtained a MAC covering H(sid′2). As there are no
hash collisions due to Game 1, no client holding the same 0-RTT finished key F̃S0 issued such
MAC, and hence B5 did not query its MAC oracle on this value. We therefore let B5 output the
ClientFinished0 MAC obtained by the server in the abort event as its valid EUF-CMA forgery,
which allows us to bound the introduced difference in advantage as

AdvGB.4draft-12-(EC)DHE-0RTT,A ≤ AdvGB.5draft-12-(EC)DHE-0RTT,A + AdvEUF-CMA
HMAC,B5 .

Finally, the Test query output is not only an independent random value, but the adversary
can also not obtain this value as the result of a Reveal query to a non-partnered session (by
Game B.5). Moreover, even if A replays the 0-RTT messages of the involved client session
to further server sessions or injects the client’s ephemeral share gx in a differently crafted
ClientHello message, this does not allow it to distinguish the real from the random key. In the
former case, all sessions receiving the same client 0-RTT messages will be partnered with the test
session (and hence those keys cannot be revealed). In the latter case, the keys tkehs and tkeapp
in those (non-partnered) sessions will be derived from the same key x̃SS but with a distinct
handshake hash (due to collisions being excluded by Game 1) and, hence, are independent
random values themselves.

Therefore, btest at this point remains unknown to A and thus

AdvGB.4draft-12-(EC)DHE-0RTT,A ≤ 0.

116

7.5. Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake

Case C. Stage 3–6: Test without Stage-3 Partner

This case can be proven as for the draft-10 full (EC)DHE handshake (cf. Case A of the proof
of Theorem 6.2 in Section 6.3), leveraging that acceptance without stage-3 partner requires a
signature forgery (in ServerCertificateVerify or ClientCertificateVerify). Hence, the
security bound established there still applies:

AdvG1,test 3–6,test without partner
draft-12-(EC)DHE-0RTT,A ≤ nu · AdvEUF-CMA

Sig,B6 .

Case D. Stage 3–6: Test with Stage-3 Partner

For the last case, the following aspects need to be considered when adapting the draft-10 full
handshake proof (cf. Case B of the proof of Theorem 6.2 in Section 6.3) to the (full handshake
part of the) draft-12 0-RTT handshake.

First, the ephemeral and static secrets ES = gxy and SS = gxs are now derived differently
(instead of having ES = SS as in the full handshake). We hence encode the snPRF-ODH challenge
(in Game B.2) in gx and gy only, replacing xES by a uniformly random element x̃ES $←− {0, 1}λ
while the derivation SS remains unmodified. In particular, A is allowed to reveal the semi-static
key gs at any time via a RevealSemiStaticKey, which we can respond to also in this step as the
reduction picks s on its own.

Second, when replacing (in Game B.4) with random the master secret derived as MS ←
HKDF.Extract(mSS, m̃ES), mSS is derived from SS = gxs and hence may be known to the
adversary through a RevealSemiStaticKey query on gs. We thus cannot rely on the PRF security
of Extract as in the full handshake proof. Instead, following the analysis of the core cryptographic
protocol OPTLS by Krawczyk and Wee [KW16] underlying draft-12, we model HKDF.Extract
as a strong extractor with m̃ES as entropy source and mSS as (public) seed (cf. Definition 3.8
in Section 3.2.3). The step of replacing MS with an independent random value M̃S $←− {0, 1}λ
can accordingly be bounded by the corresponding distinguishing advantage Advst-Extract

HKDF.Extract,B9 of
an according reduction B9.

Third, as—in order to enable 0.5-RTT communication and in contrast to draft-10—the
(stage-4) application traffic key tkapp is expanded from MS using only parts of the stage-4
session identifier sid4, we need to ensure no non-partnered session derives the same key (as such
session could otherwise be revealed). As for the similar situation with the early application
traffic key tkeapp, a non-partnered session deriving the same key must obtain a MAC within
ClientFinished different from the one sent by the honest client. In the previous step, we
replaced all keys derived from M̃S by uniform random ones, so in particular is also the client
finished key FSC now chosen independently at random in the test session. We can hence
bound the probability of the above event happening by the advantage AdvEUF-CMA

HMAC,B11 against the
EUF-CMA security of HMAC of a reduction B11 similar to that for Game B.5 in Case B of this
proof.

Considering these changes, the advantage bounds induced by the proof steps beyond that
for the strong extractor and the added MAC forgery remain identical to those established for
Case B of the proof of Theorem 6.2:

AdvG1,test 3–6,test with partner
draft-12-(EC)DHE-0RTT,A ≤ ns ·

(
AdvsnPRF-ODH

HKDF.Extract,G,B7 + AdvPRF-sec
HKDF.Expand,B8 + Advst-Extract

HKDF.Extract,B9

+ AdvPRF-sec
HKDF.Expand,B10 + AdvEUF-CMA

HMAC,B11

)
.

Combining the advantages bounds for all four proof cases yields the overall bound.

117

Chapter 7. The TLS 1.3 Protocol: Zero Round-Trip Time and Replays

7.6 Comparing the QUIC and TLS 1.3 0-RTT Handshakes
We emphasize two aspects here in which the TLS 1.3 design is superior to QUIC and strengthens
the achievable (multi-stage) security both in terms of key independence and compositionality:
First, it derives separate keys for the different purposes (in particular, tkehs and tkeapp as
well as tkhs and tkapp for the encryption of (0-RTT resp. regular) handshake messages and
data), enabling a cleaner key separation. Second, it establishes authenticity of the server’s
Diffie–Hellman share gy through an explicit MAC (PSK-(EC)DHE 0-RTT) resp. signature
((EC)DHE 0-RTT) instead of through an authenticated encryption (under the 0-RTT key)
in the data channel, rendering the security of one session key not relying on the secrecy of
another. This in particular (and in contrast to the result for QUIC) enables an application of
our multi-key composition theorem (Theorem 4.4) to the usage of the non-0-RTT external keys
(tkapp, EMS, and RMS) in the record protocol, general symmetric protocols, and resumption,
respectively, similar to the result for the TLS 1.3 draft-10 full and PSK-based handshakes (see
Section 6.6).

Conversely, QUIC in its original version Revision 20130620 achieves replay protection for the
derived 0-RTT key on the key exchange level whereas TLS 1.3 in general does not (and hence,
technically, TLS 1.3 satisfies only a weaker notion of security in that respect). Yet, recent TLS 1.3
drafts discuss that servers should implement additional anti-replay mechanisms, proposing, e.g.,
storing—as in QUIC—the nonce sent in the ClientHello or performing freshness checks via
the age of session tickets and estimated round-trip times (see [Res18, Section 8]). While, as
discussed in the beginning, anti-replay protection cannot prevent application-level replays of
0-RTT data through different secure channels, it seems that providing replay protection at the
key exchange level emerges (again) as desirable security goal in practice. [Mac17]

Finally, the (abandoned) Diffie–Hellman-based and the (remaining) PSK-based 0-RTT
handshakes in TLS 1.3 (as specified for draft-12, resp. draft-14) differ in the forward-secrecy
guarantees they provide for 0-RTT keys, as already pointed out by Krawczyk on the TLS mailing
list [Kra16a]. While in draft-12 (EC)DHE 0-RTT those keys are forward secret (wrt. long-term
(signing) key compromise) and succumb only to exposures of the semi-static key involved, no
forward secrecy is provided in the PSK and PSK-(EC)DHE 0-RTT mode of draft-14. It is
important to note, though, that pre-shared resumption secrets used in the PSK-based 0-RTT
modes (treated as long-term secrets in our model) are usually much shorter-lived than public-key
long-term signing keys, mitigating the effects of a compromise. More recent TLS 1.3 drafts in
particular discuss the option to use resumption secrets only once, improving on the forward
secrecy as well as anti-replay protection achieved [Res18, Section 8]. Still, pre-shared keys have
to be stored safely by both the server and the client—a challenging task in practice, especially
on the client side. Diffie–Hellman-based 0-RTT hence poses weaker requirements in that respect
as the client here only has to store the public part of a semi-static key.

118

Chapter 8
The TLS 1.3 Protocol:

A Formal Treatment of KeyConfirmation

Summary. In this chapter we turn to a functional property of key exchange protocols
beyond the classical notions of key secrecy and authentication: key confirmation. We present a
game-based security model based on the classical Bellare–Rogaway model which provides the
first rigorous formal treatment of key confirmation. We then analyze the TLS 1.3 full (EC)DHE
handshake from version draft-10 [Res15e] and show that it achieves desirable notions of key
confirmation for both clients and servers. The results in this chapter are based on a work
published at IEEE S&P 2016 [FGSW16].

8.1 Introduction

The seminal work of Bellare and Rogaway [BR94] (cf. Section 3.1) provided rigorous security
definitions for the two core security goals of (authenticated) key exchange: key secrecy and
(entity) authentication. An intuitively desirable security property that has so far escaped a
comprehensive treatment is key confirmation: the idea that when a party accepts locally a
key, it has the guarantee that some other party has precisely the same key. The property is
often mentioned in scientific papers on the subject of key exchange [BPR00, Kra05, LLM07]
but the typical reference for a definition is the “Handbook of Applied Cryptography” [MVO96,
Definition 12.7] which describes key confirmation as the property

“whereby one party is assured that a second (possibly unidentified) party actually
has possession of a particular secret key.”

Other references include the refinement proposed by Blake-Wilson and Menezes [BWM99a,
BWM99b] who further distinguish between explicit key confirmation, where one party is assured
that the other party holds the key, and implicit key confirmation, where the other party can
compute the key. In another work, Blake-Wilson et al. [BWJM97] propose definitions for
authenticated key agreement protocols with key confirmation which coincide with those of
Bellare and Rogaway [BR94] for (entity) authentication. Accordingly, their notion aims at
ensuring partnering rather than actual agreement on keys and furthermore ignores the inherent
asymmetry in key confirmation, namely that one of the protocol participants must accept first
and thus gets a different strength of confirmation guarantee than the one accepting last.

One may speculate that the reason for a lack of comprehensive and tailored definitions is
that absence of key confirmation does not seem to open parties to attacks: a party may send
messages encrypted with an (unconfirmed) key which no-one can decrypt. This may be a waste

119

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

of resources but not an obvious security risk. On the other hand, in some cases it might seem
“clear” when a protocol has key confirmation. For example, protocols like TLS 1.2 [DR08] and
EMV [EMV12] utilize the derived key during the execution of the protocol, so receiving a a
message encrypted with the shared key provides key-confirmation assurances.

The latter level of informal understanding is also reflected by other folklore protocol trans-
formations that can boost a secure key exchange protocol to also provide key confirmation
guarantees. A popular proposal (which we refer to as “refresh-then-MAC”) is to extend a key
exchange protocol as follows: use the established key first to derive two additional keys; the first
will be set as the session key whereas the latter will be used to compute a message authentication
code (MAC) value over the transcript of the protocol so far. Exchanging valid MACs should
then guarantee that parties have also locally computed the associated session key.

The status of key confirmation as an important security property is still unclear. On the
one hand, some practitioners seem to be convinced that key confirmation messages (messages
that use the key derived to ensure that the parties have agreed on the same key) do improve
authentication; Adam Langley from Google, e.g., publicly proclaimed at the Real World
Cryptography Workshop (RWC) 2014: “Key-confirmation messages are here to stay.” [Lan14]
Yet, others struggle to understand the benefits that key confirmation messages bring to protocols;
see, e.g., the discussion on the IETF TLS mailing list on removing the confirmation message
from the design of TLS [Lad14]. Nevertheless, many security protocol specifications name
key confirmation as an explicit goal to achieve, including, e.g., the recommendations for key
establishment schemes by NIST [BCRS13, BCRS09, HC09], or the draft specifications for the
next TLS version 1.3 [Res18].

Security definitions. In this chapter, we propose security definitions (in Section 8.2) that
aim to precisely capture the established intuition behind key confirmation. First, we note
that we do not attempt to distinguish between explicit and implicit key confirmation: distinct
computational interpretations to “has the key” and “can compute the key” seem difficult to
provide. This follows the line of reasoning by Blake-Wilson and Menezes [BWM99a] who argue
that “for all practical purposes, the assurances [of implicit and explicit key confirmation] are in
fact the same,” especially since one cannot guarantee that a party does not forget a key between
its derivation and its first time usage.

Second, it is clear that key confirmation guarantees are asymmetric: the party that receives
the last message obtains the stronger guarantees; such guarantees do not hold for the party
which sends the last message since that message can be dropped by an adversary. Accordingly,
we distinguish between full key confirmation and almost-full key confirmation. The former
property guarantees that when a party accepts a key, there exists some other party that has
already accepted precisely that key. The latter property ensures that when a party accepts a
key, there is some session which, if it accepts, then it accepts the same key. Formalizing sound
key confirmation notions turns out to be more challenging than one might expect given the
common informal understanding. As we explain later, although we rely on compelling intuition,
the definitions need to be carefully crafted to avoid some potential pitfalls which we outline.

A prime feature of our definitions is modularity. Following the approach of Blake-Wilson
and Menezes [BWM99a] as well as NIST [BCRS13, BCRS09], we choose to disentangle key
confirmation from the other security concerns specific to key exchange. In particular, our
notion only ensures that there exists some party that accepted the same key, but does not
guarantee that it is the expected communication partner. However, the desired property follows
by combining key confirmation and implicit key authentication (i.e., classical key secrecy with
mutually authenticating parties [BR94]): a protocol with both these properties has explicit key
authentication. Informally, key confirmation can be interpreted as guaranteeing the lower bound

120

8.1. Introduction

that “at least one other (unspecified) party holds the key” whereas implicit key authentication
ensures the upper bound that “at most one (namely the expected) party holds the key.” Together,
the notions entail explicit key authentication: “exactly the expected party holds the key.” Note
that the definitional modularity also allows us to “swap” the key confirmation steps and property
in and out, depending on the protocol’s security requirements (as in the recommendations of
NIST), and to independently argue about this additional security feature.

Application to TLS 1.3. We use the rigorous security models that we develop to shed light
on the key-confirmation properties of the TLS 1.3 handshake design in draft-10 [Res15e] in
Section 8.3. As in previous TLS versions, TLS 1.3 draft-10 leverages Finished messages
essentially consisting of a message authentication code (MAC) computed over the transcript of
the key exchange and sent both by the client and the server. It is hence not surprising that our
analysis confirms that (the full, (EC)DHE handshake of) TLS 1.3 indeed achieves the strongest
expectable key confirmation guarantees, i.e., full key confirmation for the server (which accepts
after the client) and almost-full key confirmation for the client (which accepts first).

Perhaps surprisingly, we show that key confirmation does not (necessarily) rely on the
Finished messages exchanged, but can actually be shown to hold even in a shortened variant
of the full draft-10 handshake which omits these messages. This becomes possible due to the
CertificateVerify messages sent in the full draft-10 handshake, which are essentially an
online signature under the parties’ long-term secret signing keys over (the hash of) all messages
exchanged (i.e., the transcript or “session hash”, as denoted in TLS 1.3).

This result deepens the understanding of the far-reaching security guarantees achievable with
the session hash concept (originally introduced to counter the triple handshake attack [BDF+14]
in TLS 1.2) and online signatures. While it might at first glance seem to open up a discussion
of whether Finished messages become obsolete in presence of CertificateVerify messages
already establishing key confirmation, we remark that TLS 1.3 specifies further handshake
variants which omit the CertificateVerify messages for performance reasons and fully rely
on the Finished messages for key confirmation as well as authentication. Furthermore, as we
have seen in Section 7.5 for the (EC)DHE 0-RTT handshake in TLS 1.3 draft-12, changes in
the key derivation to enable 0.5-RTT communication make Finished a necessary ingredient
already for (multi-stage) key secrecy in later drafts.

Generic transformation. As explained above, one idea used to obtain key confirmation
deployed in existing protocols is to somehow explicitly involve the key in the operations of the
key-exchange protocol. This message plays a double role: on the one hand the MAC “ties”
together the messages that belong to one session. On the other hand, the message is sent over
the channel that is being established, or in other words, it is encrypted with the session key:
receiving this message would therefore show that the other party already holds the key. It is
by now well-known that unmitigated use of the session key (for either encrypting or MAC-ing)
immediately destroys key secrecy, and better transformations have been proposed and used in
protocol design. With precise definitions in place, we are in a position where these proposals
can be accurately analyzed.

In addition to the above results presented in this thesis, we refer to [FGSW16] where
we deploy our rigorous notions to analyze the popular “refresh-then-MAC” transformation
(also recommended by NIST [BCRS13, HC09]) and confirm that the intuition behind the
construction is indeed correct: when applied to a key-exchange protocol that ensures key secrecy
the transformation yields a protocol which, in addition, also satisfies key confirmation (and
preserves (implicit) authentication).

121

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

8.2 A Formal Model for Key Confirmation

In this section we develop and discuss our notions for key confirmation. To prepare the stage, we
first augment the underlying Bellare–Rogaway security model in notation and define a generic
security game we use for our definitions. We then design two security notions which capture
strong forms of key confirmation, one that corresponds to the guarantees of the party that
receives the last message in the protocol, and a second one for the party that sends this last
message—per the discussion in the introduction we do not distinguish between explicit and
implicit key confirmation. We give logical formulas that directly capture the basic intuition
behind key confirmation and then turn the formulas into their associated security notions. As
we explain, care needs to be taken to rule out superficially correct, but in fact misleading
definitions.

8.2.1 Augmenting the Bellare–Rogaway Model

For capturing key confirmation, we build upon the basic Bellare–Rogaway model as a starting
point, see Section 3.1 for its specification. Yet, we note that our formalism can in principle be
lifted to multi-stage key exchange model from Chapter 4.

We begin by augmenting the Bellare–Rogaway model by a few, mostly syntactical, compo-
nents. Most importantly, we introduce the notion of a key-confirmation identifier kcid, pivotal
for our formalization of almost-full key confirmation. Essentially, once set in a session, the
identifier kcid ensures that the session will eventually derive the same key as any other session
with that identifier, even though the session has not accepted and the session identifier sid has
not been set yet. In other words, one may interpret the setting of the key-confirmation identifier
as stating that, upon receiving the partner’s confirmation message, a session will have enough
information to compute the (same) key. We elaborate on the choices for setting key-confirmation
identifiers in a protocol further when introducing the notion of almost-full key confirmation that
relies on them.

For syntactic convenience, in this chapter we consider participants in the protocol to to
belong to either a set of clients C or a set of servers S (i.e., U = C ∪ S for disjoint sets C, S).
We furthermore assume clients to always act as the initiator in an execution and servers taking
the role of the responder and hence sometimes interchangeably write role = client instead of
role = initiator resp. role = server instead of role = responder. As for the multi-stage model (cf.
Section 4.2) we allow for unilateral authentication and that the communication partner of a
session be unknown at the start and become “post-specified” during the session run.

The changes in the session list ListS compared to the plain Bellare–Rogaway model in
Section 3.1.1 hence comprise:

• pid ∈ (U ∪ {∗}): the identity of the intended communication partner, where the distinct
wildcard symbol ‘∗’ stands for “unknown identity” and can be set to a specific identity in
U once by the protocol

• kcid ∈ {0, 1}∗ ∪ {⊥} : the key-confirmation identifier, initialized to ⊥ and usually set at
some point during the execution

We keep the set of oracle queries the adversary uses to interact with the protocol as set out
in Section 3.1.2 for the Bellare–Rogaway model, except for the now superfluous Test query. For
later reference, we record in an (initially empty) set Corr the identities corrupted via a Corrupt
query; all other parties in U \ Corr are called honest or uncorrupted.

We furthermore introduce the following abbreviations to simplify formulas below: We
abbreviate session labels label as ` for brevity. We define two predicates partners and samekey

122

8.2. A Formal Model for Key Confirmation

which on input two session labels `, `′ evaluate to true if and only if the two sessions indicated
are partnered (i.e., `.sid = `′.sid and ` 6= `′), resp. hold the same key (i.e., `.key = `′.key).

8.2.2 A Generic Security Game

It will be convenient to formalize key confirmation via a “success” predicate Pred in a generic
security game GPred

KE,A for some key exchange protocol KE and a PPT adversary A. In the
following we will instantiate the predicate for our different key confirmation notions, but note
that other properties can be captured via such predicates as well (for example Match security,
see [FGSW16]).

Definition 8.1 (Generic Pred security game). Let Pred be an abstract predicate, KE be a key
exchange protocol, and A a PPT adversary A interacting with KE via the queries defined in
Section 3.1.2 in the following generic security game GPred

KE,A:

Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries
NewSession, Send, Reveal, and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GPred
KE,A = 1, if it violates the predicate Pred in the

sense that Pred evaluates to false on the final execution state of the game. We say KE provides
Pred security if for all PPT adversaries A the following advantage function is negligible in the
security parameter:

AdvPred
KE,A := Pr

[
GPred

KE,A = 1
]
.

8.2.3 Full Key Confirmation

We are now ready to present our notions for key confirmation and first treat the simpler case of
full key confirmation. These are the guarantees obtained by the party that receives the last
message of the protocol: the protocol ensures full key confirmation (for that party) if, when it
receives this last message (and therefore accepts the locally derived key), it has the guarantee
that there is a (partnered) session of the protocol that has accepted precisely the same key.

Since a protocol cannot achieve the full confirmation property for all sessions simultaneously—
in each pair of sessions one party has to finish first—it is convenient to restrict the sessions
under considerations to some subset. Since a session is fully described by its label `, including
for example the identity of the party running the session, we usually identify the sessions
according to their label ` which should belong to some set L. Slightly overloading notation
(but extending our predicate-based notions above in a natural way) a label ` belongs to L
if L(`) = true. For example L(`) = [`.id /∈ Corr] would comprise all honest parties’ sessions.
Analogously, we conveniently reuse the identity sets C for client and S for server session labels
by defining C(`) = [`.role = client] resp. S(`) = [`.role = server].

In the definition of the full key confirmation predicate below we abstractly speak of subsets L
and L′ of all labels. The predicate stipulates that for each accepting session with a label `
from L, where the partner is neither corrupt nor unauthenticated (in which case the adversary
could impersonate the partner), there exists another session with a label `′ from L′ such that
this session also accepts the same key. Note that we do not demand that the session `′ is actually
held by the intended partner specified by `.pid (which is captured as a distinct modular property
within Match security), but only that it is partnered according to the session identifiers. This
conveniently allows combining (full) key confirmation with other sid-based security notions, e.g.,

123

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

to achieve authentication and partnering properties when coupled with (implicit) authentication
resp. Match security or to achieve explicit key authentication when linked with key secrecy.42

As a final technical remark, key confirmation can only be expected for sessions that commu-
nicate with a distinct, uncorrupted party, as we cannot reason about an adversarially controlled
session deriving certain values or holding the same key. This is reflected in both the definitions
of full and almost-full key confirmation by demanding that `.pid /∈ Corr ∪ {∗}.

Definition 8.2 (Full key confirmation predicate). The predicate FullConf(L,L′) that defines
full key confirmation is the following:

∀` ∈ L :: [`.stexec = accepted ∧ `.pid /∈ Corr ∪ {∗}]
=⇒ [∃`′ ∈ L′ :: (`′.stexec = accepted ∧ partners(`, `′) ∧ samekey(`, `′))].

Note that partners(`, `′) ensures that ` 6= `′.
A protocol offers full key confirmation if no efficient adversary can make the predicate false,

except with negligible probability.

Definition 8.3 (Full key confirmation). A key exchange protocol KE provides full (L,L′)-key
confirmation if for all PPT adversaries A the following advantage function for the generic
security game from Definition 8.1 is negligible in the security parameter:

AdvFullConf(L,L′)
KE,A := Pr

[
G

FullConf(L,L′)
KE,A = 1

]
.

Note that the notion above implicitly captures the time-critical aspect that some other
session already holds the same key at the point in time when a party accepts. Whereas the
predicate FullConf is evaluated on the final execution state, thus not allowing to distinguish
between sessions ` for which the paired session `′ existed before or only after session ` accepted,
the quantification over all adversaries A rules out the case that there has not been such a
session `′ before. That is, assume that (any of the possibly multiple paired sessions) `′ only
accepted after ` in an execution of some adversary A. Then one can imagine a pruned version
of the adversary which stops immediately after ` has accepted, say, simply by picking a random
stop point in the execution. If A triggers the event that any paired session `′ existed only
afterwards with non-negligible probability, then the pruned version of A (which is contained in
the quantification) would break full key confirmation as above.

8.2.4 Almost-Full Key Confirmation

We now turn to the guarantees that key confirmation can offer to the party that sends the last
message in a protocol and which therefore has no guarantee that its intended partner accepts
(since the adversary may simply drop that last message).

A false start. To understand the subtleties involved in designing a definition for this case, we
first explore a possible notion which, although intuitively appealing, has important shortcomings.

Intuitively, the best guarantee for the party that sends the last message (and accepts) is
that there is some other session which, if it eventually accepts, will have accepted the same key
(and is partnered). This intuition is captured by the following formula:

∀` ∈ L :: [`.stexec = accepted ∧ `.pid /∈ Corr ∪ {∗}] =⇒[
∃`′ ∈ L′ ::

(
`′.stexec = accepted =⇒ partners(`, `′) ∧ samekey(`, `′)

)]
.

42Consulting once more the “Handbook of Applied Cryptography” [MVO96], the authors there also treat the
properties separately, and define explicit key authentication as the combination of key confirmation with (implicit)
key authentication (where the latter comprises authenticity and key secrecy).

124

8.2. A Formal Model for Key Confirmation

It turns out that this notion is too weak. The problem is that the predicate is satisfied
whenever there is some session `′ that has not accepted. To understand why this is the case,
consider the negation of the above predicate (which an adversary that attempts to break the
property must ensure it evaluates to true).

∃` ∈ L :: `.stexec = accepted ∧ `.pid /∈ Corr ∪ {∗}
∧
[
∀`′ ∈ L′ ::

(
`′.stexec = accepted ∧ (¬partners(`, `′) ∨ ¬samekey(`, `′))

)]
.

Note that to make the predicate true, the adversary has to ensure that all sessions accept. As
soon as a single session `′ rejects, the formula cannot be satisfied anymore and the adversary
loses. This is clearly too restrictive since at least for sessions unrelated to `, the adversary
should not be required to make them accept. To fix the definition, we have to take additional
information into account to characterize sessions that will compute the same key as `.

The right definition. We define the notion of almost-full key confirmation based on sessions
which are waiting to receive the final message. Note that these are sessions which still lack some
information to express the full session identifiers; we thus revert to key-confirmation identifiers
for a weaker type of partnering. Almost-full key confirmation then ensures that the identified
session holding the same key-confirmation identifier indeed accepts with the same key and is
partnered (if it eventually accepts at all). This essentially captures the previous, fallen-short
intuition of having another session that, if it eventually accepts, is partnered and derives the
same key, but restricts this requirement to sessions agreeing on the same key-confirmation
identifier.

Definition 8.4 (Almost-full key confirmation predicate). The predicate AlmostConf(L,L′) that
defines almost-full key confirmation is the following:

∀` ∈ L :: [`.stexec = accepted ∧ `.pid /∈ Corr ∪ {∗}] =⇒
[∃`′ ∈ L′ :: (`.kcid = `′.kcid ∧

(
`′.stexec = accepted =⇒ partners(`, `′) ∧ samekey(`, `′)

)
)].

Note that in contrast to our original formalization [FGSW16] we here also include the
partnering condition partners(`, `′) in the definition of almost-full key confirmation. This is in
order to unify full and almost-full key confirmation with respect to demanding existence of
a session that is partnered and derives the same key. As for full key confirmation, including
the partners condition facilitates combining (almost-full) key confirmation with other sid-based
security notions. We remark that this modification does neither affect the relation between full
and almost-full key confirmation established below nor does it affect our later proof for key
confirmation in TLS 1.3. As we will see, establishing the same keys naturally coincides with
partnering there, as we also assert for full key confirmation.

Key-confirmation identifier binding. So far, key-confirmation identifiers, on which the
definition of the almost-full key confirmation predicate are based upon, are not bound to the
actual session identifiers or to keys. In order to give them practical meaning, we need to establish
links to the notion of partnering as well as the derived keys.

First, it is natural to require that whenever two sessions are partnered, they in particular agree
on the key-confirmation identifier.43 More importantly, key-confirmation identifiers are supposed
to capture the idea that, whenever two sessions accept and hold the same key-confirmation

43We note that, beyond this connection, we do not require any particular properties (e.g., concerning
authentication) from session identifiers in the context of key confirmation. These aspects can be modularly
captured through Match security and a definition of (implicit) authentication.

125

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

identifier, they also derive the same key (and are partnered). We formalize these concepts by
defining the predicate KCIDbind which returns true if and only if all of the following conditions
holds.

1. For all sessions `, `′ with partners(`, `′) = true, it holds that `.kcid = `′.kcid, i.e., partnered
sessions agree on the same key-confirmation identifier.

2. For all sessions `, `′ with `.kcid = `′.kcid and `.stexec = `′.stexec = accepted, it holds that
partners(`, `′) = true and samekey(`, `′) = true, i.e., sessions with the same key-confirmation
identifier, upon acceptance, will be partnered and derive the same key.

Definition 8.5 (Key-confirmation identifier binding). A key exchange protocol KE provides
key-confirmation identifier binding if for all PPT adversaries A the following advantage function
for the generic security game from Definition 8.1 is negligible in the security parameter:

AdvKCIDbind
KE,A := Pr

[
GKCIDbind

KE,A = 1
]
.

Defining almost-full key confirmation. We are now ready to define almost-full key con-
firmation.

Definition 8.6 (Almost-full key confirmation). A key exchange protocol KE provides almost-
full (L,L′)-key confirmation if it satisfies key-confirmation identifier binding and for all PPT
adversaries A the following advantage function for the generic security game from Definition 8.1
is negligible in the security parameter:

AdvAlmostConf(L,L′)
KE,A := Pr

[
G

AlmostConf(L,L′)
KE,A = 1

]
.

To elaborate why this formalization of almost-full key confirmation captures the right
property, let us first again consider the negation of the predicate AlmostConf (i.e., the formula
the adversary needs to make evaluate to true):

∃` ∈ L :: `.stexec = accepted ∧ `.pid /∈ Corr ∪ {∗}
∧
[
∀`′ ∈ L′ :: `.kcid 6= `′.kcid ∨

(
`′.stexec = accepted ∧ (¬partners(`, `′) ∨ ¬samekey(`, `′))

)]
.

First of all note that the part `.kcid 6= `′.kcid formalizes that a protocol cannot choose to have
unique key-confirmation identifiers per session, e.g., by setting the identifier to some local
random value. This is so as this would trivially mean that for any session ` ∈ L that an
adversary initiates, all other sessions `′ ∈ L′ have non-matching key-confirmation identifiers, so
the adversary immediately wins.

When a protocol instead lets every session ` ∈ L accept with a kcid that matches the one of
some session `′ ∈ L′, this allows the adversary to focus on such matching sessions. In contrast
to the initial false-start formalization, the adversary can in particular let sessions reject that do
not hold the same key-confirmation identifier as `.

Finally, a trivial way to achieve almost-full key confirmation is for a protocol to set kcid to
the same (e.g., empty) value for every session. Note that key-confirmation identifier binding
then in turn requires that every session accepts with the same key. Although this rightly appears
to be unreasonable (as it contradicts key secrecy), it is consistent from the perspective of key
confirmation: If every session derives the same key, every session is trivially assured that, if
there is another accepting session, it will hold the same key.

126

8.2. A Formal Model for Key Confirmation

Choosing a key-confirmation identifier. A natural question arising from the definition of
almost-full key confirmation is how to set the key-confirmation identifiers for a specific protocol.
As for the regular session identifiers and their use within the freshness condition for defining
key secrecy, there is an interplay between the security notion (key secrecy, resp. almost-full
key confirmation) and the soundness requirements for the identifiers (Match security, resp.
key-confirmation identifier binding).

On the one hand, to achieve almost-full key confirmation, a protocol has to couple up any
accepting session (in L) with a session (in L′) holding the same key-confirmation identifier kcid.
As already discussed, this in particular prevents using a unique kcid value per session. On the
other hand, choosing the same key-confirmation identifier (e.g., an empty kcid) for every session,
by key-confirmation identifier binding, implies that every session must derive the same key. As
this in particular contradicts key secrecy, it is also not a viable option for any reasonable key
exchange protocol.

Therefore a protocol needs to balance out the choice for setting key-confirmation identifiers
between these two extremes. From a practical point of view, the key-confirmation identifier
would intuitively comprise as much of the session identifier such that, together with the last
protocol message, it fully determines the derived key. In some cases, even the actual key might
already be computable (and hence serve as a “trivial” key-confirmation identifier) before the
last message is received. The generic transformation based on an additional exchange of MACs
discussed in [FGSW16] is such an example. In many practical protocols (that intuitively achieve
almost-full key confirmation), however, the last message(s) will substantially contribute to the
key and, hence, only partial information is available when setting (and hence captured in) the
key-confirmation identifier. This is for example the case in TLS 1.3 (cf. Section 8.3 for our
detailed analysis), where the key is derived from a hash over all messages, including some of the
client’s last messages. Therefore, when the client in TLS 1.3 accepts, the server does not know
these messages yet and cannot have set kcid based on the key. Instead, we need to leverage the
already exchanged part of the session identifier as key-confirmation identifier, which then fixes a
unique key together with the client’s last messages. This motivates why we chose to capture
“agreement on the same key up to receipt of the last message” using a generic identifier string
rather than relying on a particular protocol value or a partial communication transcript.

8.2.5 Relationship

We now take a look at the relationship between full and almost-full key confirmation and see
why the former implies the latter (given key-confirmation identifier binding).

Theorem 8.7. Let KE be key exchange protocol that provides full (L,L′)-key confirmation
as well as key-confirmation identifier binding. Then KE also provides almost-full (L,L′)-key
confirmation.

Proof. We need to show that, for any session ` ∈ L that accepts (`.stexec = accepted) with a
distinct, uncorrupted partner (`.pid /∈ Corr ∪ {∗}), there exists a session `′ ∈ L′ which

(a) shares the same key-confirmation identifier (`.kcid = `′.kcid) and

(b) on acceptance is partnered and derives the same key (`′.stexec = accepted =⇒ partners(`, `′)∧
samekey(`, `′)).

First, observe that by full (L,L′)-key confirmation, for any such session ` ∈ L there exists a
session `′ ∈ L′ that accepted (`′.stexec = accepted), is partnered with ` (partners(`, `′)), and holds
the same key (samekey(`, `′)). Through the two latter assertions, this session `′ in particular

127

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

satisfies (b), i.e., partnering and derivation of the same key (on acceptance). Due to key-
confirmation identifier binding, partnering implies that `′ furthermore also shares the same
key-confirmation identifier (i.e., `.kcid = `′.kcid), satisfying (a).

Match security vs. key confirmation. On a more distant relation, let us note that Match
security and key confirmation (both full and almost-full) are independent notions (i.e., a protocol
can provide either one without providing the other one). On the one hand, setting sid = kcid to
be a unique string per session trivially lets the protocol satisfy Match security, but renders full
and almost-full key confirmation unachievable. On the other hand, having all sessions use the
same (arbitrary) identifiers sid and kcid and derive the same key key trivially satisfies full and
almost-full key confirmation, but violates Match security (due to more than two sessions being
partnered with each other).

Match security thus rather constitutes a soundness counterpart to the freshness conditions
used for key secrecy than being related to key confirmation.

8.2.6 Confirmation Guarantees for Unauthenticated Peers

Informal definitions of key confirmation usually demand that another, even possibly uniden-
tified party holds the same key (e.g., the “Handbook of Applied Cryptography” [MVO96,
Definition 12.7]). Note that our notions of full and almost-full key confirmation originally
guarantee that for sessions which communicate with an identified (and uncorrupted) partner
(`.pid /∈ Corr ∪ {∗}) there is another session which (eventually) holds the same key.

The extension of our notions to unauthenticated peers turn out to hold trivially by correct-
ness(-like) properties. For this, first note that key confirmation guarantees for sessions with
unauthenticated peers can only be provided if the actual communication partner is indeed
honest. This is so since no confirmation model can ensure that an adversarially-controlled
session derives a session key at some point.

In the case of full key confirmation, any extension to unauthenticated peers (i.e., dropping
the prerequisite `.pid /∈ Corr ∪ {∗} for the session ` in question) would hence need to condition
on the existence of a partnered (honest) session to the session `, e.g., adding the requirement
∃`′′ ∈ L′ :: partners(`, `′′) to the full key confirmation predicate. But then any (correct)
key exchange protocol provides this kind of “unauthenticated” full key-confirmation anyway:
Correctness demands that partnered sessions (i.e., with the adversary only passively relaying
messages) derive the same key. This means that such a session `′′ already serves as a partnered
session holding the same key according to our original definition.

In the case of almost-full key confirmation, guarantees for unauthenticated peers would again
need to be conditioned on an existing session sharing the same key confirmation identifier (e.g.,
swapping in the requirement ∃`′′ ∈ L′ :: `.kcid = `′′.kcid for `.pid /∈ Corr ∪ {∗}). But then again,
the natural requirement of key-confirmation identifier binding (being part of the almost-full key
confirmation property) already satisfies almost-full key-confirmation for such cases trivially: It
ensures that two sessions sharing the same key-confirmation identifier, upon acceptance, will
derive the same key. Thus, session `′′ again serves as the desired partnered session according to
out current notion.

In conclusion, obtaining no advantage from definitions encompassing unauthenticated peers,
we focus on the key confirmation guarantees attainable when communicating with an authenti-
cated partner.

128

8.3. Key Confirmation in TLS 1.3

8.3 Key Confirmation in TLS 1.3

We now apply our model to investigate the key confirmation properties provided by the upcoming
version of the Transport Layer Security protocol, TLS 1.3. More precisely, we consider the
TLS 1.3 draft draft-10 [Res15e] and its full (EC)DHE handshake. In this chapter we focus
on key confirmation, see Section 6.3 for the analysis of (multi-stage) key secrecy and Match
security of the full (EC)DHE handshake of draft-10. We also do not treat key confirmation in
the other (PSK-based and 0-RTT) handshake modes specified in draft-10 or extensions added
in follow-up drafts like post-handshake messages, but comment on later modifications along the
way.

We refer to Section 6.2 for a detailed description of the TLS 1.3 draft-10 full (EC)DHE
handshake mode, including the relevant notation and an illustration of the handshake protocol
and key schedule in Figure 6.1 (on page 61). In our treatment of key confirmation, we
focus on the main application traffic key tkapp derived in the TLS 1.3 handshake (the stage-
2 key in the multi-stage description of Section 6.2), which, we recall, is derived from the
(hashed) session transcript Hsess ← H(CH‖ . . . ‖CCV∗) up to the client’s CertificateVerify
message. We adopt the corresponding session identifier (sid2 in Section 6.2), sid = (CH,
CKS, SH, SKS, EE, SC∗, SCRT∗, CR∗, SCV∗, CCRT∗, CCV∗). We define the key-confirmation identifier to
be set to kcid = ClientHello‖ . . . ‖ServerCertificateVerify by the server on sending its
ServerCertificateVerify message and by the client on receiving that message. All other
keys are considered to be protocol-internal, yet we do consider their usage, e.g., encryption of
handshake messages under the intermediate handshake traffic key.

As in previous versions, TLS 1.3 in draft-10 employs Finished messages (sent both by the
client and the server), which are essentially MAC values computed over the (hashed) transcript
(excluding the Finished messages), the so-called “session hash”, in order to “provide[] key
confirmation” [Res15e, p. 31]. Importantly, in contrast to previous TLS versions, the Finished
messages do not rely on the derived session key, but are issued under a separate finished
secret FS derived through a key derivation function from one of the secret Diffie–Hellman values
established within the key exchange. In that sense, draft-10 essentially follows the popular
paradigm we discussed earlier (and treat in more detail in [FGSW16]) to exchange MACs over
the transcript (or the session identifiers) in order to achieve key confirmation.

8.3.1 Key Confirmation without Finished Messages

Interestingly, we can however actually show that already a shortened variant of the draft-10
handshake without the ClientFinished and ServerFinished messages (which we denote as
draft-10-nf) can provide the same strongest form of key confirmation expectable. That is, in
the mutually authenticating handshake the server is assured that the client already accepted
with the same key at the time the server accepts while the client is assured that, if the server
later accepts, it will do so with the same key. In contrast, in the unilaterally authenticating
handshake—as expected—only the client is guaranteed (full) key confirmation.44 We will first
elaborate in detail how to prove key confirmation for the shortened draft-10-nf handshake and
then demonstrate in Section 8.3.2 how this result can easily be adapted to the actual draft-10
handshake.

More formally, we show that the mutually authenticating draft-10-nf handshake (short:
draft-10-nf-m) achieves full (S, C)-key confirmation and almost-full (C,S)-key confirmation and
that the unilaterally authenticating draft-10-nf handshake (draft-10-nf-u) provides full (C,S)-
key confirmation. While we analyze both authentication variants of the handshake separately,

44Observe that, for unilateral authentication, in contrast to draft-10 the server sends the last protocol message
in the shortened draft-10-nf variant due to the omitted finished messages.

129

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

we remark that both results also hold when handshakes are allowed to run concurrently with
mutual and with unilateral in our model, as the message flow is unique for each authentication
variant which allows to tell the according sessions apart.

For both handshake variants our proofs rely on the ClientCertificateVerify respectively
ServerCertificateVerify message exchanged, which essentially is a signature over the almost-
complete transcript and can, hence, intuitively be seen as a signature-based analogue of the
generic MAC-based transform discussed earlier and in [FGSW16]. Notably, in contrast to the
requirements for the (multi-stage) key secrecy of the draft-10 full (EC)DHE handshake in
Section 6.3, we need to rely on the strong unforgeability (SUF-CMA) instead of existential
unforgeability (EUF-CMA) of the deployed signature scheme here (we remark that this change
corrects the original proof in [FGSW16]). Essentially, the signature in the CertificateVerify
message also entering the key derivation requires its uniqueness in terms of unforgeability; we
discuss the detailed technical reason in the proofs below.

Theorem 8.8. The TLS 1.3 draft-10-nf-m full (EC)DHE handshake for mutual authentica-
tion without finished messages satisfies full (S, C)-key confirmation and almost-full (C,S)-key
confirmation. Formally, for any efficient adversary A against full (S, C)-key confirmation, resp.
almost-full (C,S)-key confirmation, there exist efficient algorithms B1, B2 such that

AdvPred
draft-10-nf-m,A ≤ n2

s · 2−|nonce| + AdvCOLL
H,B1 + nu · AdvSUF-CMA

Sig,B2 ,

for Pred = FullConf(S, C), resp. Pred = AlmostConf(C,S), where nu is the maximum number of
users, ns is the maximum number of sessions, and |nonce| = 256 is the bit-length of the nonces.

Proof. We show that, for a server session, the ClientCertificateVerify message of an honest
client suffices as assurance that this client has accepted with the same key when the server
session accepts. In turn, for a client session, the ServerCertificateVerify message of an
honest server ensures that this server agrees on the key-confirmation identifier kcid and will, if
it accepts, derive the same key. To this extend we modify the original GPred

draft-10-nf-m,A game in
three steps, showing that the advantage difference of adversary A can each time be bounded by
the advantage of breaking the security of some TLS 1.3 component, finally reaching a game
where the advantage of A is 0.

First, we consider the modified game GPred′
draft-10-nf-m,A which is as before, except it aborts

(and outputs 0) if, during the execution, any two honest sessions choose the same nonce (rc or
rs). The probability that the game aborts can be bounded from above by n2

s · 2−|nonce| where ns
is the maximum number of sessions and |nonce| is the nonces’ bit-length. Therefore, denoting
by AdvPred′

draft-10-nf-m,A the advantage of A in GPred′
draft-10-nf-m,A,

AdvPred
draft-10-nf-m,A ≤ AdvPred′

draft-10-nf-m,A + n2
s · 2−|nonce|.

Second, we switch to GPred′′
draft-10-nf-m,A in which we additionally abort if, during the execution,

any two honest sessions compute the same hash value for two different inputs to the hash
function H. We can bound the probability that the game aborts for this reason by the
advantage AdvCOLL

H,B1 of an adversary B1 against the collision resistance of H. For this purpose, B1

simply simulates GPred′′
draft-10-nf-m,A for A on its own and outputs the two colliding inputs when

they occur during the simulation, perfectly simulating the experiment up to this point and
always winning when the modified experiment aborts. Hence we have that

AdvPred′
draft-10-nf-m,A ≤ AdvPred′′

draft-10-nf-m,A + AdvCOLL
H,B1 .

Third, we consider GPred′′′
draft-10-nf-m,A, which, in addition, aborts whenever a simulated server or

client session obtains, within the ClientCertificateVerify, resp. ServerCertificateVerify,

130

8.3. Key Confirmation in TLS 1.3

message, a valid signature (under the public key of some non-corrupted client, resp. server,
U ∈ U) which was not output by any honest client resp. server session.

We can bound the probability of this abort by the advantage AdvSUF-CMA
Sig,B2 of an adversary B2

against the strong unforgeability of the deployed signature scheme Sig, simulating the experiment
for A as follows. Initially, B2 randomly chooses a party U among the at most nu parties,
associating the challenge public key pk∗ with it, and generates the long-term key for all other
parties V ∈ U \{U}. During the simulation, B2 then uses its signing oracle whenever a signature
needs to be computed under the secret key of U . When a simulated session obtains (within
SCV or CCV) a valid signature on the expected hashed transcript that no other honest session
has output, B2 aborts the experiment and outputs that signature (together with the hashed
transcript) as its forgery. As no session output the signature in question, B2 did not query its
oracle on the hashed transcript value resulting in that signature, which hence constitutes a
valid SUF-CMA forgery. Note that B2 might have obtained a different signature on the same
hashed transcript in a partnered session (i.e., a signature on the same message but not the
same signature was output by an honest session), which is why the obtained signature may not
constitute an EUF-CMA forgery and we thus need to rely on SUF-CMA security.

The overall bound is then conditioned on B2 correctly guessing the (non-corrupted) identity U
(among the at most nu identities) under whose public key pk∗ the obtained signature verifies:

AdvPred′′
draft-10-nf-m,A ≤ AdvPred′′′

draft-10-nf-m,A + nu · AdvSUF-CMA
Sig,B2 .

Finally, we can now separately argue along the lines of the predicates Pred = FullConf(S, C)
and Pred = AlmostConf(C,S) as well as Pred = KCIDbind (which is required as part of almost-full
key confirmation):

• For Pred = FullConf(S, C), observe that each accepting server session with a non-corrupted
partner obtains, within the ClientCertificateVerify message, a valid signature output
by an honest client on the (hashed) transcript ClientHello‖ . . . ‖ClientCertificate,
which exactly relates to that transcript as no hash collisions occurred. Together with
the ClientCertificateVerify message itself, this makes the honest client agree on the
transcript and all material entering the key derivation.45 Hence, in particular, for each
such server session that accepts there exists a client session that already accepted, holds
the same session identifier, and derives the same session key.

• For Pred = AlmostConf(C,S), note that the signature sent in ServerCertificateVerify
is computed over (the non-colliding hash of) the transcript up to the ServerCertificate
message which, along with the ServerCertificateVerify message itself (output by an
honest server session), forms the key-confirmation identifier kcid. Therefore, for any
accepting client session `, there exists an honest server session `′ sharing the same kcid.
Furthermore, no second honest client will send a ClientCertificateVerify message
with a signature over a (hash of a) transcript containing the same kcid contents due
to unique nonces. Also, no server obtains a forged signature and no hash collision
occurs. Thus the server session `′ will only accept when receiving this client session’s
ClientCertificateVerify message. As the values signed in ClientCertificateVerify

45This argument, and likewise the arguments for the AlmostConf and KCIDbind predicates, make the strong
unforgeability in the step to game GPred′′′

draft-10-nf-m,A necessary. As the exchanged signatures themselves enter the key
derivation (as well as session and confirmation identifiers), we need to ensure agreement on the actual signature
(and hence rely on SUF-CMA security for this step) rather than only on the signed message (for which EUF-CMA
suffices, cf. the MSKE analyses in Chapters 6 and 7). Otherwise, an adversary may be able to craft a different
signature for the same (hashed-transcript) message, which, entering the key derivation, leads the two sessions to
derive different keys.

131

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

together with ClientCertificateVerify uniquely determine the key derivation, session `′
will, if at all, accept with the same session key.

• For Pred = KCIDbind, the first condition that equal session identifiers imply equal key-
confirmation identifiers follows immediately from defining kcid to be a prefix of sid.
The second condition is satisfied for the same reasons that make sessions holding the
same kcid in the AlmostConf predicate derive the same key. Again, kcid contains the
transcript up to the ServerCertificateVerify message, which is signed by the client
within its ClientCertificateVerify message that no second honest client will generate
(and which can, at this point, neither be forged nor be derived due to colliding nonces or
hashes). Therefore, if a client accepts (as the first of two sessions sharing the same kcid),
it outputs the only ClientCertificateVerify message the server session will accept.
As ClientCertificateVerify fixes the complete transcript which fully determines the
session identifier and derived keys, both sessions will necessarily be partnered and derive
the same key as required.

In other words, the predicate Pred (being FullConf(S, C), AlmostConf(C,S), resp. KCIDbind) is
always satisfied in GPred′′′

draft-10-nf-m,A and thus

AdvPred′′′
draft-10-nf-m,A = 0.

Theorem 8.9. The TLS 1.3 draft-10-nf-u full (EC)DHE handshake for unilateral authentica-
tion without finished messages satisfies full (C,S)-key confirmation. Formally, for any efficient
adversary A against full (C,S)-key confirmation there exist efficient algorithms B1, B2 such that

AdvFullConf(C,S)
draft-10-nf-u,A ≤ AdvCOLL

H,B1 + nu · AdvSUF-CMA
Sig,B2 ,

where nu is the maximum number of users.

Proof. We show that, for unilateral authentication, the ServerCertificateVerify message
obtained by a client session ensures that the sending server session has already accepted with
the same session key and is partnered.

Again, we first modify the original GFullConf(C,S)
draft-10-nf-u,A game in two steps similar to those in

the proof of Theorem 8.8. First, we identically bound the probability that two honest sessions
compute a colliding hash value for two different inputs by AdvCOLL

H,B1 for an efficient reduction B1.
We then ensure that no client session obtains a ServerCertificateVerify message containing
a valid signature under an honest server’s public key which was not generated by any honest
session (recall that there is no ClientCertificateVerify message sent as the client does not
authenticate). Similarly to the proof of Theorem 8.8 we can bound the probability that this
happens by the advantage AdvSUF-CMA

Sig,B2 of an adversary B2 times a factor nu for guessing the
right identity, again using its signing oracle for the challenged server identity.

Due to these modifications, we are now assured of unconditional full (C,S)-key confirmation:
the signature sent within ServerCertificateVerify together with that message itself fully
determines the session identifier and key derivation and, hence, whenever a client accepts,
the (honest) server session sending sending the ServerCertificateVerify message already
accepted with the same session identifier and session key.

8.3.2 Key Confirmation with Finished Messages

Coming back to the original TLS 1.3 draft-10 handshake, it is easy to see that the proof in
Theorem 8.8 for key confirmation under mutual authentication in draft-10-nf immediately

132

8.3. Key Confirmation in TLS 1.3

carries over to the draft-10 handshake with mutual authentication (short: draft-10-m). For
this, recall that the ServerFinished and ClientFinished messages do not enter the session
identifiers or key derivation, which means they can essentially be treated as an “arbitrary bitstring”
following the ServerCertificateVerify, resp. ClientCertificateVerify, message. Hence,
we can apply the identical proof to the draft-10 mutually authenticating handshake to establish
the same key confirmation properties.

Theorem 8.10. The TLS 1.3 draft-10-m full (EC)DHE handshake for mutual authentication
with finished messages satisfies full (S, C)-key confirmation and almost-full (C,S)-key confir-
mation. Formally, for any efficient adversary A against full (S, C)-key confirmation, resp.
almost-full (C,S)-key confirmation, there exist efficient algorithms B1, B2 such that

AdvPred
draft-10-m,A ≤ n2

s · 2−|nonce| + AdvCOLL
H,B1 + nu · AdvSUF-CMA

Sig,B2 ,

for Pred = FullConf(S, C), resp. Pred = AlmostConf(C,S), where nu is the maximum number of
users, ns is the maximum number of sessions, and |nonce| = 256 is the bit-length of the nonces.

Interestingly, when it comes to unilateral authentication, the ClientFinished messages
sent as the single additional message from the client to the server changes the order in which
the session key is accepted (the client accepting first here) and, hence, necessarily renders
full (C,S)-key confirmation (as for draft-10-nf-u) unachievable. We can however show that
clients indeed still enjoy almost-full (C,S)-key confirmation for the unilaterally authenticating
draft-10 handshake (draft-10-u).

Theorem 8.11. The TLS 1.3 draft-10-u full (EC)DHE handshake for unilateral authentication
with finished messages satisfies almost-full (C,S)-key confirmation. Formally, for any efficient
adversary A against almost-full (C,S)-key confirmation there exist efficient algorithms B1, B2
such that

AdvAlmostConf(C,S)
draft-10-u,A ≤ AdvCOLL

H,B1 + nu · AdvSUF-CMA
Sig,B2 ,

where nu is the maximum number of users.

Proof. We show that the ServerCertificateVerify message obtained from an honest server
ensures this server agrees on kcid and will, on acceptance, be partnered and derive the same key.

After excluding hash collisions and signature forgeries within ServerCertificateVerify
again as in the proof of Theorem 8.9, the (unforged) ServerCertificateVerify message,
computed over (the non-colliding hash of) the transcript, ensures the sending server agrees on
the same key-confirmation identifier kcid.

Furthermore, the kcid value already uniquely determines the session identifier and derived
key (this in particular renders requiring unique nonces unnecessary in this case): observe that
kcid = ClientHello‖ . . . ‖ServerCertificateVerify contains all messages affecting the session
identifier and key derivation as (for unilateral authentication) messages ClientCertificate
and ClientCertificateVerify are not sent and ServerFinished as well as ClientFinished
are not included in the session hashes. Therefore, any two (accepting) sessions agreeing on the
same kcid (and hence also sid) will derive the same session key and hence AlmostConf(C,S) as
well KCIDbind are satisfied.

To summarize, our analysis shows that key confirmation in the TLS 1.3 draft-10 full
handshake can already be established through the exchanged CertificateVerify messages
(given strong unforgeability of the deployed signature scheme) and, hence, not necessarily
relies on the Finished messages included (also) for this purpose. This unveils a potential
misconception that MACs over the transcript (in form of the Finished messages) are always
necessary to achieve key confirmation.

133

Chapter 8. The TLS 1.3 Protocol: A Formal Model for Key Confirmation

Yet, our proofs should not be understood as an argument to remove finished messages from
the TLS 1.3 handshake design, for several reasons. First of all are there further handshake
modes in TLS 1.3 beyond the full (EC)DHE handshake, namely those based on pre-shared keys
and for 0-RTT handshakes, cf. Chapters 6 and 7. These variants do not necessarily exchange
CertificateVerify messages and, hence, rely on the Finished messages to provide both
authentication as well as key confirmation.

Furthermore, our results for key confirmation, in contrast to the (multi-stage) key secrecy
analyses in Chapters 6 and 7, rely on the strong (instead of existential) unforgeability of the
deployed signature scheme. It may hence be preferable, to (in parallel also) rely on the Finished
messages for key confirmation and, along with that, (existential) unforgeability of HMAC together
with the same assumptions employed in the key secrecy analyses (e.g., on the Diffie–Hellman
handshake or security of HKDF) necessary to argue security of the finished secrets.

Finally, later TLS 1.3 drafts include the option for 0.5-RTT data being sent by the server
prior to the client’s last flight. As seen in the analysis of the draft-12 (EC)DHE 0-RTT
handshake, deriving the application traffic key for that purpose from an abbreviated transcript
makes (unforgeability of) the Finished messages already a requirement for the handshake’s key
secrecy.

134

Part II

Secure Channels

135

Chapter 9
Secure Channel Preliminaries

Summary. In this chapter we recap preliminaries on secure channels. We in particular
summarize the established game-based formalization of a secure channel in terms of stateful
authenticated encryption by Bellare, Kohno, and Namprempre [BKN02, BKN04]. On the way
to introducing their notion, we will recall the definitions for classical symmetric encryption as
well as for authenticated encryption with associated data introduced by Rogaway [Rog02].

9.1 Symmetric Encryption

As their most prominent goal, secure channels should protect the confidentiality of a communi-
cation between two parties. To this end, the two parties will regularly have run a key exchange
protocol first and established a shared symmetric key. Naturally, the basic primitive for ensuring
confidentiality in a secure channel is hence the classical concept of symmetric encryption.

A symmetric encryption scheme SE consists of three efficient algorithms. The probabilistic
key generation algorithm KGen on input of a security parameter 1λ outputs the shared symmetric
key K (from some keyspace K). Regularly, the key generation algorithm simply samples a
key uniformly at random from the key space (i.e., K $←− K), which we will assume from now
on and hence always omit an explicit key generation algorithm. The probabilistic encryption
algorithm Enc on input a key K and a message m ∈ {0, 1}∗ outputs a ciphertext c ∈ {0, 1}∗
(for simplicity, we here consider messages and ciphertexts to be arbitrary bit strings rather than
restricting ourselves to specific message and ciphertext spaces). The deterministic decryption
algorithm Dec on input a key K and a ciphertext c outputs a message m or possibly a
distinguished error symbol ⊥ /∈ {0, 1}∗ to indicate a decryption failure. Correctness demands
that, for any K $←− K, any message m ∈ {0, 1}∗, and any choice of randomness in the algorithms
it holds that DecK(EncK(m)) = m, where we conveniently write the key input as subscript.

The basic security goal of confidentiality is captured via the notion of indistinguishability
under chosen-plaintext attacks (IND-CPA), going back to the seminal ideas of Goldwasser and
Micali [GM84]. This notion, which we define more formally in Section 9.2.1 below for authen-
ticated encryption, intuitively demands that an adversary cannot distinguish the encryption
of any two messages of its own choice. A stronger variant, called indistinguishability under
chosen-ciphertext attacks (IND-CCA) and going back to the works by Naor and Yung [NY90]
and Rackoff and Simon [RS92], demands encryptions of two messages being indistinguishability
even when the adversary is given the power to decrypt (other) ciphertexts.

137

Chapter 9. Secure Channel Preliminaries

9.2 Authenticated Encryption (with Associated Data)

For a secure channel, we however not only care about the confidentiality of messages exchanged,
but also their integrity: no intermediate party should be able to modify the communication
between the two endpoint parties.

Bellare and Namprempre [BN00] coined the notion of authenticated encryption (AE) for a
symmetric encryption scheme providing the combination of both confidentiality and integrity
of plaintext messages. Integrity of plaintexts (INT-PTXT) here formalizes that an adversary
is not able to forge a valid ciphertext that decrypts to a previously unseen message (i.e., a
new message). Bellare and Rogaway [BR00] considered an even stronger variant, integrity of
ciphertexts (INT-CTXT), which captures that an adversary is unable to forge an new valid
ciphertext, even one decrypting to a previously seen message.

In real-world applications, it is often necessary that some parts of the exchanged communi-
cation is accessible to intermediate parties. For example, routing information for a message in
a packet header of an Internet Protocol [Pos81a] packet must be accessible in transport. Still,
such routing information should be integrity-protected against adversarial modification on the
way. For such purposes, Rogaway [Rog02] established the notion of authenticated encryption
with associated data (AEAD), which emerged as the core building block for secure channels
(and other cryptographic components) to date. The notion of AEAD aims at jointly achieving
the three described goals: providing confidentiality and integrity for the message encrypted as
well as integrity for some additional string, the associated data ad. An AEAD scheme AEAD
takes the associated data value ad ∈ {0, 1}∗ as additional input in the Enc and Dec algorithms.
In order to avoid the use of randomness (as a potential source of weaknesses) in the encryption
process, the encryption algorithm can be made deterministic by taking a nonce N ∈ {0, 1}n (a
non-repeating number like a counter) as additional input which is also provided to the decryption
algorithm; we then call the AEAD scheme nonce-based, without nonces we call it randomized.
Putting everything together, correctness for a (nonce-based) AEAD scheme then demands
that for any key K $←− K, any message m ∈ {0, 1}∗, any associated data ad ∈ {0, 1}∗, and any
nonce N ∈ {0, 1}n it holds that DecK(N, ad,EncK(N, ad,m)) = m.

9.2.1 Stateless Notions for Confidentiality and Integrity

We can now formalize the security notions for (authenticated) symmetric encryption (with
associated data) that capture confidentiality and integrity. We will do so in the syntax of
nonce-based AEAD. Note that other notions can be easily obtained: for randomized AEAD by
dropping the nonce input and making the encryption algorithm randomized, for authenticated
encryption without associated data by additionally dropping the associated data input, and for
classical symmetric encryption by additionally omitting the integrity requirements.

Confidentiality. Confidentiality captures the idea that an adversary is unable to distinguish
the encryption of two messages of its choice, it comes in the variants of indistinguishability
under chosen-plaintext attacks (IND-CPA) and under chosen-ciphertext attacks (IND-CCA). The
security experiments for both notions (which we state formally in Figure 9.1) have in common
that the adversary A is given access to a left-or-right encryption oracle OLoR which on input
two messages m0 and m1 of equal length (|m0| = |m1|), along with a nonce N and associated
data ad, always outputs the encryption EncK(N, ad,mb), for a key K $←− K and a bit b $←− {0, 1}
fixed in the experiment and unknown to A. The adversary is then asked to distinguish between
the cases b = 0 and b = 1, and if it cannot do so with non-negligible probability in the security
parameter, the scheme is said to be IND-CPA-secure. For the stronger IND-CCA security notion,
the adversary is additionally given access to a decryption oracle ODec which it may query on

138

9.2. Authenticated Encryption (with Associated Data)

ExptIND-ATK,b
AEAD,A (1λ):

1 K $←− K
2 Q← ∅
3 b′ $←− AOLoR,[ODec]ATK=CCA (1λ)
4 return b′

OLoR(N, ad,m0,m1):
5 if |m0| 6= |m1| then
6 return
7 c← EncK(N, ad,mb)
8 Q← Q ∪ {(N, ad, c)}
9 return c

ODec(N, ad, c):
10 m← DecK(N, ad, c)
11 if (N, ad, c) /∈ Q then
12 return m
13 else
14 return

ExptINT-ATK
AEAD,A(1λ):

1 K $←− K
2 Q← ∅
3 win← 0
4 AOEnc,ODec (1λ)
5 return win

OEnc(N, ad,m):
6 c← EncK(N, ad,m)
7 if ATK = PTXT then
8 Q← Q ∪ {(N, ad,m)}
9 else //ATK = CTXT

10 Q← Q ∪ {(N, ad, c)}
11 return c

ODec(N, ad, c):
12 m← DecK(N, ad, c)
13 if m 6= ⊥ then
14 if ATK = PTXT and (N, ad,m) /∈ Q then
15 win← 1
16 if ATK = CTXT and (N, ad, c) /∈ Q then
17 win← 1
18 return m

Figure 9.1: Security experiments for confidentiality (IND-ATK) and integrity (INT-ATK) of AEAD
schemes, where ATK is a placeholder for CPA or CCA, resp. PTXT or CTXT. The brackets [ODec]ATK=CCA
indicate that only the IND-CCA adversary has access to the ODec oracle.

ciphertexts (along with a nonce and associated data) distinct from those obtained from the
OLoR oracle, i.e., on any distinct combination of ciphertext, nonce, and associated data (and
hence especially on newly crafted ciphertexts). The latter restriction is to prevent a trivial
win of the adversary by querying OLoR on some distinct m0 and m1 along with some nonce N
and associated data ad to obtain a ciphertext c, then query ODec on N , ad, and c to obtain a
decryption m, and output 0 in case m = m0 and 1 otherwise.

Integrity. Integrity captures the idea that an adversary cannot tamper with the messages
respectively ciphertexts exchanged and accordingly comes in the variant of plaintext and
ciphertext integrity (INT-PTXT, resp. INT-CTXT). In the security experiments (see Figure 9.1),
the adversary is given encryption and decryption oracles OEnc and ODec, which compute
c ← EncK(N, ad,m), resp. m ← DecK(N, ad, c), for inputs of the adversary’s choice. The
adversary is declared successful (via a flag win = 1, initialized to 0) if it submits to its decryption
oracle a tuple of nonce N , associated data ad, and ciphertext c that decrypts to a non-error
message m 6= ⊥, given that (N, ad,m) were never queried to OEnc (for INT-PTXT) resp. that
c was never output on an OEnc query with nonce N and associated data ad (for INT-CTXT).
That is, for INT-PTXT the adversary is required to forge an (N, ad, c) tuple resulting in a
previously unseen message m, while for INT-CTXT any (N, ad, c) distinct from previous OEnc
input/outputs is considered a valid forgery, even if it decrypts to a message m previously queried
to OEnc. Note that INT-CTXT security implies INT-PTXT security, as, conversely, a successful
INT-PTXT forgery c such that (N, ad,m) /∈ Q in particular implies that for c also (N, ad, c) /∈ Q
in the INT-CTXT experiment, as by correctness no other message m′ together with N and ad
could have been encrypted to c.

We can now formalize the different confidentiality and integrity security notions for AEAD
schemes. It is easy to see that IND-CCA security implies IND-CPA security (by omitting the ODec
oracle). Furthermore, INT-CTXT security implies INT-PTXT security, as a distinct message
decrypted in particular necessitates a distinct ciphertext input in the ODec oracle.

Definition 9.1 (Security for AEAD schemes). Let AEAD = (Enc,Dec) be a nonce-based AEAD
scheme with key space K.

139

Chapter 9. Secure Channel Preliminaries

Let experiment ExptIND-ATK,b
AEAD,A (1λ) for an adversary A and a bit b ∈ {0, 1} be defined as in

Figure 9.1, where ATK is a placeholder for either CPA or CCA. We say that AEAD provides indis-
tinguishability under chosen-plaintext attacks, respectively, chosen-ciphertext attacks (IND-CPA,
resp. IND-CCA) if for all PPT adversaries A the following advantage function is negligible in
the security parameter:

AdvIND-ATK
AEAD,A (λ) :=

∣∣∣Pr
[
ExptIND-ATK,1

AEAD,A (1λ) = 1
]
− Pr

[
ExptIND-ATK,0

AEAD,A (1λ) = 1
]∣∣∣ .

Likewise, let experiment ExptINT-ATK,b
AEAD,A (1λ) for an adversary A be defined as in Figure 9.1,

where ATK is a placeholder for either PTXT or CTXT. We say that AEAD provides integrity of
plaintexts, respectively, ciphertexts (INT-PTXT, resp. INT-CTXT) if for all PPT adversaries A
the following advantage function is negligible in the security parameter:

AdvINT-ATK
AEAD,A (λ) := Pr

[
ExptINT-ATK

AEAD,A (1λ) = 1
]
.

9.3 Stateful Authenticated Encryption
Beyond confidentiality and integrity of messages, secure channels are supposed to also protect
against replay, reordering, and dropping of messages within the sequence of messages sent in a
communication. In order to be able to detect such modifications, the encryption and decryption
algorithms need to be stateful. Bellare, Kohno, and Namprempre [BKN02, BKN04] introduced
this notion formalized as stateful authenticated encryption in their work analyzing, for the first
time, a real-world channel protocol (i.e., the Secure Shell (SSH) protocol [YL06a]), establishing
the by now widely accepted game-based cryptographic security model for channels.

Formally, in the stateful AE setting the key generation algorithm is replaced with a more
generic (probabilistic) initialization algorithm Init, outputting (beyond the shared key) initial
sending and receiving states stS , resp. stR; we write (K, stS , stR) $←− Init(1λ). Encryption
and decryption then obtain and (independently) update the respective state information, i.e.,
(st′S , c) $←− EncK(stS ,m) and (st′R,m) $←− DecK(stR, c). Correctness for stateful authenticated
encryption then requires that, starting from any initial output of Init, when Enc is invoked on a
sequence of messages m1,m2, . . . ,mn (with updated states) resulting in ciphertexts c1, c2, . . . , cn,
processing these ciphertexts in the same order (with updated states) by Dec yields the original
message sequence m1,m2, . . . ,mn again.

As for stateless authenticated encryption, one in principle can readily augment the syntax
of stateful AE with associated data (nonces in contrast would usually be subsumed by the
updated state). From a structural perspective, associated data however belongs rather to the
network layer of a communication (protecting, e.g., routing or other administrative information)
and AEAD is hence useful as a core building block for secure channels (as we will also see in
Chapters 10–12). Thinking of stateful authenticated encryption as providing a secure-channel
interface to the application layer in the network stack, applications in contrast expect to
transmit messages only, without distinction of associated data. We hence choose not to add an
associated-data component in our formalization of stateful authenticated encryption.

9.3.1 Stateful Notions for Confidentiality and Integrity

The stateful variants of confidentiality and integrity notions for (authenticated) symmetric
encryption now need to additionally capture the security guarantees against replay, reordering,
and dropping of messages. Moreover, an adversary needs to be able to simulate honest
communication (including updating states) up to a certain point at which it launches its
attack on the scheme, e.g., by interfering with the communication. On a high level, this is done

140

9.3. Stateful Authenticated Encryption

ExptIND-sfATK,b
sfAE,A (1λ):

1 (K, stS , stR) $←− Init(1λ)
2 i, j ← 0
3 sync← 1
4 b′ $←− AOLoR,[ODec]ATK=CCA (1λ)
5 return b′

OLoR(m0,m1):
6 if |m0| 6= |m1| then
7 return
8 i← i+ 1
9 (stS , c) $←− EncK(stS ,mb)

10 ci ← c
11 return c

ODec(c):
12 j ← j + 1
13 (stR,m)← DecK(stR, c)
14 if j > i or c 6= cj then
15 sync← 0
16 if sync = 0 then
17 return m
18 else
19 return

ExptINT-sfATK
sfAE,A (1λ):

1 (K, stS , stR) $←− Init(1λ)
2 i, j ← 0
3 sync← 1
4 win← 0
5 AOEnc,ODec (1λ)
6 return win

OEnc(m):
7 i← i+ 1
8 (stS , c) $←− EncK(stS ,m)
9 ci ← c

10 mi ← m
11 return c

ODec(c):
12 j ← j + 1
13 (stR,m)← DecK(stR, c)
14 if ATK = PTXT then
15 if m 6= ⊥ and (j > i or m 6= mj) then
16 win← 1
17 if ATK = CTXT then
18 if j > i or c 6= cj then
19 sync← 0
20 if sync = 0 and m 6= ⊥ then
21 win← 1
22 return m

Figure 9.2: Security experiments for confidentiality (IND-sfATK) and integrity (INT-sfATK) of stateful
authenticated encryption schemes, where ATK is a placeholder for CPA or CCA, resp. PTXT or CTXT.
The brackets [ODec]ATK=CCA indicate that only the IND-sfCCA adversary has access to the ODec oracle.

by the experiments keeping a sequence of the ciphertexts sent using the encryption oracle, and
consider an adversary passive as long as it simply relays the sent ciphertexts in correct order
to the decryption oracle. As soon as it deviates from the sequence of sent ciphertexts, it is
considered active in the sense of making the encryption and decryption processes (and states)
losing synchronization (we say: they go “out of sync”), and from that point on the experiment
considers attacks, e.g., in forging ciphertexts.

Confidentiality. Confidentiality is again modeled as indistinguishability of the outputs a
left-or-right encryption oracle, for the CCA variant again given a decryption oracle ODec, see the
formal experiment definitions in Figure 9.2. Beyond the obvious syntactical changes, the resulting
IND-sfCPA is essentially the same as the IND-CPA one, the CCA decryption oracle however
needs a substantial modification in order to reflect (protection against) replays, reordering, and
dropping of messages.

In the stateless setting, the decryption oracle would reject on any previously ciphertext
output by the OLoR encryption oracle (independent of the ordering) to prevent trivial attacks.
Now, we want to suppress the output of decryption only as long as the ciphertext sequence
received (including the queried one) exactly match the sequence of ciphertexts produced by OLoR;
otherwise the adversary is given the decryption output. This captures the following intuition:
as long as the adversary relays ciphertexts in their original ordering, decryption will yield the
(challenge) messages input to OLoR by correctness, and hence its output must be suppressed
to avoid trivial wins. However, as soon as the adversary deviates from the original ciphertext
sequence (indicated by the synchronization flag sync being set to 0), the decryption algorithm
should be able to detect this and its output should not yield any information on the original
messages, which is modeled by providing this output to the adversary. Note that deviation is

141

Chapter 9. Secure Channel Preliminaries

persistent: once the adversary deviates from the original sequence, all follow-up queries—even
relaying original ciphertexts again—will be considered “out of sync” as well and output be
provided to the adversary.

Integrity. Integrity as before comes in two flavors, where INT-sfPTXT straightforwardly calls
an adversary successful if it manages to feed a sequence of ciphertexts into the decryption
oracle such that the resulting sequence of messages deviates from the one encrypted using the
OEnc oracle. Ciphertext integrity again formalizes a stronger demand, namely that it should
be impossible for an adversary to come up with a deviating sequence of ciphertexts leading to
valid (i.e., non-error) outputs on the decryption side. For the latter notion, the same concept of
(losing) synchronization is applied as for IND-sfCCA security: decrypted messages are considered
(i.e., checked for being non-errors) from the point on where synchronization is lost (sync = 0) in
terms of the adversary deviating from the original ciphertext series produced by OEnc. Both
notions hence in particular encode protection against replay, reordering, or dropping of messages,
resp. ciphertexts, as an adversary wins if a stateful AE scheme does not detect such attacks by
outputting error messages ⊥.

We can now also formalize the different notions of confidentiality and integrity for stateful
AE schemes. Their relation is as for the stateless setting: Again, the implication IND-sfCCA =⇒
IND-sfCPA holds directly by omitting the ODec oracle. Also, a (non-error) deviation in the
message sequence decrypted in ODec requires a deviation in the ciphertext and hence INT-sfCTXT
implies INT-sfPTXT.

Definition 9.2 (Security for stateful AE schemes). Let sfAE = (Init,Enc,Dec) be a stateful AE
scheme.

Let experiment ExptIND-sfATK,b
sfAE,A (1λ) for an adversary A and a bit b ∈ {0, 1} be defined as

in Figure 9.2, where ATK is a placeholder for either CPA or CCA. We say that sfAE provides
stateful indistinguishability under chosen-plaintext attacks, respectively, chosen-ciphertext
attacks (IND-sfCPA, resp. IND-sfCCA) if for all PPT adversaries A the following advantage
function is negligible in the security parameter:

AdvIND-sfATK
sfAE,A (λ) :=

∣∣∣Pr
[
ExptIND-sfATK,1

sfAE,A (1λ) = 1
]
− Pr

[
ExptIND-sfATK,0

sfAE,A (1λ) = 1
]∣∣∣ .

Likewise, let experiment ExptINT-sfATK,b
AEAD,A (1λ) for an adversary A be defined as in Figure 9.2,

where ATK is a placeholder for either PTXT or CTXT. We say that sfAE provides stateful
integrity of plaintexts, respectively, ciphertexts (INT-sfPTXT, resp. INT-sfCTXT) if for all PPT
adversaries A the following advantage function is negligible in the security parameter:

AdvINT-sfATK
sfAE,A (λ) := Pr

[
ExptINT-sfATK

sfAE,A (1λ) = 1
]
.

9.4 Notation and Terminology
We conclude the preliminaries on channels by introducing some notation and terminology for
our work on channels in the following chapters.

Notation. Let Σ be an alphabet and s ∈ Σ∗ be a string, where s = ε denotes the empty string.
By |s| we denote the length of the string s, by s[i] ∈ Σ the i-th character of the string (where
s[1] is the first character for a non-empty string), and by s[i, . . . , j] the substring from and
including s[i] up to and including s[j], i.e., s[i, . . . , j] = s[i]‖ . . . ‖s[j]. Given two strings s, t ∈ Σ∗
we write s 4 t to indicate that s is a prefix of t, i.e., there exists r ∈ Σ∗ such that s‖r = t; in

142

9.4. Notation and Terminology

this case we write r = t% s. Similarly, we write s ≺ t to indicate that s is a strict prefix of t,
i.e., s 4 t and s 6= t. We denote the longest common prefix of s and t by [s, t] = [t, s]. Note that
s 4 t is equivalent to having [s, t] = s. With the above notation s% [s, t] denotes the suffix of s
with the longest common prefix of s and t stripped off.

Let s = (s1, . . . , s`) ∈ (Σ∗)` be a vector of strings for some integer `. (The strings need not be
of equal length.) For all 0 ≤ i ≤ j ≤ ` we denote s[i] = si and s[i, . . . , j] = (si, . . . , sj). We say
that two vectors s = (s1, . . . , s`) ∈ (Σ∗)` and t = (t1, . . . , t`′) ∈ (Σ∗)`′ are equal, and write s = t,
if and only if ` = `′ and for all i ∈ {1, . . . , `} it holds s[i] = t[i]. The conversion of a vector into a
string is simply performed via the concatenation operation ‖s = s1‖ . . . ‖s`. By convention, the
concatenation of an empty vector () is the empty string ε. Slightly overloading notation, we denote
the merge of two vectors s = (s1, . . . , s`) and t = (t1, . . . , t`′) as s‖t = (s1, . . . , s`, t1, . . . , t`′).
We also indicate by s 4 t that s is a prefix of t, i.e., ` ≤ `′ and s1 = t1, . . . , s` = t`, and in this
case we denote by t % s the (potentially empty) vector u such that t = s‖u. We write s ≺ t to
indicate that s is a strict prefix of t. Similarly, we denote by [s, t] the longest vector that is a
prefix of both s and t.

Channel Terminology. The terminology we use in Chapters 10–12 reflects the generic
functionality that a channel should provide, i.e., allowing a sender to transmit messages and a
receiver to obtain them in a reliable way. In particular, the notion of a channel is independent
of the targeted security properties (like confidentiality or integrity) as these may vary from one
specific application to another. While, e.g., a secure channel may generically be thought of as
being realized via stateful authenticated encryption, an authenticated channel might choose
to leave confidentiality aside and provide only integrity. We prefer to keep a higher level of
abstraction and explicitly separate the generic notion of a channel from its building blocks or
targeted security guarantees and hence define sending (Send) and receiving (Recv) algorithms
rather than encryption and decryption algorithms.

143

Chapter 10
Stream-Based Channels

Summary. In this chapter we present our notion of stream-based channels, capturing the
fragmentation of sent and received message streams in real-world channel protocols. We begin
by defining the functional specification of a stream-based channel. We then lift the classical
(stateful) notions for confidentiality and integrity of channels to the streaming setting. This
turns out to result in a significant increase in complexity of the definitions due to the inherently
more complex (and less structured) setting of message streams compared to the setting with
distinct, atomic messages. We finally provide an AEAD-based construction of a stream-based
channel achieving our strongest security notion. Being comparatively close to the TLS channel
this construction additionally provides some validation of that protocol’s design. The results in
this chapter are based on a work published at CRYPTO 2015 [FGMP15] and its extended full
version [FGMP17].

10.1 Introduction
As discussed in the previous chapter, authenticated encryption with associated data (AEAD)
[Rog02] has emerged as being the right cryptographic tool for building secure channels. AEAD
provides both confidentiality and integrity guarantees for data and can additionally protect the
integrity of associated information. However, on its own, AEAD does not constitute a secure
channel. For example, in most practical situations, a secure channel should provide more than
simple encryption of messages, but also guarantee detection of (and possibly recovery from)
out-of-order delivery and replays of messages. Furthermore, a secure channel should deal with
error handling, with errors potentially arising from both cryptographic and non-cryptographic
processing—whether or not to tear-down a secure channel session if an error is encountered,
and how (and indeed whether) to signal errors to the other side. As another difference, some
secure channel designs such as IPsec [KS05] (which provides security at the IP layer) and to
a limited extent TLS [DR08] (providing application-layer security) have additional features
that can be used to provide protection against traffic analysis. A secure channel may accept
messages of arbitrary length and need to fragment these before encryption, and may reassemble
these fragments again after decryption; alternatively, it may present to applications a maximum
message size that is well-matched to the underlying network infrastructure. Finally, and most
importantly in the context of this and the following chapter, a secure channel may be designed
to protect a stream of data rather than the series of discrete messages that is usually found in
cryptographic abstractions.

There is, then, a substantial gap between what the AEAD primitive can reasonably provide
and the needs of secure channels. We are not the first to recognize this gap, of course. As
already introduced in the previous chapter, Bellare, Kohno, and Namprempre [BKN02, BKN04]

145

Chapter 10. Stream-Based Channels

extended the standard security notions of confidentiality and integrity for symmetric encryption
to the stateful setting, enabling the treatment of security of the ordering of discrete messages
in a secure channel, with application to the analysis of SSH being their principle motivation.
We refer to Section 1.3 for a summary of the follow-up work on channels, e.g., introducing
formalisms in different settings [Nam02, Sho99, Can00, MT10, BMM+15], capturing different
levels in a security hierarchy [KPB03, BHMS16], or particular properties of specific protocols
like TLS [PRS11, JKSS12, KPW13].

Data is a stream. Characteristic of all the above-mentioned prior works is that they treat
secure channels as providing an atomic interface for messages, meaning that the channel is
designed only for sending and receiving sequences of discrete messages. However, this only
captures a fraction of secure channel designs that are actually used in the real world. In
particular, TLS [DR08, Res18], SSH [YL06a], and QUIC [QUI] all provide a streaming interface
for the applications that use them: applications submit fragments (or segments) of message
(or plaintext) streams to an application programming interface (API), and similarly receive
fragments of message streams from the API. The sending side may arbitrarily buffer and/or
fragment the message stream before encapsulating it for sending.

Moreover, in some cases, even under normal operations, it is not guaranteed by the network
that the resulting stream of ciphertext fragments (which we refer to as ciphertexts henceforth
treating them as opaque bit strings) that is sent will arrive at the receiver with the same pattern
of fragmentation, even if the reconstructed message streams are in the end identical.46 Under
adversarial conditions, such guarantees certainly do not hold: for example, TLS runs over
TCP [Pos81b] and an active man-in-the-middle adversary can tinker with the TCP segments,
adding, removing and reordering TLS data at will. Thus, practical secure channels need to
securely process arbitrarily fragmented ciphertexts. Finally, to make things even more complex,
and coming full circle, applications (like HTTP [FGM+97]) often rely on stream-oriented secure
channels (like TLS) to securely deliver what are actually, in their semantics, atomic messages.

This discussion points to a mismatch between atomic descriptions of secure channels in
the cryptography literature and the reality of the operation of secure channels. As one may
expect, such mismatches can have negative consequences for security. The starkest example of
this comes from the plaintext recovery attack against SSH given by Albrecht et al. [APW09].
Their attack specifically exploits the adversary’s ability to deliver arbitrary sequences of SSH
packet fragments to the receiver (over TCP) and observe the receiver’s behavior in response.
The attack is possible despite the analysis of Bellare et al. [BKN04] which proved that the
SSH secure channel satisfies suitable atomic stateful security notions. Related attacks against
certain IPsec configurations (and exploiting IPsec’s need to handle IP fragmentation) were
presented by Degabriele and Paterson [DP10]. Attacks highlighting a disjunction between what
applications expect and what secure channels provide, in the specific context of HTTP and TLS,
can be found in [SP13, BDF+14]. All these attacks highlight deficits of previous approaches to
modeling and analyzing secure channels.

Boldyreva et al. [BDPS12] extended the classical, atomic secure-channel confidentiality notion
to cover the case of SSH-like fragmentation in secure channels, broadening the SSH-specific
work of Paterson and Watson [PW10]. Subsequently, and concurrently to our work [FGMP15,
FGMP17], Albrecht et al. [ADHP16] augmented the model of [BDPS12] with a corresponding
notion of integrity. However, while their work allows for fragmented delivery of ciphertexts to
the receiver, it still assumes that the encryption process on the sender’s side is atomic, meaning

46IPsec is a prime example; because of the interaction between IPsec and IP with its fragmentation features,
IPsec-protected packets can arrive at their destination in a sequence of fragments, each fragment contained in its
own IP packet, and possibly arriving out of order.

146

10.1. Introduction

that there is a one-to-one correspondence between messages and ciphertexts. This may be the
case for SSH when used in interactive sessions, but it is not the case for the tunneling mode of
SSH, and never the case for other secure channel protocols. For example, even though the TLS
specification [DR08, Res18] does not include a formal API definition, it is clear that the design
intention is to provide a secure channel for data streams and the application programmer is in
practice offered a TCP-like socket interface. As noted above, the sending side can arbitrarily
buffer and fragment the message stream when preparing ciphertexts for sending.

Stream-based channels. In this chapter we develop formal functional specifications, security
notions, and a construction (using AEAD as a building block) for stream-based channels. In
Chapter 11 we will then explore how applications, given access to a stream-based channel
meeting our security notions, can safely use it to transport atomic messages over a fragmenting
network via an atomic-message channel (supporting fragmentation).

Our models are in the game-based tradition, and extend those of [BKN04, BDPS12] to
handle the streaming nature of the channels that we consider. Figure 10.1 gives an overview of
the notions we establish for both stream-based and atomic-message channels and their relations,
including formal and conceptual relations to the established notions of AEAD [Rog02] and
symmetric encryption supporting fragmentation [BDPS12, ADHP16].

While our methodology and modeling closely resemble those of Boldyreva et al. [BDPS12],
and indeed build upon them, a crucial difference comes in our treatment of the sending
(or encrypting) function of a stream-based channel: in [BDPS12], this is still atomic (while
decryption is not), whereas in our stream-based channel setting, both the sending and receiving
function support streams of data, with potentially arbitrary buffering and fragmentation on the
sending and receiving side. This requires careful modification of the confidentiality definitions
of [BDPS12]. In addition, we develop suitable integrity notions for the streaming setting
whereas [BDPS12] does not consider this aspect. This is important because the (informal)
security properties that applications expect a secure channel to provide confidentiality as well as
integrity. Concurrent to our work [FGMP15, FGMP17], Albrecht et al. [ADHP16] augmented
the model of [BDPS12] with an integrity notion for an analysis of the SSH protocol.

Bringing integrity into the picture for stream-based channels also enables us to prove a
composition result analogous to the classical result of [BN00] for symmetric encryption schemes,
which states that IND-CPA security in combination with integrity of ciphertexts (INT-CTXT
security) guarantees IND-CCA security. This provides an easy route to proving that a given
stream-based channel construction provides the expected confidentiality (indistinguishability
under chosen ciphertext-fragment attacks, or IND-CCFA security) and integrity (integrity of
plaintext streams, INT-PST security).

The composition theorem brings an interesting technical challenge to surmount: as was
already recognized by Boldyreva et al. [BDPS14] for the classical (atomic) setting, the possibility
that realistic models of encryption schemes may involve multiple error messages means that the
original composition proof of [BN00] does not go through. In [BDPS14], this was overcome by
assuming the scheme is such that only one of the possible error messages has a non-negligible
chance of being produced during operation of the scheme. Here we take a different tack,
introducing the concept of error predictability, which guarantees the existence of an efficient
algorithm that can predict which errors should be output during decryption of a ciphertext
stream. We exemplify that such a predictor can exist for a given scheme, even in cases where the
analogous conditions to those in [BDPS14] are not satisfied. Our approach can also be used in
the atomic-message setting to extend the composition theorem to schemes with distinguishable
but predictable errors.

We demonstrate the feasibility of our security notions by providing a generic construction for a

147

Chapter 10. Stream-Based Channels

ERR-PRE

IND-CCFA

IND-CPFA

INT-CST

INT-PST

CON-CST

aIND-CCFA

aIND-CPA

aINT-CST

aINT-PTXT

aERR-PRE

IND-CPA AUTH IND-sfCFA INT-sfCTF

ChAEAD [10.12]

[10.13, 10.14,
10.15, 11.20]

aChEtS [11.12]

[11.16, 11.17,
11.18, 11.19]

[10.8]

[10.10]

[11.5]

[11.7]

stream-based channels

atomic-message channels

symmetric encryption supporting
fragmentation [BDPS12, ADHP16]

authenticated encryption
with associated data [Rog02]

Figure 10.1: Overview of the notions we establish for stream-based channels (in Chapter 10) and
atomic-message channels supporting fragmentation (in Chapter 11), as well as their formal or concep-
tual relations to established notions that we demonstrate for authenticated encryption with associated
data (AEAD) [Rog02] and symmetric encryption supporting fragmentation [BDPS12, ADHP16]. We
provide confidentiality notions in terms of (atomic-message) indistinguishability ((a)IND) under chosen
plaintext, plaintext fragment and ciphertext fragment attacks (CPA/CPFA/CCFA), integrity notions in
terms of (atomic-message) integrity ((a)INT) of plaintexts, plaintext streams and ciphertext streams
(PTXT/PST/CST), and more specific notions for (atomic-message) error predictability ((a)ERR-PRE) and
conciseness of ciphertext streams (CON-CST).
Filled rounded rectangular areas indicate the three conceptual notions for channels and the notion of
AEAD. Solid arrows indicate implications we establish between security notions within these. Dot-
ted rounded rectangles encompass the security notions achieved by our generic constructions ChAEAD
and aChEtS. Dashed arrows indicate the security notions required in these constructions from the cor-
responding building blocks. Wavy lines indicate conceptually analogous security notions between our
setting of atomic-message channels supporting fragmentation and the notion of symmetric encryption
supporting fragmentation [BDPS12, ADHP16]. Numbers in brackets refer to the corresponding theorems
and constructions in Chapters 10 and 11. Further discussions can be found in the text.

stream-based channel that uses AEAD as a component and achieves our strongest confidentiality
and integrity notions. The resulting stream-based channel closely mimics the TLS record
protocol. That way, our security results provide validation for this important real-world protocol
design, whilst fully taking its streaming behavior into account.

In Chapter 11, we will then take a look at applications that wish to send atomic messages
over a channel protocol providing a streaming interface, and leverage our model for stream-based
channel to establish conditions and constructions which enable security in such settings.

10.2 Syntax and Functionality of Stream-Based Channels

We capture the functionality of channel protocols that offer a reliable transmission of streams
like the Transmission Control Protocol (TCP) [Pos81b] and, in a second step, we define
confidentiality and integrity properties expected from (stream-based) secure channel protocols
like the Transport Layer Security (TLS) record protocol [DR08] or the Secure Shell (SSH) Binary

148

10.2. Syntax and Functionality of Stream-Based Channels

(from application)

m1 m2 m3 m4 m5 message stream

c1 c3 c4 c5 ciphertext stream

Send

(lower-layer transmission)

c′1 c′2 c′3 c′4 c′5 ciphertext stream

m′1 m′2 m′4 m′5 message stream

Recv

(to application)

Figure 10.2: Illustration of the behavior of the Send and Recv algorithms of a stream-based channel,
indicating the message and ciphertext fragments being sent (mi resp. ci) and received (m′i resp. c′i). Note
that, due to buffering, output ciphertexts and messages (ci resp. m′i) can be empty.

Packet Protocol [YL06b].47 To do so we first need to define the syntax of stream-based channels
that, in contrast to previous models for channels, send fragments of a message (or plaintext)
stream rather than atomic messages. In order to remain close to real-world implementations
we restrict both the message space and the ciphertext space to the set of bit strings, where we
understand ‘messages’ and ‘ciphertexts’ not as atomic units, but as fragments (i.e., substrings)
of a message stream and a ciphertext stream.

Additionally, we do not stipulate a particular input/output behavior on the sender side,
but instead allow the sending algorithm Send to process input data at its discretion, e.g.,
implementing some form of buffering before sending. We enforce sending out particular chunks
of the message stream by employing the established concept of ‘flushing a stream’ known
from network socket programming, and provide the Send algorithm with an additional flush
flag f ∈ {0, 1} which, if set to f = 1, ensures that all the message fragments fed so far are sent
out instantaneously. Jumping ahead, in our security model this choice conservatively also allows
the adversary to control the flush flag. If the flush flag is set to zero, Send may internally decide
to keep accepting more message fragments or to send out a ciphertext fragment, depending on
its implementation and resources.

We remark that our model also captures real-world channels that, instead of offering an
explicit flushing mechanism, buffer their input until a specified timeout is reached. In such
scenarios, the adversary is simply given control over the timeout through controlling the flush

47Our model inherently assumes that, in a benign scenario, ciphertext fragments are delivered reliably and
in order (i.e., in a TCP-like manner). While we recognize that efficient and secure transmission protocols can
be designed also on top of unreliable protocols like the User Datagram Protocol (UDP) [Pos80] as done, e.g.,
in Google’s Quick UDP Internet Connections (QUIC) protocol [QUI], we deem these approaches orthogonal
or unrelated to our work. In such cases, a reliable and ordered stream transmission can be implemented
non-cryptographically either by TCP-like preprocessing of the UDP datagrams before handing them over to a
stream-based channel according to our definition or by postprocessing UDP datagrams which are encrypted and
authenticated individually (e.g., using an AEAD scheme).

149

Chapter 10. Stream-Based Channels

flag.48
In our definition below for any message fragment m processed by Send we denote by c

the (potentially empty) resulting ciphertext. We stress that c should not be interpreted as an
encapsulation of m (i.e., we do not require that c decrypts to m, as we expand later) but just
as a label for the output of Send on input m and the current state. In particular, letting Send
output empty ciphertexts allows the algorithm to buffer message fragment for later sending.
Similar considerations hold for Recv, which may buffer ciphertext fragments before returning a
non empty message fragment. Figure 10.2 illustrates the behavior of the sending and receiving
algorithms of a stream-based channel.

We proceed by defining syntax and correctness of stream-based channels.

Definition 10.1 (Syntax of stream-based channels). A stream-based channel Ch = (Init, Send,
Recv) with associated sending and receiving state space SS resp. SR and error space E with
E ∩ {0, 1}∗ = ∅ consists of three efficient algorithms defined as follows.

• Init(1λ) $−→ (stS,0, stR,0). On input a security parameter 1λ, this probabilistic algorithm
outputs initial states stS,0 ∈ SS, stR,0 ∈ SR for the sender and the receiver, respectively.

• Send(stS ,m, f) $−→ (st′S , c). On input a sending state stS ∈ SS, a message fragment m ∈
{0, 1}∗, and a flush flag f ∈ {0, 1}, this (possibly) probabilistic algorithm outputs an
updated state st′S ∈ SS and a ciphertext fragment c ∈ {0, 1}∗.

• Recv(stR, c)→ (st′R,m). On input a receiving state stR ∈ SR and a ciphertext fragment c ∈
{0, 1}∗, this deterministic algorithm outputs an updated state st′R ∈ SR and a message
fragment (possibly containing error symbols) m ∈ ({0, 1} ∪ E)∗.

Shorthand notation. Given a pair of states (stS,0, stR,0), an integer ` ≥ 0, and tuples
of message fragments m = (m1, . . . ,m`) ∈ ({0, 1}∗)` and of flush flags f = (f1, . . . , f`) ∈
{0, 1}`, let (stS , c) $←− Send(stS,0,m, f) be shorthand for the sequential execution (stS,1, c1) $←−
Send(stS,0,m1, f1), . . . , (stS,`, c`) $←− Send(stS,`−1,m`, f`) with c = (c1, . . . , c`) and stS = stS,`.
For ` = 0 we define c to be the empty vector and stS,` = stS to be the initial state. We use an
analogous notation for the receiver’s algorithm.

Correctness of stream-based channels should guarantee that if, after initialization, Send
is fed with a message stream, and (a prefix of) the corresponding ciphertext stream is then
processed by Recv, then no matter how the ciphertexts are fragmented at the sender’s side
and re-fragmented at the receiver’s side (provided that the order of the bits is preserved), then
the returned message stream is a prefix of the initial message stream. Moreover, when Recv
consumes a full ciphertext fragment generated by a call to Send with the flush flag set to 1, the
stream output by Recv should contain all the message fragments input to Send up to that call.

More precisely, if the receiver obtains (in an arbitrarily fragmented way) a prefix ‖c′ of the
string of ciphertexts ‖c created by the sender for an input message vector m ∈ ({0, 1}∗)` and
flush flag vector f ∈ {0, 1}`, and if string ‖c′ contains the concatenation c1‖ . . . ‖ci of the first i
ciphertexts of c, then we require that the message string ‖m′ returned on the receiver’s side
contains as a prefix the concatenation m1‖ . . . ‖mi of the first i messages of m for all indices
i ∈ {0}∪ {j : fj = 1} for which the corresponding call to Send flushed its buffer (if all flush flags
fj are set to zero then the above concatenations of ciphertexts and messages are empty and the
correctness condition is trivially fulfilled). In particular, this requires that the receiver must
output the full and correct message stream if the last Send call has the flush flag f` set to 1.

48While any practical channel implementation will send buffered data out eventually (on explicit request or
on timeouts), note that our model is general enough to also capture channels that do not offer any control over
flushing: for this it suffices to consider a restricted channel interface where the flush flag is fixed to f = 0.

150

10.3. Security of Stream-Based Channels

Definition 10.2 (Correctness of stream-based channels). Let Ch = (Init,Send,Recv) be a stream-
based channel. We say that Ch provides correctness if for all state pairs (stS,0, stR,0) $←− Init(1λ),
all `, `′ ≥ 0, all choices of the randomness for algorithms Init and Send, all message-fragment
vectors m ∈ ({0, 1}∗)`, all flush-flag vectors f ∈ {0, 1}`, all sending output sequences (stS,`, c) $←−
Send(stS,0,m, f), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)`′, and all receiving output se-
quences (st′R,`′ ,m′)← Recv(stR,0, c′), we have for any i ∈ {0} ∪ {j : fj = 1} that

‖c[1, . . . , i] 4 ‖c′ 4 ‖c =⇒ ‖m[1, . . . , i] 4 ‖m′ 4 ‖m.

Remark 10.3. Note that the receiver’s output alphabet consists of bits and of distinct error
symbols of the set E ; correctness therefore implies that the receiver does not output error
symbols for genuine ciphertext streams.
Remark 10.4. It is instructive to compare our correctness definition with that of Boldyreva et
al. [BDPS12]. There, correctness requires that if a sequence m of discrete messages is encrypted,
and the resulting ciphertext stream ‖c is then decrypted (possibly in a fragmented manner),
then the obtained message sequence (when message separators ¶ are removed) is identical to the
original sequence m. In the special case of a single message, this implies that encryption ‘always
flushes’ in the setting of [BDPS12], and is in turn the reason why encryption is necessarily an
atomic operation. By contrast, in our setting the Send algorithm is equipped with a flush flag
and, when the latter is set to zero, potentially the entire message fragment is buffered for delayed
sending. This is, then, an essential difference between the setting of Boldyreva et al. [BDPS12]
and the streaming one. An additional difference is that the correctness condition in [BDPS12]
is stronger than ours as it incorporates a certain amount of robustness. More specifically, the
sequence of ciphertext fragments c′ submitted for decryption in the correctness definition of
[BDPS12] may extend the sequence produced by encryption (in other words, ‖c is only required
to be a prefix of ‖c′ in order for decryption to still work correctly up to ‖c). Such cases will be
dealt with by our integrity notions.

10.3 Security of Stream-Based Channels
In this section we introduce confidentiality and integrity notions for stream-based channels
and study the relations among these notions. Our notions are game-based and extend security
properties for stateful authenticated encryption [BKN04] (cf. Section 9.3) to the streaming
setting.

10.3.1 Confidentiality

Following the approach of Bellare, Kohno, and Namprempre [BKN04] for stateful authenticated
encryption we define confidentiality in terms of left-or-right indistinguishability of ciphertexts
(cf. Section 9.3.1). We recall that chosen-plaintext attacks (CPA) for stateful encryption are
modeled through a game in which A is given a left-or-right oracle OLoR that, upon being queried
on pairs of messages (m0,m1), returns encryptions of either the ‘left’ messages m0 or the ‘right’
messages m1, depending on a secret bit b ∈ {0, 1}. The game to model chosen-ciphertext attacks
(CCA) is similar but additionally provides the adversary with a decryption oracle ORecv that A
can query on ciphertexts of its choice, obtaining the corresponding decrypted messages except
for in-sync ciphertexts (i.e., the sequence of ciphertexts output by the left-or-right oracle OLoR
whose decryption would reveal the challenge sequence mb by correctness). In both games A’s
goal is to determine the bit b. We now adapt these notions to the stream-based setting.

As for the case of symmetric encryption supporting ciphertext fragmentation—introduced
by Boldyreva et al. in [BDPS12]—our security notions should reflect that the algorithms of a

151

Chapter 10. Stream-Based Channels

stream-based channel support processing of arbitrary fragments of the message stream and of
the ciphertext stream respectively. However, while Boldyreva et al. consider only fragmented
decryption (i.e., the encryption process is atomic) and therefore focus their attention on the CCA
setting, in our case the fragmentation at the sender also affects the adversarial capabilities in
the CPA setting. We hence define two new indistinguishability notions, one for chosen plaintext-
fragment attacks (IND-CPFA) and one for chosen ciphertext-fragment attacks (IND-CCFA). The
corresponding experiments, that we denote by ExptIND-ATK,b

Ch,A for ATK ∈ {CPFA,CCFA}, are
depicted in Figure 10.3.

Before specifying in detail the logic of our experiments we introduce some useful notation.
Within the experiments we denote by CS the concatenation of the ciphertext fragments sent
so far; similarly, we write CR for the concatenation of the ciphertext fragments queried at the
receiver. We abbreviate CS and CR as the sent (ciphertext) stream and the received (ciphertext)
stream, respectively. We say that the sent and received streams are in-sync, or equivalently that
they match, if the latter is a prefix of the former (CR 4 CS). If CS 64 CR and CR 64 CS then we
say that the two streams deviate, or equivalently that they are out-of-sync. In the experiment
we keep a flag sync to indicate whether the above two streams are in-sync (sync = 1) or not. As
soon as the streams go out-of-sync we also say that also the oracle ORecv goes out-of-sync.

Adapting the CPA experiment to the stream-based settings is relatively easy. We do so
by incorporating the flush flag f into the oracle OLoR and letting the adversary also specify
the value of f ; this provides A with the same interface for Send as that of an application. For
each query (m0,m1, f) the oracle OLoR operates as follows: after checking that the message
fragments m0 and m1 have the same bit length, it invokes Send on input the current state stS ,
message mb, and flush flag f , it records the resulting ciphertext fragment c into the ciphertext
stream CS , and finally gives c to the adversary.

Formalizing a sound security notion for the CCA setting, where the adversary can also obtain
the output of Recv for chosen ciphertext-fragments, turns out to be more delicate. Ideally, we
envision a receiving oracle ORecv that lets A see as much decrypted plaintext as possible without
enabling trivial attacks. Following this principle we mimic the strategy of Bellare et al. [BKN04]
to model stateful encryption security by declaring ORecv to be in-sync—thus instructing it to
artificially suppress the output of Recv—as long as the adversary supplies a prefix of the original
ciphertext stream output by the left-or-right oracle.

There is, however, a definitional challenge to surmount. In contrast to stateful encryption
where messages input to the encryption algorithm are considered as atomic units and correspond
in a one-to-one manner to the output ciphertexts, in the streaming scenario messages and
ciphertexts can be arbitrarily fragmented. Therefore, it is not clear a priori how to translate
deviations of the ciphertext sequences into deviation of the message sequences. To adapt the
suppression mechanism of Bellare et al. to the streaming setting we need to determine at which
point exactly the ciphertext stream at the receiver should be considered out-of-sync.

Suppression mechanism for symmetric encryption supporting fragmentation. The
experiment for indistinguishability against chosen-fragment attacks (IND-sfCFA) proposed by
Boldyreva et al. [BDPS12, Definition 4] in the context of symmetric encryption supporting
ciphertext fragmentation stays close to the original definitions of [BKN04] and conservatively
defines synchronization to be lost at the ciphertext boundaries. That is, ORecv suppresses the
output of Recv up to the longest sequence of genuine ciphertexts (recall that in [BDPS12] the
encryption algorithm is atomic, and hence it outputs entire ciphertexts rather than fragments,
making it possible to identity ciphertext boundaries in a security experiment). In a run of the
IND-sfCFA experiment let m1, . . . ,mi be the messages processed by Send and let c1, . . . , ci be the
resulting ciphertexts, let j ≤ i be maximal such that the receiving algorithm processes entirely the

152

10.3. Security of Stream-Based Channels

sequence of the first j sent ciphertexts, and suppose that the stream CR of ciphertext fragments
processed by Recv deviates from the genuine sequence CS = c1‖ · · · ‖ci. Then synchronization
is considered to be lost from the first bit following ciphertext cj , and hence ORecv suppresses
exactly the first j sent messages m1, . . . ,mj from the output of Recv.

As we show in the following examples, this option is inappropriate in a stream-based setting
where the ciphertext fragments output by Send do not necessarily correspond one-to-one to the
input message-fragments.

Consider the case of TLS and the Send algorithm being called on a (214 + 1)-byte input
message with the flush flag set to 1—mimicking the behavior of many TLS implementations that
keep no send buffer. Obeying the limit of at most 214 bytes of payload in a single TLS record,
Send is forced to output a ciphertext fragment containing (at least) two TLS records. According
to the IND-sfCFA experiment in [BDPS12], an adversary could forward this fragment to the
decryption oracle with the second record modified but the first record untouched. The adversary
would then obtain the decryption of both records as the IND-sfCFA experiment considers them
as jointly forming a single ciphertext, hence revealing parts of the challenge message string.
Thus, the IND-sfCFA notion would be unachievable for TLS.

As another example assume that a stream-based channel aiming only at confidentiality
generates the ciphertext stream CS as the bitwise XOR of the message stream MS and the
output of a stream cipher. In this setting, the IND-sfCFA notion would consider the ciphertext
fragments output by Send on the input message fragments to be units that should be either
completely kept confidential or, if modified, can be fully leaked to the adversary. However, with
the channel exhibiting no further structure, enforcing any block boundaries clearly becomes
artificial.

Suppression mechanism for stream-based channels. Taking into account that in the
streaming scenario the output of Send is a bit stream without any further structure in general,
we declare synchronization to be lost starting from the first bit of the receiving ciphertext
stream CR deviating from the genuine stream CS .

Concretely, suppose that during an execution of the IND-CCFA experiment the adversary
causes CR to deviate from CS by submitting for decryption a strict prefix of the genuine stream
followed by additional bits that deviate from CS (using a more compact notation: [CS , CR] ≺ CS
and [CS , CR] ≺ CR). In this case the streams CS and CR are considered to be in-sync up to their
longest common prefix [CS , CR] while the deviating portion CR % [CS , CR] is out-of-sync. Given
this, we let ORecv process ciphertext fragments submitted for decryption by updating CR with
the newly queried fragment and, as long as CR is a prefix of CS , invoking Recv (thereby updating
the state stR) on this fragment and suppressing the corresponding output. If the adversary
instead submits a fragment that causes CR to deviate from CS the oracle stops suppressing and,
from then on, the output of Recv is given to the adversary.

Processing the first ciphertext fragment that causes a deviation requires some care, though.
The challenging situation is as follows: all fragments submitted for decryption so far are in-sync
(CR 4 CS) and the ‘next’ ciphertext fragment c induces a deviation (CR‖c 64 CS). Now, if c
contains a non-empty in-sync prefix its decryption may trivially reveal challenge bits that should
instead be suppressed (as in the above example concerning TLS). To resolve this issue we let the
receiving oracle invoke Recv on both the entire fragment c and its longest in-sync prefix c̃ (the
latter is the longest prefix of c that matches CS), making sure that Recv takes as input the same
state stR for both operations. Let m and m̃ be the resulting message fragments respectively,
and note that m̃ matches the genuine message stream by correctness. Then ORecv suppresses
from m its longest prefix that matches the genuine stream (i.e., it suppresses the potentially
empty fragment [m, m̃]) and gives the resulting string m′ = m% [m, m̃] to the adversary. The

153

Chapter 10. Stream-Based Channels

ExptIND-ATK,b
Ch,A (1λ):

1 (stS , stR) $←− Init(1λ)
2 sync← 1
3 CS ← ε, CR ← ε
4 b′ $←− AOLoR,[ORecv]ATK=CCFA (1λ)
5 return b′

OLoR(m0,m1, f):
6 if |m0| 6= |m1| then
7 return
8 (stS , c) $←− Send(stS ,mb, f)
9 CS ← CS‖c

10 return c

ORecv(c):
11 if sync = 0 then // already out-of-sync
12 (stR,m)← Recv(stR, c)
13 return m
14 else if CR‖c 4 CS then // still in-sync
15 (stR,m)← Recv(stR, c)
16 CR ← CR‖c
17 return ε
18 else
19 if CR ≺ [CR‖c, CS] then

// c deviates or exceeds, contains genuine part
20 c̃← [CR‖c, CS] % CR
21 s̃tR ← stR
22 (s̃tR, m̃)← Recv(s̃tR, c̃)
23 (stR,m)← Recv(stR, c)
24 m′ ← m% [m, m̃]
25 else // c deviates or exceeds, contains no genuine part
26 (stR,m′)← Recv(stR, c)
27 if CS 64 CR‖c or m′ 6= ε then

// deviation, or exceeding portion produces output
28 sync← 0
29 CR ← CR‖c
30 return m′

Figure 10.3: Security experiment for confidentiality (IND-ATK with ATK ∈ {CPFA,CCFA}) of stream-
based channels. The brackets [ORecv]ATK=CCFA indicate that only the IND-CCFA adversary has access to
the ORecv oracle.

idea behind this strategy is that any potential challenge bit originating from the in-sync part
of c remains hidden from the adversary.

Another subtlety arising from the ciphertext fragmentation concerns the possibility that CR
and CS are neither in-sync nor out-of-sync. This may happen if the adversary submits to ORecv
the entire (potentially empty) genuine stream of ciphertexts followed by additional bits, mak-
ing CR exceed CS . In such a case the stream CR does not explicitly deviate from, but only
extends, the genuine stream CS , that is, CS ≺ CR.

One could argue that submitting for decryption any bit that has not been honestly produced
at the sender should be considered an active attack and, thus, any part of CR exceeding CS
should be declared out-of-sync.49 This intuition turns out to be wrong, though. In fact, the
ability to guess a small prefix of the ‘next’ ciphertext fragment output by Send should not be
considered as giving a significant advantage to the adversary. Then, declaring synchronization to
be lost with the first bit of CR exceeding CS would allow for trivial attacks like the following. The
adversary starts by making a guess on the first bit d′ ∈ {0, 1} output by Send and querying ORecv
on input fragment d′. As CR = d′ deviates from CS = ε this first query desynchronizes the
receiving oracle. The adversary proceeds by posing a left-or-right query (m0,m1, 1) with
m0 6= m1, obtains a challenge ciphertext-fragment c′, and if its guess was correct (i.e., d′ 4 c′)
it submits for decryption the ciphertext fragment c′ % d′, otherwise it terminates. If adversary
correctly guessed the first bit of c′ then by correctness it gets from ORecv the message m′ = mb.
This strategy succeeds with probability 1

2 . Merely guessing a small prefix of the next genuine
ciphertext fragment which does not produce any output is possible for any stream-based channel,
but should not be considered as a success of the adversary.

49This was indeed the argument adopted in [BDPS12] as well as in the proceedings version of this
work [FGMP15], and later identified as flawed by Degabriele [Deg16] in May 2016.

154

10.3. Security of Stream-Based Channels

c1 c2 c3

ORecv
ORecv ORecv

ε m′ m

c̃2

c2

Recv

Recv

m̃

m

m′

stR

stR

Figure 10.4: Illustration of the ORecv oracle behavior in the IND-CCFA experiment from Figure 10.3
for ciphertext fragment inputs c1, c2, c3 specified by the adversary A where c2 deviates from or exceeds
the genuine ciphertext stream after the zigzag line. The oracle ORecv goes out-of-sync on deviation or if
exceeding ciphertext input produces non-empty output.

To exclude the class of attacks like the one just described we adopt the following strategy:
we only declare synchronization to be lost when the exceeding portion CR % CS produces a
non-empty output—in which case we also conservatively provide the adversary with this output.
In other words, we only give credit to the adversary if it is able to predict a non-trivial ciphertext
fragment that actually leads to a non-empty plaintext. This allows ORecv to later suppress
further message bits in case, as a consequence of the adversary posing more left-or-right queries,
CS and CR end up being matching again (in the sense that CR 4 CS).

To facilitate understanding we illustrate in Figure 10.4 how ORecv processes the first deviating
ciphertext fragment (CR‖c 64 CS) or an exceeding ciphertext fragment (CS ≺ CR‖c) by
performing two calls to Recv, one on input c and the other on input c̃.

Putting everything together, we can now unpack from Figure 10.3 the instructions executed
by the ORecv oracle upon being queried on a ciphertext fragment c. Its logic treats the two
simplest cases first. In case synchronization has been already lost (indicated by the flag sync
being 0, line 11) the oracle responds with the entire output of Recv on input the fragment c.
If c is in-sync (CR‖c 4 CS , line 14) the oracle invokes Recv on input c but fully suppresses its
output. Next consider the case in which c makes CR extend CS (CR‖c 64 CS but CS 4 CR‖c)
or causes a deviation (CR‖c 64 CS and CS 64 CR‖c). Here the oracle ORecv first checks
whether c contains a non-empty, in-sync prefix c̃ matching CS which may contain challenge-
message bits that should be suppressed. Note that the corresponding check in line 19 evaluates
to true if either CR‖c deviates from CS but c contains a non-empty in-sync prefix c̃ (thus
[CR‖c, CS] = CR‖c̃ ≺ CS with c̃ 6= ε), or CR‖c extends CS but c contains a non-empty prefix
matching CS (i.e., [CR‖c, CS] = CR‖c̃ = CS also with c̃ 6= ε). If from the above check it turns
out that c contains a non-empty in-sync prefix, the receiving operation is handled by performing
a double invocation of Recv on input identical states stR = s̃tR and ciphertext fragments c and
c̃ respectively, which yields message fragments m and m̃, as described earlier (and illustrated in
Figure 10.4). We stress that the second invocation should be considered as an auxiliary step
performed by the oracle to establish which portion of m, if at all, shall be suppressed (line 24).
Indeed, the latter step is skipped in case c is fully deviating from or fully exceeding CS (line 25).
In either case, the oracle proceeds with determining whether synchronization is lost upon the
receipt of c because of a deviation (CS 64 CR‖c) or because the adversary managed to guess
a non-trivial ciphertext fragment leading to a non-emtpy output (CS 4 CR‖c but m′ 6= ε).
The message fragment m′ here denotes the output of Recv corresponding to the deviating or
exceeding part of c; this is the actual message fragment that ORecv returns to the adversary.

155

Chapter 10. Stream-Based Channels

We are now ready to give the formalism of our confidentiality experiments.

Definition 10.5 (IND-CPFA and IND-CCFA security). Let Ch = (Init,Send,Recv) be a stream-
based channel and experiment ExptIND-ATK,b

Ch,A (1λ) for an adversary A and a bit b be defined as in
Figure 10.3, where ATK is a placeholder for either CPFA or CCFA.

We say that Ch provides indistinguishability under chosen plaintext-fragment attacks, re-
spectively chosen ciphertext-fragment attacks (IND-CPFA, resp. IND-CCFA) if for all PPT
adversaries A the following advantage function is negligible in the security parameter:

AdvIND-ATK
Ch,A (λ) :=

∣∣∣Pr
[
ExptIND-ATK,1

Ch,A (1λ) = 1
]
− Pr

[
ExptIND-ATK,0

Ch,A (1λ) = 1
]∣∣∣ .

Length hiding. Note that we do not consider the extended length-hiding setting that was
introduced in [PRS11] to model TLS’s variable length padding capability and subsequently
incorporated into the ACCE security definition for secure channels in [JKSS12, KPW13]. While
our work could conceivably be extended to incorporate length hiding, it remains unclear to us
what its value would be in the setting of streaming channels, since length hiding is a notion
intrinsically connected to atomic messages.

On the scope of our confidentiality definition. When formalizing a security goal it is
common to develop a notion that is as strong as possible, yet achievable. The inability to
foresee new attacks is the main reason for aiming at the strongest notion. However, sometimes
this conservative approach leads to security notions that are ‘too strong’ for some applications,
meaning that some schemes which have no actual vulnerability are declared insecure within the
model. An example of a security notion that—one might argue—is too strong is IND-CCA security
for symmetric encryption. For instance, if one starts with an IND-CCA-secure encryption scheme
and modifies it by letting the encryption routine append a redundant bit to each ciphertext and
letting the decryption routine ignore that last bit of each ciphertext, the resulting scheme is no
longer IND-CCA-secure. However, adding a redundant bit that is then ignored for decryption
should not harm the scheme’s confidentiality.50

Our IND-CCFA notion for stream-based channel may likewise be too strong for some ap-
plications. In the extended full version of our work [FGMP17] we describe a scheme due to
Poettering [Poe16] that, despite being intuitively confidential, is vulnerable to an IND-CCFA
attack. Briefly, this stream-based channel processes message fragments to be sent by AEAD-
encrypting fixed-length chunks of each input fragment, and similarly processes ciphertext
fragments to be received by AEAD-decrypting corresponding ciphertext blocks in such a way
that, if any of the AEAD decryptions fails, then a distinguished constant string is returned rather
than an error. Clearly, the scheme does not provide integrity protection, because the receiver
would not be able to detect that the message output stems from an error. However, because
of the AEAD security, the message fragment output by Recv on input a deviating ciphertext
fragment should only reveal the distinguished string independently of the challenge-message
fragment and, thus, confidentiality should not be compromised. The way message output is
suppressed in our IND-CCFA experiment (cf. Figure 10.3) however enables an IND-CCFA attack
on this scheme which is always successful by checking for common prefixes between the challenge
messages and the distinguished constant error string (see [FGMP17] for the details). Exploring
possible relaxations of the stream-based IND-CCFA confidentiality notion which still uphold an
intuitive, strong confidentiality guarantee is an interesting direction for future work.

50An alternative notion of confidentiality that precisely aims at resolving this issue was proposed by Canetti et
al. [CKN03] as RCCA security (for ‘replayable’ CCA) in the public-key setting (and can be easily extended to
the secret-key setting).

156

10.3. Security of Stream-Based Channels

10.3.2 Integrity

Next, we formalize integrity notions for stream-based channels. We highlight that, while integrity
properties for atomic messages (and atomic ciphertexts) are well-understood, no previous work
considered integrity in the non-atomic setting. In particular Boldyreva et al. [BDPS12] only
addressed confidentiality in the presence of ciphertext fragmentation; their notions were later
and concurrently to our work augmented with integrity notions by Albrecht et al. [ADHP16]. We
define integrity notions for stream-based channels as refinements of standard (stateful) properties
of plaintext integrity (INT-sfPTXT) resp. ciphertext integrity (INT-sfCTXT) from [BKN04] (cf.
Section 9.3.1) and refer to the new properties as plaintext-stream integrity resp. ciphertext-stream
integrity (INT-PST resp. INT-CST).

Similarly to the setting with atomic messages, INT-PST ensures that no adversarial query to
the receiving oracle causes the message stream output by Recv to deviate from the message stream
input to Send. This notion is quite simple to formulate. Formalizing the stronger INT-CST
property demands more care. Intuitively, from ciphertext integrity we expect that when
processing any ‘out-of-sync’ ciphertext, the algorithm Recv should return an error message.
However, when considering a stream-based interface it may happen that Recv processes an
out-of-sync ciphertext which does not yet contain ‘enough information’ to be recognized as
being invalid; in this case the receiving algorithm would buffer (part of) the ciphertext and wait
for further fragments until a sufficiently long ciphertext string is available to be processed and
deemed as valid or invalid. In such a scenario, a naive adaptation of the INT-sfCTXT definition
of [BKN04] would allow trivial attacks by declaring successful any adversary that makes the Recv
buffer (part of) an out-of-sync ciphertext, without producing non-trivial output. Our notion
of ciphertext-stream integrity carefully identifies the case just described and, by letting the
receiving oracle wait for further ciphertext fragments, declares the adversary successful only
if Recv outputs a non-empty message fragment resulting from an out-of-sync or exceeding
portion of the ciphertext stream.

We formalize integrity of plaintext and ciphertext streams through the security experi-
ment ExptINT-ATK

Ch,A depicted in Figure 10.5. The experiment provides the adversary with ora-
cles OSend and ORecv, where the former grants A access to algorithm Send under arbitrarily
chosen message fragments and the latter gives A an interface with algorithm Recv. We highlight
that, while the sending oracle OSend is common for both experiments INT-PST and INT-CST,
the receiving oracle ORecv follows different procedures in the two cases, as we further explain
below.

In the execution of the INT-PST experiment, OSend maintains in string MS the stream of
all sent message fragments and, analogously, ORecv maintains in MR the stream of all received
message fragments (and/or error symbols). The adversary wins the game if it causes MS and
MR to deviate in such a way that their difference contains more than error symbols. Formally,
we demand that the string MR output by the receiver is not a prefix of the sender’s string MS ,
but such that this prefix-freeness is not only due to error symbols from E .

In the INT-CST experiment oracles OSend and ORecv maintain strings CS and CR to record
the streams of sent ciphertexts, resp. received ciphertext fragments. Furthermore, ORecv decides
when the adversary wins by inspecting sent and received ciphertext streams, an inherently more
complex task than looking for deviations in the underlying sequences of sent/received message
fragments. Indeed, in a stream-based channel the algorithm Recv may need to buffer several
ciphertexts before being able to recover the underlying message stream or detecting that an error
occurred; such a behavior is reflected in our experiment. When processing in-sync ciphertexts
ORecv simply appends each new fragment to CR. At the moment when an out-of-sync ciphertext
fragment or one that exceeds the sent ciphertext stream arrives, the oracle compares the outputs
of algorithm Recv when processing (i) the current input ciphertext c and (ii) its longest in-sync

157

Chapter 10. Stream-Based Channels

ExptINT-ATK
Ch,A (1λ):

1 (stS , stR) $←− Init(1λ)
2 sync← 1
3 win← 0
4 MS , CS ← ε, MR, CR ← ε
5 AOSend,ORecv (1λ)
6 return win

OSend(m, f):
7 (stS , c) $←− Send(stS ,m, f)
8 MS ←MS‖m
9 CS ← CS‖c

10 return c

INT-PST ORecv(c):
11 (stR,m)← Recv(stR, c)
12 MR ←MR‖m
13 if MR % [MR,MS] /∈ E∗ then
14 win← 1
15 return m

INT-CST ORecv(c):
16 if sync = 0 then // already out-of-sync
17 (stR,m)← Recv(stR, c)
18 if m /∈ E∗ then win← 1
19 else if CR‖c 4 CS then // still in-sync
20 (stR,m)← Recv(stR, c)
21 CR ← CR‖c
22 else
23 if CR ≺ [CR‖c, CS] then

// c deviates or exceeds, contains genuine part
24 c̃← [CR‖c, CS] % CR
25 s̃tR ← stR
26 (s̃tR, m̃)← Recv(s̃tR, c̃)
27 (stR,m)← Recv(stR, c)
28 m′ ← m% [m, m̃]
29 else // c deviates or exceeds, contains no genuine part
30 (stR,m′)← Recv(stR, c)
31 m← m′

32 if CS 64 CR‖c or m′ 6= ε then
// deviation, or exceeding portion produces output

33 sync← 0
34 CR ← CR‖c
35 if m′ /∈ E∗ then win← 1
36 return m

Figure 10.5: Security experiment for integrity (INT-ATK with ATK ∈ {PST,CST}) of stream-based
channels. A PST-attacker is provided with access to the left ORecv oracle (INT-PST), whereas a CST-
attacker is instead granted access to the oracle on the right-hand side (INT-CST).

prefix c̃. The adversary wins if ORecv outputs more in case (i) than it would in case (ii) and if
the difference between the two outputs is a non-empty, valid message. It also wins if it is able
to make Recv output a non-empty, valid message with a subsequent out-of-sync ciphertext. As
for confidentiality (see the discussion in Section 10.3.1) we consider the ORecv oracle to go out
of sync (and set sync← 0) if the ciphertext fragment deviates from the corresponding bits in
the sent ciphertext stream or, when it merely exceeds the sent stream, if the output of Recv for
the exceeding part is non-empty.51

Definition 10.6 (INT-PST and INT-CST security). Let Ch = (Init,Send,Recv) be a stream-
based channel and experiment ExptINT-ATK

Ch,A (1λ) for an adversary A be defined as in Figure 10.3,
where ATK is a placeholder for either PST or CST.

We say that Ch provides integrity of plaintext streams, respectively ciphertext streams
(INT-PST, resp. INT-CST) if for all PPT adversaries A the following advantage function is
negligible in the security parameter:

AdvINT-ATK
Ch,A (λ) := Pr

[
ExptINT-ATK

Ch,A (1λ) = 1
]
.

Remark 10.7. Our definitions of integrity do not preclude from deeming those channels secure in
which message bits can be output as a result of the adversary delivering partial ciphertexts to

51As already discussed in Section 10.3.1, withholding synchronization loss for exceeding fragments that produce
no output eliminates the trivial attack which was present in the proceedings version of this work [FGMP15].
There, the adversary could guess (and input to ORecv) the first bit(s) of the next OSend output and, if successful,
feed in the remaining ciphertext. With ORecv considered out-of-sync on these first bit(s), although generating no
output, this attack illegitimately was considered a successful break of ciphertext-stream integrity.

158

10.3. Security of Stream-Based Channels

the Recv oracle. This is because in the streaming setting we care about the adversary’s ability to
force the receiver to accept message fragments corresponding to a part of the ciphertext stream
that has gone out-of-sync, without attaching importance to ciphertext boundaries. Hence, this is
quite distinct from the usual atomic setting. Of course, applications making use of a streaming
channel may wish to recover a secure channel for atomic messages, in a more traditional sense.
For example, this is the case for HTTP running over TLS and, as noted in the introduction,
has been a source of confusion for developers and led to concrete attacks on protocols such as
TLS [SP13, BDF+14]. We will examine this situation in greater detail in Chapter 11.

We further note that stream-based integrity providing intuitively weaker guarantees than
atomic-message integrity seems to be an intrinsic consequence of the nature of stream-based
channels. In particular, apparent avenues for strengthening the given integrity definition lead to
notions which are clearly inappropriate in the streaming setting. On the one hand, requiring a
channel to output an error immediately after processing the first bit deviating from the sent
ciphertext stream is, for most constructions, an unattainable goal as it is in general impossible
to decide if an initial bit received is genuine or not.52 On the other hand, requiring that a
channel does not output any message bit until a full ciphertext output by Send is received
inappropriately enforces an atomic structure on the channel, i.e., basically the one of [BDPS12].
The latter notion, as already discussed, is too strong for channels that, like TLS, might output
ciphertexts which contain multiple, independent parts.

10.3.3 Relations Amongst Notions and Generic Composition Theorem

We now explore relations between confidentiality and integrity—well-established for atomic
messages by [BN00, BKN04] and follow-up work, culminating in [NRS14]—and investigate
whether these relations can be lifted to our streaming setting. We highlight that, since integrity
for encryption schemes supporting ciphertext fragmentation was not addressed in [BDPS12], we
are the first to consider such relations in the presence of fragmentation.

Ideally we would like to translate the classic implications for authenticated encryption
IND-CCA =⇒ IND-CPA, INT-CTXT =⇒ INT-PTXT, and the powerful composition result
IND-CPA ∧ INT-CTXT =⇒ IND-CCA, all from [BN00], to the realm of stream-based channels.
It is immediate to see that, as in the setting where messages are atomic, the stronger notions
implies the weaker ones for both confidentiality and integrity individually. Unfortunately,
when integrity and confidentiality are targeted simultaneously, the situation for streams is
fundamentally more challenging.

Recall that, in the atomic-message setting, the proof of the composition theorem in [BN00]
proceeds in two steps: starting from the IND-CCA game, one first bounds the probability that
the adversary submits a valid decryption query distinct from an output of the encryption oracle
by using the INT-CTXT advantage. This then allows a reduction to the IND-CPA experiment
(now assuming integrity of ciphertexts), simply by answering all decryption queries with the
distinguished error symbol ⊥. As already noted by Boldyreva et al. [BDPS14], the same proof
strategy does not work for schemes that have multiple decryption error symbols (which models
common real-world behavior of encryption schemes). This is because the reduction can no
longer (in general) know which one of the several possible error symbols should be output when
simulating decryption.

Thus the classic result IND-CPA ∧ INT-CTXT =⇒ IND-CCA already does not follow in the
situation where multiple error messages are possible, not even considering streaming. Worse,
[BDPS14] shows that, in the multiple decryption error setting, there exist schemes that are
secure in both IND-CPA and INT-CTXT senses, yet are not IND-CCA secure. We show later

52Indeed, stream-based integrity does not enforce that Recv outputs an error on deviating ciphertext fragments
at all, but is also satisfied by a channel providing no output (i.e., the empty string) in such cases.

159

Chapter 10. Stream-Based Channels

in this section that similar issues arise for stream-based channels, even when restricting to
the case of single error messages. Specifically, fragmentation at the receiver’s side makes it
harder to emulate a receiving oracle for the IND-CCFA experiment given a receiving oracle for
the INT-CST game.

As a remedy we propose an adapted version of the composition theorem, resurrecting the
result both in our streaming setting and in the case of multiple errors that was considered
in [BDPS14]. However this result can be proven only at the cost of introducing further assump-
tions on the output behavior of the receiving algorithm. The conditions for the composition
theorem may initially look quite demanding but, as we confirm in Section 10.4, there exist
natural schemes that satisfy the required conditions. Moreover, the use of the composition
theorem is not the only route to achieving IND-CCFA security: for specific schemes it may be
possible to prove IND-CCFA security directly.

Confidentiality. A study of the experiments in Figure 10.3 immediately shows that IND-CCFA
security implies IND-CPFA security, since an attacker in the IND-CPFA game only needs to
emulate the left-or-right oracle to provide a faithful simulation of the IND-CCFA game, and can
trivially do so by relaying all encryption queries to its own left-or-right oracle.

Integrity. Assume that ciphertext-stream integrity (INT-CST) from Definition 10.6 holds for
a stream-based channel. Then the channel also provides integrity of plaintext streams (INT-PST)
and the security reduction is tight. To see why consider the integrity experiment depicted in
Figure 10.5: given the INT-CST property, every efficient adversary either never produces a
ciphertext stream CR that deviates from the ciphertext stream CS (hence, by correctness, no
deviation will occur in the underlying message streams) or, if it generates a stream CR that
does deviate from CS , by INT-CST the underlying message streams will only differ by an error
string. We formalize this result in the following proposition.

Proposition 10.8. Let Ch = (Init, Send,Recv) be a correct stream-based channel which is
INT-CST secure. Then the channel is also INT-PST secure. Furthermore, AdvINT-PST

Ch,A (λ) ≤
AdvINT-CST

Ch,A (λ) for any algorithm A.

Proof. Assume that A attacks the INT-PST property of the channel. First note that A has the
same interfaces as if attacking INT-CST such that we can think of running both experiments
simultaneously. It then suffices to show that, if we set win ← 1 in line 14 of the INT-PST
experiment, then we would also set win← 1 (in line 18 or 35) in the simultaneous execution of
the INT-CST experiment (both in Figure 10.5). Note that as long as sync = 1 and the ciphertext
stream submitted to ORecv is a prefix of the one created by OSend, then the receiver’s oracle in
experiment INT-CST would indeed return the recovered message fragment, as in the INT-PST
experiment.

Suppose that A triggers win← 1 in the INT-PST experiment. If at this point CR 4 CS then,
because of correctness of the channel, we must also have MR 4MS , implying that win would
not have been set. It follows that there must exist some CR‖c 64 CS where c is the first call
to ORecv where the concatenation of the receiver strings deviate from or exceed the ciphertext
stream of the sender. At this point we must also have sync = 1 and win = 0 in the INT-CST
experiment and we enter the third case in line 22.

If in this case c contains some non-deviating prefix c̃ 4 c, we compute c̃ such that CR‖c̃ 4 CS
is maximal. It again follows from correctness that for the processed c̃ we get a message fragment
m̃ such that MR‖m̃ 4MS . But in order to set win← 1 in the INT-PST experiment, we must
have that the full fragment c makes Recv output a message fragment m such that m contains
message bits beyond the common prefix withMS . It follows that m′ ← m%[m, m̃], the fragment

160

10.3. Security of Stream-Based Channels

ExptERR-PRE
Ch,Pred,A(1λ):

1 (stS , stR) $←− Init(1λ)
2 win← 0
3 CS , CR ← ε
4 AOSend,ORecv (1λ)
5 return win

OSend(m, f):
6 (stS , c) $←− Send(stS ,m, f)
7 CS ← CS‖c
8 return c

ORecv(c):
9 (stR,m)← Recv(stR, c)

10 if 〈m〉E 6= Pred(CS , CR, c) then
11 win← 1
12 CR ← CR‖c
13 return m

Figure 10.6: Security experiment for error predictability (ERR-PRE) of stream-based channels. We
denote by 〈·〉E : ({0, 1} ∪ E)∗ → E∗ the ‘projection onto the error space’, i.e., the mapping that removes
from a string all occurrences that do not belong to the error space E . For instance, let E = {⊥1,⊥2} and
m = 01⊥1100⊥2; then 〈m〉E = ⊥1⊥2.

of m beyond m̃, too, must contain some non-trivial entries, different from error symbols. But
then we also set win← 1 in the INT-CST experiment run.

If c contains only deviating (or exceeding) bits or in the case that synchronization was lost
before, the full resulting message fragment (m′ resp. m) is considered for the winning condition,
i.e., whenever A in this case wins in the INT-PST experiment, it also does in the INT-CST
experiment.

Generic composition. As explained earlier, standard arguments to prove the composition
theorem do not apply in the streaming setting. The issue here is that losing the integrity
game does not make the output of ORecv (in the confidentiality game) predictable. Therefore,
any strategy which allows the recovery of the composition theorem should make it possible to
forecast the output behavior of the receiving algorithm when certain conditions are met. In line
with this observation we introduce a new notion, so-called error predictability, which precisely
formalizes the ability to efficiently predict (part of) the output of Recv in case error messages
are expected. Intuitively speaking, error predictability demands that any error symbols returned
by Recv on input the ‘next ciphertext’ c can be efficiently predicted given only the ciphertext
stream CS output by Send, the ciphertext stream CR input to Recv, and the ciphertext c.

As formalized in Definition 10.9 and through the security experiment of Figure 10.6, we say
that a channel provides error predictability (ERR-PRE) with respect to an efficient probabilistic
predictor algorithm Pred if this predictor Pred, given CR, CS , and c, accurately outputs the
above-mentioned error string with high probability, for every arbitrarily chosen ciphertext c.
Put differently, the ERR-PRE experiment declares its adversary to be successful if it ever queries
a (counterfeit) ciphertext c that induces Recv to produce different errors from those output by
the predictor. Note that the adversary can always learn if it has won by evaluating the winning
condition “〈m〉E 6= Pred(CS , CR, c)” itself for the available data.

Definition 10.9 (Error predictability (ERR-PRE)). Let Ch = (Init,Send,Recv) be a stream-
based channel with error space E, and let Pred be an efficient probabilistic algorithm. We say that
Ch provides error predictability (ERR-PRE) with respect to Pred if for every PPT adversary A
playing in the experiment ERR-PRE defined in Figure 10.6 against channel Ch, the following
advantage function is negligible:

AdvERR-PRE
Ch,Pred,A(λ) := Pr

[
ExptERR-PRE

Ch,Pred,A(1λ) = 1
]
.

We are now ready to formalize the idea that, for the class of error-predictable channels, the
generic composition theorem holds (even for channels supporting multiple decryption errors).

161

Chapter 10. Stream-Based Channels

Theorem 10.10 (INT-CST ∧ IND-CPFA ∧ ERR-PRE =⇒ IND-CCFA). Let Ch = (Init, Send,
Recv) be a (correct) stream-based channel. If Ch provides integrity of ciphertext streams, error
predictability with respect to a predictor Pred, and indistinguishability under chosen plaintext-
fragment attacks then it also provides indistinguishability under chosen ciphertext-fragment
attacks. Formally, for every efficient IND-CCFA adversary A there exist efficient INT-CST
adversary B, ERR-PRE adversary C, and IND-CPFA adversary D such that

AdvIND-CCFA
Ch,A ≤ 2 · AdvINT-CST

Ch,B + 2 · AdvERR-PRE
Ch,Pred,C + AdvIND-CPFA

Ch,D .

Proof. We will consider a sequence of game transitions from the IND-CCFA experiment to
the IND-CPFA experiment and bound the difference in probability between each game and its
successor in the sequence with the advantage of a specific adversary. For better legibility we will
denote the intermediate experiments by Ei,bA for i ∈ {0, 1, 2} and, with a slight abuse of notation,
use the shorthand Pr[Ei,bA] to indicate the probability Pr[Ei,bCh,A = 1]. In the game transitions
we only change the experiment’s ORecv oracle behavior; the modifications are also shown in
Figure 10.7.

Starting from the IND-CCFA experiment of Figure 10.3 against A, that we denote E0,b
A ,

we define a new experiment E1,b
A which provides the adversary only with the output of the

error predictor in case it breaks ciphertext integrity of streams. More precisely, we modify the
ORecv oracle in E1,b

A as follows: we add before Lines 13 and 29 of the original experiment a
conditional check for m /∈ E∗ (before line 13) resp. m′ /∈ E∗ (before line 29). If either of these
conditions evaluates to true, we set a flag badbI and replace m, resp. m′, with the output of
Pred(CS , CR, c). Let badbI also denote event that the flag badbI is set to true. Note that E1,b

A
and E0,b

A execute the same instructions as long as badbI does not happen (beyond bookkeeping
of CR in the sync = 0 case which could also be inserted in E0,b

A without changing its behavior).
We can thus assert that Pr[E0,b

A ∧ ¬badbI] = Pr[E1,b
A ∧ ¬badbI], and hence obtain the bound∣∣Pr[E0,b

A]− Pr[E1,b
A]
∣∣ ≤ Pr[badbI] (by the Difference Lemma [Sho06] or the Fundamental Lemma

of game playing [BR06]).
We show next how to convert any adversary A that triggers either event bad0

I or bad1
I into

an adversary B that violates the INT-CST security of Ch. Adversary B initially chooses a bit d
uniformly at random and then runs A, answering its queries as follows. If A queries (m0,m1, f)
to OLoR then B queries (md, f) to its oracle OSend and forwards the oracle’s answer to A.
Similarly B relays every receiving query c to its oracle ORecv, obtains a response m, and returns
the projection 〈m〉E of m onto the error space E to A. Note that if the message A is supposed
to obtain were to contain any non-error symbol then it would trigger the bad event. When A
halts, so does B.

As games E0,b
A and E1,b

A are the same until badbI we conclude that B provides a prefect
simulation of the games as long as A does not trigger badbI . Moreover, if A triggers badbI then
B wins in the INT-CST experiment if it had chosen d = b. Thus, we derive the inequality
AdvINT-CST

Ch,B ≥ Pr[bad0
I ∧ d = 0] + Pr[bad1

I ∧ d = 1] = 1
2 · Pr[bad0

I] + 1
2 · Pr[bad1

I], from which we
can bound the advantage of A in the IND-CCFA experiment as follows:

AdvIND-CCFA
Ch,A =

∣∣∣Pr[E0,1
A]− Pr[E0,0

A]
∣∣∣

≤
∣∣∣Pr[E0,1

A]− Pr[E1,1
A]
∣∣∣+ ∣∣∣Pr[E1,1

A]− Pr[E1,0
A]
∣∣∣+ ∣∣∣Pr[E1,0

A]− Pr[E0,0
A]
∣∣∣

≤ Pr[bad1
I] +

∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣+ Pr[bad0

I]

≤ 2 · AdvINT-CST
Ch,B +

∣∣∣Pr[E1,1
A]− Pr[E1,0

A]
∣∣∣ .

Observe that in experiment E1,b
A , if badbI is not triggered, the receiving algorithm when fed

with a deviating or exceeding ciphertext fragment either outputs error symbols or an empty

162

10.3. Security of Stream-Based Channels

ORecv(c) in E0,b
A :

11 if sync = 0 then
12 (stR,m)← Recv(stR, c)

13 return m
14 else if CR‖c 4 CS then
15 (stR,m)← Recv(stR, c)
16 CR ← CR‖c
17 return ε
18 else
19 if CR ≺ [CR‖c, CS] then
20 c̃← [CR‖c, CS] % CR
21 s̃tR ← stR
22 (s̃tR, m̃)← Recv(s̃tR, c̃)
23 (stR,m)← Recv(stR, c)
24 m′ ← m% [m, m̃]
25 else
26 (stR,m′)← Recv(stR, c)
27 if CS 64 CR‖c or m′ 6= ε then
28 sync← 0

29 CR ← CR‖c
30 return m′

ORecv(c) in E1,b
A :

1 if sync = 0 then
2 (stR,m)← Recv(stR, c)
3 if m /∈ E∗ then
4 badbI ← true
5 m $←− Pred(CS , CR, c)

6 CR ← CR‖c
7 return m
8 else if CR‖c 4 CS then
9 (stR,m)← Recv(stR, c)

10 CR ← CR‖c
11 return ε
12 else
13 if CR ≺ [CR‖c, CS] then
14 c̃← [CR‖c, CS] % CR
15 s̃tR ← stR
16 (s̃tR, m̃)← Recv(s̃tR, c̃)
17 (stR,m)← Recv(stR, c)
18 m′ ← m% [m, m̃]
19 else
20 (stR,m′)← Recv(stR, c)
21 if CS 64 CR‖c or m′ 6= ε then
22 sync← 0
23 if m′ /∈ E∗ then
24 badbI ← true
25 m′ $←− Pred(CS , CR, c)

26 CR ← CR‖c
27 return m′

ORecv(c) in E2,b
A :

1 if sync = 0 then
2 (stR,m)← Recv(stR, c)
3 if m /∈ E∗ then
4 badbI ← true
5 m $←− Pred(CS , CR, c)
6 e $←− Pred(CS , CR, c)
7 if m 6= e then
8 badbE ← true
9 CR ← CR‖c

10 return e
11 else if CR‖c 4 CS then
12 (stR,m)← Recv(stR, c)
13 CR ← CR‖c
14 return ε
15 else
16 if CR ≺ [CR‖c, CS] then
17 c̃← [CR‖c, CS] % CR
18 s̃tR ← stR
19 (s̃tR, m̃)← Recv(s̃tR, c̃)
20 (stR,m)← Recv(stR, c)
21 m′ ← m% [m, m̃]
22 else
23 (stR,m′)← Recv(stR, c)
24 if CS 64 CR‖c or m′ 6= ε then
25 sync← 0
26 if m′ /∈ E∗ then
27 badbI ← true
28 m′ $←− Pred(CS , CR, c)
29 e $←− Pred(CS , CR, c)
30 if m′ 6= e then
31 badbE ← true
32 CR ← CR‖c
33 return e

Figure 10.7: The modifications in the proof of Theorem 10.10 within theORecv oracle in experiments E0,b
A

(equal to the IND-CCA experiment), E1,b
A , and E2,b

A . Lines in frames in experiment Ei,bA differ from those
in the previous experiment Ei−1,b

A . Other lines (on same height) are identical in both experiments. Line
numbering in E0,b

A is as in the IND-CCFA experiment (see Figure 10.3).

string. Using the error predictability of the channel wrt. predictor Pred, we can now predict
which one of these two cases actually occurs. To this end, we define a variant of E1,b

A , denoted E2,b
A ,

in which the receiving oracle additionally processes deviating or exceeding ciphertext fragments
using the predictor Pred and provides A with that output. Furthermore, a flag badbE is set if
the output of Pred differs from the output of Recv in these cases. See Figure 10.7 for the precise
changes from E1,b

A to E2,b
A . Let again badbE also denote the event that the flag badbE is set to true.

Then E1,b
A and E2,b

A execute the same instructions as long as badbE does not happen, and hence
their difference in probability is bounded by Pr[badbE].

Similarly to the previous hop we define an ERR-PRE adversary C which runs A, chooses
a bit d uniformly at random, and simulates games Ei,bA for i ∈ {1, 2} by relaying A’s queries
to its oracles (as above, left-or-right queries (f,m0,m1) are first turned into (f,md), then sent
to C’s oracle). First of all observe that, in the check m 6= e (resp. m′ 6= e) triggering badbE ,
it always holds that m ∈ E∗ (resp. m′ ∈ E∗) and hence m = 〈m〉E resp. m′ = 〈m′〉E . Thus,
if A triggers badbE , this makes C win in the ERR-PRE experiment, as m 6= e if and only if

163

Chapter 10. Stream-Based Channels

DA,OLoR (1λ):
1 sync← 1
2 CS , CR ← ε
3 b′ $←− AO

∗
LoR,O

∗
Recv (1λ)

4 return b′

If A queries O∗LoR(m0,m1, f):
5 if |m0| 6= |m1| then
6 return to A
7 c← OLoR(m0,m1, f)
8 CS ← CS‖c
9 return c to A

If A queries O∗Recv(c):
10 if sync = 0 then
11 e $←− Pred(CS , CR, c)
12 CR ← CR‖c
13 return e to A
14 else if CR‖c 4 CS then
15 CR ← CR‖c
16 return ε to A
17 else
18 e $←− Pred(CS , CR, c)
19 if CS 64 CR‖c or e 6= ε then
20 sync← 0
21 CR ← CR‖c
22 return e to A

Figure 10.8: IND-CPFA adversary D simulates the experiment E2,b
A , as in the proof of Theorem 10.10.

〈m〉E 6= Pred(CS , CR, c) (and likewise for m′).
Using a similar argument as above we deduce AdvERR-PRE

Ch,Pred,C ≥ 1
2 · Pr[bad0

E] + 1
2 · Pr[bad1

E],
which allows us to bound the advantage of A in the second experiment as follows:∣∣∣Pr[E1,1

A]− Pr[E1,0
A]
∣∣∣ ≤ ∣∣∣Pr[E1,1

A]− Pr[E2,1
A]
∣∣∣+ ∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣+ ∣∣∣Pr[E2,0

A]− Pr[E1,0
A]
∣∣∣

≤ 2 · AdvERR-PRE
Ch,Pred,C +

∣∣∣Pr[E2,1
A]− Pr[E2,0

A]
∣∣∣ .

We finally observe that the indistinguishability game E2,b
A can be safely emulated using an

IND-CPFA adversary D, as shown in Figure 10.8. Here D is granted oracle access to OLoR as in
the IND-CPFA experiment of Figure 10.3 and simulates the IND-CCFA oracles O∗LoR and O∗Recv
for A. Adversary D simply relays O∗LoR queries to its oracle OLoR, while it answers queries
to O∗Recv on its own by invoking the predictor Pred and returning its output.53 This leads to the
following bound: ∣∣∣Pr[E2,1

A]− Pr[E2,0
A]
∣∣∣ ≤ AdvIND-CPFA

Ch,D .

Combining the various bounds implied by the above sequence of game transitions yields the
stated security bound.

Remark 10.11 (Error predictability vs. error simulatability). After the original publication of
this work [FGMP15], Barwell et al. introduced the notion of error simulatability for subtle
authenticated encryption [BPS15]. Error simulatability is similar in spirit to, but seemingly
weaker than, error predictability (the latter requires the existence of an efficient algorithm that
outputs the same errors produced by Recv while the former only demands that simulated errors
be indistinguishable54 from those output by Recv). In fact, since error predictability is defined
for a stateful primitive and error simulatability accounts for a stateless primitive, the two notions
are incomparable. However, if error simulatability were to be adapted to the streaming setting,
it seems plausible that Theorem 10.10 also holds under such weaker requirement. We leave open

53We note that D could actually always downright invoke the error predictor, which would be conceptually
closer to the original composition theorem proof for stateful encryption [BKN04]. We however decided to follow
the in-sync/out-of-sync case distinction to facilitate comparison with the structure of ORecv in E2,b

A .
54More precisely, a subtle AE scheme is an AE scheme augmented with a ‘leakage function’ describing how (a

specific implementation of) the decryption algorithm reacts when processing invalid ciphertexts. Thus, according
to [BPS15], the simulator’s output need not be indistinguishable from the output of the decryption algorithm,
but rather from the output of the leakage function.

164

10.4. Generic Construction of Stream-Based Channels from AEAD

how to adapt error simulatability to the context of stream-based channels and to investigate
further how it relates to error predictability.

10.4 Generic Construction of Stream-Based Channels from
AEAD

In this section we demonstrate the feasibility of our security notions by providing a generic
construction of stream-based channels which is directly based on the well-established primitive
of authenticated encryption with associated data (AEAD, cf. Section 9.2) and provides strong
security in terms of confidentiality as well as integrity. Although being illustrative rather than
definitive, we remark that our construction is quite close to the TLS record protocol.

10.4.1 The Construction

We propose a generic construction of a stream-based channel ChAEAD = (Init, Send,Recv) from
any (randomized) AEAD scheme AEAD = (Enc,Dec) with key space K and error symbol ⊥. We
assume that AEAD supports encryption of variable-length messages of up to il bits and that
the ciphertext output for any such message has bit-length at most 2ol − 1, for il, ol ∈ N. This
enables us to encode the length of each AEAD ciphertext with a fixed-size string of ol bits.

Our channel construction ChAEAD has sending state space SS = K × N× {0, 1}∗, receiving
state space SR = K × N× {0, 1}∗ × {0, 1}, and error space E = {⊥}. In Figure 10.9 we give an
algorithmic specification of our construction, and describe it next in detail.

Construction 10.12 (AEAD-based construction ChAEAD). Consider an AEAD scheme AEAD =
(Enc,Dec) with key space K and error symbol ⊥. We define ChAEAD = (Init, Send,Recv) to be
the stream-based channel algorithmically specified in Figure 10.9 and described in detail below.

• The Init algorithm first draws uniformly at random a key K $←− K for the AEAD scheme.
It then initializes the sending and receiving state respectively as tuples containing key K,
a sequence number set to 0, and a message-fragment resp. ciphertext-fragment buffer
initially empty; the receiving state also contains a failure flag fail, initially set to 0.

• The Send algorithm keeps on buffering input message strings until it has collected at
least il bits. If sufficiently many bits have been collected, then Send invokes the AEAD
encryption algorithm on input message chunks m′ of length |m′| = il and a running
sequence number seqno as associated data.55 The corresponding AEAD ciphertext c′ is
then prepended with the binary encoding of its size, i.e., the bitstring len = |c′|, and the
resulting string is appended to the ciphertext string c to be output. In case the Send
algorithm was called with the flush flag set to 1, in a final step it also AEAD encrypts any
remaining buffered message in the same way, in order to empty the message buffer (this
message will potentially contain less than il bits). Note that the size encoding len is a
bitstring of fixed length ol and it is not authenticated. Henceforth we may refer to the
concatenation of an AEAD ciphertext c′ prepended with its size encoding len as a ‘block’
B = len‖c′ (see line 9 in Figure 10.9).

• The Recv algorithm outputs an error (without any further state modification) once a first
error has emerged from the AEAD decryption algorithm in some previous call (this is

55With a nonce-based AEAD scheme one could use seqno as the encryption nonce and have empty associated
data input, as done, e.g., in the TLS 1.3 record protocol from draft-11 [Res15f] on (cf. our construction 12.8 in
Chapter 12). We have chosen the present construction because of its closeness to TLS 1.2 [DR08] and initial
drafts of TLS 1.3 (up to draft-10 [Res15e]), which treat the sequence number as associated data.

165

Chapter 10. Stream-Based Channels

Init(1λ):
1 K $←− K
2 stS,0 = (K, 0, ε)
3 stR,0 = (K, 0, ε, 0)
4 return (stS,0, stR,0)

Send(stS ,m, f):
1 parse stS as (K, seqno, buf)
2 buf ← buf‖m
3 c← ε
4 while |buf| ≥ il do
5 m′ ← buf[1, . . . , il]
6 buf ← buf %m′

7 c′ ← EncK(seqno,m′)
8 seqno← seqno + 1
9 B ← |c′| ‖ c′ // |c′| ∈ {0, 1}ol

10 c← c ‖ B
11 if f = 1 and buf 6= ε then
12 c′ ← EncK(seqno, buf)
13 seqno← seqno + 1
14 c← c ‖ |c′| ‖ c′ for |c′| ∈ {0, 1}ol

15 buf ← ε
16 stS ← (K, seqno, buf)
17 return (stS , c)

Recv(stR, c):
1 parse stR as (K, seqno, buf, fail)
2 if fail = 1 then
3 return (stR,⊥)
4 buf ← buf‖c
5 m← ε
6 while |buf| ≥ ol do
7 parse buf[1, . . . , ol] as integer `
8 if |buf| ≥ ol + ` then
9 len← buf[1, . . . , ol]

10 c′ ← buf[ol + 1, . . . , ol + `]
11 buf ← buf % len‖c′
12 m′ ← DecK(seqno, c′)
13 seqno← seqno + 1
14 m← m‖m′
15 if m′ = ⊥ then
16 fail← 1
17 break // leave while loop
18 else
19 break // leave while loop
20 stR ← (K, seqno, buf, fail)
21 return (stR,m)

Figure 10.9: Generic construction of a stream-based channel ChAEAD = (Init, Send,Recv) from any
authenticated encryption with associated data (AEAD) scheme AEAD = (Enc,Dec) with key space K
and distinguished error symbol ⊥ which allows to encrypt variable-length messages of up to il bits and
for which the ciphertext output has length at most 2ol − 1 bits.

indicated by the failure flag set to fail = 1); otherwise, it appends the incoming ciphertext
fragment to its buffer. In case enough bits to parse the length field of ol bits were received
it does so. Next, it checks whether the buffer contains a complete AEAD ciphertext c′
of the indicated length len and, if so, strips it from the buffer, decrypts it (incrementing
the sequence number used in the associated data), and appends the result m′ to the
message m to be output. This process is repeated until there is no full block B = len‖c′
left in the buffer. However, in case the AEAD decryption algorithm outputs an error,
after appending the error symbol ⊥ to the output message, the Recv algorithm sets the
failure flag to 1 and stops parsing further input.

Correctness. For correctness, observe that the Send algorithm generates a ciphertext output
which always consists of blocks of ol bits plus the number ` of bits binary encoded in these
ol bits (at most 2ol − 1), where the sequence number seqno is increased with each such block
output. Moreover, when called with the flush flag set to 1, the Send algorithm ensures that
the entire message stream input so far is written into the ciphertext being output. The Recv
algorithm buffers its input and re-establishes the same blocks of ol + ` bits as generated by
Send, thus also assigning the same sequence number to each block. Since the AEAD decryption
algorithm in Recv is called on the same sequence number and exactly the output generated
by the encryption algorithm call in Send, we obtain correctness for our generic stream-based
channel construction ChAEAD by virtue of the correctness of the AEAD scheme.

166

10.4. Generic Construction of Stream-Based Channels from AEAD

10.4.2 Security Analysis

Our generic stream-based channel construction ChAEAD from Construction 10.12 provides
indistinguishability under chosen plaintext-fragment attacks (IND-CPFA), integrity of ciphertext
streams (INT-CST), and error predictability (ERR-PRE), given that the underlying authenticated
encryption with associated data scheme AEAD provides indistinguishability under chosen
plaintext attacks (IND-CPA) and integrity of ciphertexts (INT-CTXT) as defined in Section 9.2.
Using Theorem 10.10 we can moreover infer that it also provides indistinguishability under
chosen ciphertext-fragment attacks (IND-CCFA).

Theorem 10.13 (IND-CPFA security of ChAEAD). The stream-based channel ChAEAD from Con-
struction 10.12 provides indistinguishability under chosen plaintext-fragment attacks (IND-CPFA)
if the authenticated encryption with associated data scheme AEAD provides indistinguishability
under chosen plaintext attacks (IND-CPA). Formally, for every efficient IND-CPFA adversary A
against ChAEAD there exists an efficient IND-CPA adversary B against AEAD such that

AdvIND-CPFA
ChAEAD,A (λ) ≤ AdvIND-CPA

AEAD,B (λ).

Proof. We reduce the IND-CPFA security of ChAEAD to the IND-CPA security of AEAD by
constructing from an efficient adversary A against the former property an efficient adversary B
against the latter property. In order to simulate the OLoR oracle for A we let B perform the
buffering and sending procedure as defined for Send in Figure 10.9, keeping two buffers for the
two message inputs m0 and m1 from A and a sequence number. As the buffering behavior
and sending procedure only depends on the length of the input message to Send but not its
content, the message blocks to be encrypted using the AEAD scheme are treated identically for
either the m0 or the m1 buffer. This allows B to replace the encryption operations by calls to
its encryption oracle in the IND-CPA game with the according blocks (of same size) both from
the m0 and m1 buffer and the (always coinciding) sequence number. This results in a single
ciphertext which B can then process further, as defined in the Send algorithm, to provide the
output ciphertext to A. Finally, when A outputs its guessed bit b′, we let B output the same
bit as its guess.

Assume A is successful. Since B perfectly simulates the OLoR oracle for A, it also wins in
the IND-CPFA game.

Theorem 10.14 (INT-CST security of ChAEAD). The stream-based channel ChAEAD from Con-
struction 10.12 provides integrity of ciphertext streams (INT-CST) if the authenticated encryption
with associated data scheme AEAD provides integrity of ciphertexts (INT-CTXT). Formally,
for every efficient INT-CST adversary A against ChAEAD there exists an efficient INT-CTXT
adversary B against AEAD such that

AdvINT-CST
ChAEAD,A(λ) ≤ AdvINT-CTXT

AEAD,B (λ).

Proof. Recall that the receiving algorithm Recv of our channel construction processes the
ciphertext stream by identifying blocks B1, B2, . . . with Bi = leni‖c′i where c′i is an AEAD
ciphertext and leni is the (fixed-length) binary encoding of its size |c′i|. The message fragments
output by Recv are obtained by concatenating the AEAD decryptions m′i of the so identified
ciphertexts c′i. In particular, Recv produces some non-trivial output if and only if it processes
at least a full block Bi. The main observation is that, in order to break the INT-CST property
of ChAEAD, an adversary must submit to ORecv a non-genuine (i.e., deviating or exceeding)
ciphertext stream whose non-genuine part contains a full valid block B∗ = len∗‖c′∗. More
precisely, the AEAD decryption of c′∗ with the current sequence number seqno as associated
data must yield some valid message m∗. Now, since the scheme increases seqno before each

167

Chapter 10. Stream-Based Channels

AEAD encryption, no associated data is ever repeated. Moreover, by hypothesis the block B∗
deviates from the genuine ciphertext stream. Thus (seqno, c′∗) is an AEAD forgery.

We now formalize this intuition. Let A be an adversary attacking the INT-CST of chan-
nel ChAEAD. We build an adversary B which runs A internally as a black box and breaks
the INT-CTXT property of AEAD as long as A is successful against the INT-CST property
of ChAEAD. Adversary B emulates the channel construction (see Figure 10.9) by forwarding
AEAD encryptions to the oracle OEnc(·, ·) provided in the INT-CTXT security experiment and
by performing the buffering steps on its own. For this it keeps buffer strings bufS , bufR and a
sequence number seqno, initialized to the empty strings and to zero respectively. It also keeps
lists m′ and c′ for bookkeeping of sent AEAD messages and ciphertexts respectively, as well as
a string CR in which it registers the received (stream) ciphertext fragments.
B answers A’s queries as follows.

• When A poses a sending query (m, f), B appends m to the buffer bufS , initializes an empty
ciphertext c, and repeats the steps of instructions 4–10 from Figure 10.9. In particular, B
performs the encryption steps by querying OEnc on tuples (ad,m′) where ad = seqno is a
running sequence number, and registers the AEAD messages m′ and ciphertexts c′ in the
lists m′ and c′, respectively, according to the order in which they are processed. If the
flush flag is set to f = 1, B executes one more encryption (oracle call) using as m′ the
remaining buffer. Finally it returns c to A.

• When A poses a receiving query c, the reduction updates buffer bufR and string CR by
appending c to both of them and checks if c is genuine by comparing the components of c′
with the blocks Bi = leni‖c′i contained in CR.
If c is genuine, B traverses the buffer bufR and identifies the blocks Bi corresponding to the
sent AEAD ciphertexts. Recall that for each block Bi = leni‖c′i the AEAD ciphertext c′i
is registered in the list c′ and, correspondingly, its decryption m′ is registered in the
list m′. Thus, B can for each identified ciphertext c′i recover the decryption m′i. After this,
B removes the identified blocks Bi = leni‖c′i from the buffer bufR and concatenates all
corresponding messages m′i in the same order they appear in m′, obtaining a string m;
finally B gives m to A.
If c is not genuine, B first performs the procedure above, but using instead of c its
longest genuine prefix C̃ that contains only full blocks Bi. Note that after this step
the buffer bufR will be empty (because it only contained full blocks and all these are
processed). Afterwards B tries to extract a forgery from the remaining part of c and
potentially subsequent queries: if c % C̃ contains a full block B∗ then B immediately
extracts a forgery, otherwise it keeps answering with the empty string all subsequent
receiving queries until it gets enough ciphertext bits to extract a forgery. As soon as
the buffer CR is augmented with at least a non-genuine full block B∗ = len∗‖c′∗, the
reduction outputs as forgery (ad∗, c′∗) with ad∗ = seqno + 1 and halts. Note that ChAEAD
by construction from the first occurring AEAD error on only outputs outputs errors.
Hence, if A succeeds at all in breaking integrity, then it will be with the first deviating
ciphertext, which consequently B outputs as its forgery attempt.

It is immediate to see that B performs a sound simulation of the INT-CST experiment.
Indeed, for answering sending queries it executes the same instructions as Send (only the AEAD
encryption is replaced with an oracle call to OEnc, however, the AEAD encryption takes place
within the oracle). Although B lacks a decryption oracle and, thus, cannot process A’s receiving
queries, it can answer all genuine queries since, for these, the AEAD decryption is correct. In the
same way B can recover the longest genuine message fragment underlying the first non-genuine

168

10.4. Generic Construction of Stream-Based Channels from AEAD

query. Regarding non-genuine decryption queries, B can either extract an AEAD forgery, or
trivially answer by returning an empty message and waiting for more ciphertext bits.

It remains to show that if A breaks the INT-CST property of ChAEAD then B is successful
in the INT-CTXT game against AEAD. Let c denote A’s first out-of-sync query, let c̃ be the
longest in-sync prefix of c, and let m and m̃ be the message fragments that Recv would output
on input c and c̃ respectively in the real execution of the INT-CST experiment.

Assume first that A is successful with its first non-genuine query to ORecv: we thus have
m % [m, m̃] /∈ E∗. Suppose that the (genuine) ciphertext stream that Recv would process
up to c̃ contains the first i AEAD blocks B1, . . . , Bi sent. By construction m̃ = m′1‖ · · · ‖m′i
where each m′i is the AEAD decryption of c′i. Then the ciphertext fragment c% (B1‖ · · · ‖Bi)
contains as a prefix a full block B∗ = len∗‖c′∗ such that c′∗ with associated data seqno∗ = i+ 1
AEAD-decrypts to m∗ 6= ⊥, otherwise we would have either m% [m, m̃] ∈ E or m% [m, m̃] = ε,
against our hypothesis.

The argument above easily extends to the general case in which A poses several non-genuine
queries to ORecv before breaking the INT-CST security of ChAEAD by letting ORecv create some
non-trivial output: B simply keeps buffering and answering queries with an empty string until it
collects enough ciphertext bits to form a full block B∗ = len∗‖c′∗ (here ‘enough’ means ol + len∗

bits).
In both cases, once B obtains sufficiently many ciphertext bits to isolate a block B∗, it stops

the simulation and returns as valid AEAD forgery the pair (seqno∗, c′∗).

Theorem 10.15 (ERR-PRE security of ChAEAD). The stream-based channel ChAEAD from Con-
struction 10.12 provides error predictability (ERR-PRE), with respect to the predictor Pred given
in the proof of the theorem, if the authenticated encryption with associated data scheme AEAD
provides integrity of ciphertexts (INT-CTXT). Formally, for every efficient ERR-PRE adver-
sary A against ChAEAD and predictor Pred there exists an efficient INT-CTXT adversary B
against AEAD such that

AdvERR-PRE
ChAEAD,Pred,A(λ) ≤ AdvINT-CTXT

AEAD,B (λ).

Proof. We start with defining the predictor algorithm Pred. On input CS ∈ {0, 1}∗, CR ∈ {0, 1}∗,
and c ∈ {0, 1}∗ the predictor first computes C ′R ∈ {0, 1}∗ by removing from CR‖c the longest
prefix with CS which only consists of complete blocks containing each a length field (of ol bits,
where ol is determined by the AEAD scheme) followed by as many bits as binary encoded in
that length field. In case C ′R contains a complete block (length field plus encoded number of
bits), Pred outputs the distinguished error symbol ⊥ of the AEAD scheme, otherwise it outputs
the empty string ε.

Now we reduce the error predictability ERR-PRE of ChAEAD to the INT-CTXT security
of AEAD by turning any efficient adversary A that distinguishes the output of Recv from the
output of Pred into an efficient adversary B against the INT-CTXT property of the AEAD
scheme. Initially, B sets CS ← ε, CR ← ε. As in the previous two proofs, it simulates the oracle
OSend for A using the encryption oracle in the INT-CTXT game and furthermore appends the
obtained result c to CS .

For simulating the ORecv oracle for A, adversary B appends c to CR and returns the empty
string ε to A as long as the ciphertext fragments provided are in sync (CR‖c 4 CS). When A
provides ciphertext fragments such that the receiving buffer at some point contains a full block
(consisting of an encoded length and the ciphertext of that length) which at some point deviates
from the genuine ciphertext stream (i.e., was never output by B’s simulation of OSend), B outputs
the ciphertext of this block along with the current sequence number value as associated data
field as its forgery in the INT-CTXT game and stops.

Note that B perfectly simulates the ERR-PRE experiment for A, as by correctness of ChAEAD
and the buffering behavior of Recv, the first point where Recv could output an error symbol

169

Chapter 10. Stream-Based Channels

is when it received a complete ciphertext block which deviates from the ciphertext stream
generated by Send. Up to this point, also Pred will not have output an error, so that A cannot
have won yet.

Assume A wins at the point where the input ciphertext c completes the first deviating
ciphertext block input to Recv. As this requires that 〈m〉E 6= Pred(CS , CR, c) but the output of
Pred will be ⊥, this means that the ciphertext block (and the according sequence number as
associated data) decrypts under the AEAD scheme to a valid message (and not the distinct error
symbol). Hence, this output constitutes a valid forgery and B thus also wins in the INT-CTXT
game. Furthermore, note that A cannot win in the ERR-PRE experiment with a later call to its
ORecv oracle, because after the first error occurred, both Recv and Pred consistently output ⊥
for any further ciphertext fragment input c.

Applying Theorem 10.10 we can now deduce the following corollary from Theorems 10.13–
10.15.

Corollary 10.16 (IND-CCFA security of ChAEAD). The stream-based channel ChAEAD from Con-
struction 10.12 provides indistinguishability under chosen ciphertext-fragment attacks (IND-CCFA)
if the authenticated encryption with associated data scheme AEAD provides indistinguishability
under chosen plaintext attacks (IND-CPA) and integrity of ciphertexts (INT-CTXT).

10.4.3 A Note on the TLS Record Protocol

As discussed earlier, the Transport Layer Security (TLS) record protocol implements a stream-
based channel whose complete analysis as such lies outside of the scope of this work. However we
do pause to note that our Construction 10.12 of a stream-based channel based on authenticated
encryption with associated data is conceptually close to the TLS record protocol when using an
AEAD scheme as specified for TLS version 1.2 [DR08, Section 6.2.3.3] and in the current draft
for TLS version 1.3 [Res18, Section 5]: the record protocol also incorporates a sequence number
which is authenticated but not sent on the wire, and a length field which is sent and authenticated
in TLS 1.2 (and which is sent but not authenticated in the draft TLS 1.3).56 However, the
TLS record protocol in version 1.2 additionally includes a 2-byte version number and a 1-byte
content type; these are both sent and authenticated in the associated data. Moreover, the
AEAD schemes used are considered to be nonce-based, with the TLS 1.3 draft specifying how
the nonce is formed and TLS 1.2 leaving the exact nonce generation to be specified by the
particular cipher suite in use. TLS (in both versions) furthermore specifies padding mechanisms
and TLS 1.3 uses a double-header structure for backwards compatibility reasons.

The content type field in particular allows TLS to multiplex data streams for different
purposes within a single connection stream, as TLS 1.2 does for the Handshake Protocol, the
Alert Protocol, the ChangeCipherSpec protocol, and the Application protocol. While our model
does not capture multiplexing several message streams into one ciphertext stream, it can be
augmented to do so. This brings additional complexity and is an avenue for future work.

TLS 1.3 moreover permits updating the encryption key while maintaining the channel’s
operation, a feature that we treat with our model for multi-key channels in Chapter 12.

56That is, our approach of using a length field which is sent on the wire but not part of the authenticated
associated data of the AEAD ciphertext conforms with the approach adopted in the TLS 1.3 draft. In contrast
to our approach, the TLS 1.3 draft implicitly authenticates the sequence number by letting it enter the AEAD
nonce rather than explicitly authenticating it in the associated data field.

170

Chapter 11
Atomic-Message Channels
Supporting Fragmentation

Summary. In this chapter we study the question how applications can safely send atomic
messages over a network with possibly fragmented transport. We present our notion of atomic-
message channels supporting fragmentation treating such scenarios and define corresponding
security notions for confidentiality and integrity. We then develop a generic “encode-then-stream”
paradigm for building such channels on top of a stream-based channel (cf. Chapter 10). This
construction closely mimics the approach of message-based applications in practice to encode
boundaries of messages when running over a stream-based channel, also shedding some light
on attacks leveraging ciphertext fragmentation. The results in this chapter are based on the
extended full version [FGMP17] of a work published at CRYPTO 2015 [FGMP15].

11.1 Introduction

Many application layer protocols rely on a stream-based transport protocol like TCP, as the data
they transmit is inherently stream-based (like in audio or video streaming applications) or may
consist of individual messages that are too large to be written to, or read from, the transport
protocol in one go (as in HTTP [FGM+97] transfers of large files). For such applications, our
security model for stream-based channels established in Chapter 10 appropriately captures
security guarantees to be expected from a cryptographic stream-based transport protocol or
channel such as TLS [DR08, Res18], SSH [YL06a], or QUIC [QUI].

Other application layer protocols, however, are inherently message-based (e.g., chat protocols
or header transmission in HTTP) and might crucially demand that only messages that are
guaranteed to be authentic and complete (i.e., non-truncated) are delivered. Most secure
transport protocols in use (e.g., TLS), though, are stream-based in nature and might deliver
input messages—which they consider as fragments—in several parts, both in real-world im-
plementations and in our model for stream-based channels. Inherently, the streaming nature
of the data transmitted and its fragmentation in a stream-based channel (e.g., into chunks
of at most 214 bytes in the TLS record protocol) yields a different and intuitively weaker
notion of integrity (see also Remark 10.7 on page 158): integrity in the streaming setting does
not attach any importance to the boundaries of message (or ciphertext) fragments. Unwary
processing of message fragments on the receiver’s side might thus break, and has broken in the
past, the security of message-dependent application layer protocols (see, e.g., [SP13, BDF+14]).
This raises the following safety question: How can a reliable and secure transport channel
for atomic messages be provided on top of a secure stream-based channel in order to protect

171

Chapter 11. Atomic-Message Channels Supporting Fragmentation

message-dependent application protocols from misinterpreting partial messages on the receiver’s
side as complete ones?

Note that previous works on channels do not provide a satisfying solution to this problem.
For instance, while Bellare et al. [BKN04] and follow-up works (e.g., [KPB03, PRS11, JKSS12,
BDPS14, BSWW13]) consider the transport of atomic messages, their model lacks potential
fragmentation on the network. Boldyreva et al. [BDPS12] made a first step further in this
direction by considering confidentiality of channels that treat messages atomically at the sender’s
side and allow for fragmentation on the network. Integrity in this setting was later, and
concurrently to our work, defined by Albrecht et al. [ADHP16]. Still, while their notions
approach capturing atomic-message channels over fragmented transport, they do not provide an
answer to the question of how to achieve such from a given stream-based channel.

Atomic-message channels supporting fragmentation. To fill this gap we first introduce
the notion of atomic-message channels supporting fragmentation which covers schemes that
transport atomic messages in a secure way over a potentially fragmenting network. While our
(strong) confidentiality and integrity notions are similar in spirit to those defined by Boldyreva
et al. [BDPS12] and Albrecht et al. [ADHP16], our syntax already intrinsically encodes an
atomic-message interface both for the input on the sender’s side as well as for the output
on the receiver’s side. Beyond that, we further define the corresponding weaker variants of
chosen-plaintext confidentiality and plaintext integrity for atomic-message channels supporting
fragmentation.

With a rigorous security goal in mind we can confirm that the straightforward approach
(used, e.g., in HTTP) to encode distinguished end-of-message symbol into the message stream,
thus allowing the receiver to reconstruct the message boundaries, does achieve the desired
security goal. After looking closely at this approach we develop a generic paradigm, that we call
encode-then-stream, for building atomic-message channels that safely transport atomic messages
over a stream-based channels, and study its security. Our strategy is to add an encoding layer
that turns a message sequence into a stream of bits and allows to recover from that bit stream
the original message sequence; then, we simply transmit the obtained bit stream through any
secure stream-based channel. The resulting construction provably achieves strong confidentiality
and integrity guarantees, as we show, provided that the underlying stream-based channel also
offers strong security.

Ultimately, the study of atomic-message security in the presence of ciphertext fragmentation
casts a formal light on the truncation [SP13] and ‘cookie-cutter’ [BDF+14] attacks on HTTP
running over TLS, showing how they can be seen as arising from a misunderstanding of the
security guarantees that can be provided by a stream-based channel to applications expecting
an atomic-message channel. In essence, applications relying on non–integrity-protected end-of-
message indicators cannot hope to safely reconstruct atomic messages on the receiving end of a
(stream-based) channel.

11.2 Syntax and Functionality of Atomic-Message Channels
Supporting Fragmentation

The syntax of atomic-message channels supporting fragmentation for the sending algorithm aSend
reverts back to the classical setting with an atomic message input and an atomic ciphertext
output, obviating the need for a flush flag as seen for stream-based channels (cf. Section 10.2).
Note also that we therefore use the vector notation where appropriate, e.g., m[1, . . . , i] then
refers to the first i entries of the vector m (and not the first i bits of some string m).

172

11.2. Syntax and Functionality of Atomic-Message Channels Supporting Fragmentation

To capture ciphertext fragmentation on the underlying network we allow the receiving
algorithm aRecv to take a ciphertext fragment as input, but we syntactically require it to output
clearly separated atomic messages (instead of chunks of a message stream where the boundaries
of individual chunks have no inherent meaning, as for stream-based channels). As a ciphertext
fragment might contain more than one original ciphertext output by aSend, we need to allow
aRecv to output not only a single message but a vector of messages (which may be empty).
In contrast to stream-based channels here we consider a generic message spaceM ⊆ {0, 1}∗
instead of fixingM = {0, 1}∗.

Definition 11.1 (Syntax of atomic-message channels supporting fragmentation). An atomic-
message channel supporting fragmentation aCh = (aInit, aSend, aRecv) with associated message
spaceM, sending and receiving state space SS resp. SR, and error space E, where E ∩M = ∅,
consists of three efficient algorithms:

• aInit(1λ) $−→ (stS,0, stR,0). On input a security parameter 1λ, this probabilistic algorithm
outputs initial states stS,0 ∈ SS, stR,0 ∈ SR for the sender and the receiver, respectively.

• aSend(stS ,m) $−→ (st′S , c). On input a sending state stS ∈ SS and a message m ∈M, this
(possibly) probabilistic algorithm outputs an updated state st′S ∈ SS and a ciphertext c ∈
{0, 1}∗.

• aRecv(stR, c)→ (st′R, (m1, . . . ,m`)). On input a receiving state stR ∈ SR and a ciphertext
fragment c ∈ {0, 1}∗, this deterministic algorithm outputs an updated state st′R ∈ SR and
a (potentially empty) vector of messages (or error symbols) (m1, . . . ,m`) ∈ (M∪ E)∗.

We also use the shorthand atomic-message channels to indicate atomic-message channels
supporting fragmentation. Furthermore, we use the same vector notation as for stream-based
channels from Section 10.2 and correspondingly write, e.g., (stS , c) $←− aSend(stS,0,m) to indicate
that the sending algorithm is invoked sequentially on input the components of m and that it
outputs as ciphertexts the components of c.

Intuitively, correctness requires that an atomic-message channel recovers the sequence
of messages sent as long as the entire sequence of ciphertexts sent is received completely,
independently of its fragmentation. It also requires that, if any prefix of the sequence of sent
ciphertexts is processed at the receiver, then the corresponding prefix of the sent message
sequence is recovered completely.

Definition 11.2 (Correctness of atomic-message channels). Let aCh = (aInit, aSend, aRecv)
be an atomic-message channel. We say that aCh provides correctness if for all choices of the
randomness for algorithms aInit and aSend, all `, `′ ≥ 0, all message vectors m ∈M`, all sending
output sequences (stS,`, c) $←− aSend(stS,0,m), all ciphertext-fragment vectors c′ ∈ ({0, 1}∗)`′ , all
receiving output sequences (st′R,`′ ,m′)← aRecv(stR,0, c′), and every 0 ≤ i ≤ `, we have

‖c[1, . . . , i] 4 ‖c′ 4 ‖c =⇒m[1, . . . , i] 4 m′ 4 m.

Note that, in contrast to [BDPS12, ADHP16], for correctness in the above setting we do not
demand that already ‖c[1, . . . , i] 4 ‖c′ implies m[1, . . . , i] 4 m′, even if ‖c′ 64 ‖c. As we already
discussed in the streaming setting (cf. Remark 10.4), this would encode a certain amount of
robustness in an adversarial setting which is concerned with security rather than correctness.

173

Chapter 11. Atomic-Message Channels Supporting Fragmentation

ExptaIND-ATK,b
aCh,A (1λ):

1 (stS , stR) $←− aInit(1λ)
2 sync← 1
3 i← 0, j ← 1
4 MS ← (), CS ← ()
5 MR ← (), CR ← ε
6 b′ $←− AOLoR,[ORecv]ATK=CCFA (1λ)
7 return b′

OLoR(m0,m1):
8 if |m0| 6= |m1| then
9 return

10 (stS , c) $←− aSend(stS ,mb)
11 i← i+ 1
12 MS[i]← mb, CS[i]← c
13 return c

ORecv(c):
14 (stR,m)← aRecv(stR, c)
15 CR ← CR‖c
16 MR ←MR‖m
17 if sync = 0 then // already out-of-sync
18 return m
19 else if CR 4 ‖CS then // still in-sync
20 return ()
21 else
22 while j ≤ i and ‖CS[1, . . . , j] 4 CR and MS[1, . . . , j] 4 MR
23 do j ← j + 1
24 if j ≤ i or |MR| > i then

// deviation, or exceeding portion produces output
25 sync← 0
26 if j > |MR| then
27 m′ ← ()
28 else
29 m′ ←MR[j, . . . , |MR|]
30 return m′

Figure 11.1: Security experiment for confidentiality (aIND-ATK with ATK ∈ {CPA,CCFA}) of atomic-
message channels. The brackets [ORecv]ATK=CCFA indicate that only the aIND-CCFA adversary has access
to the ORecv oracle.

11.3 Security of Atomic-Message Channels Supporting
Fragmentation

In this section we formalize confidentiality and integrity notions for atomic-message channels
supporting fragmentation.

11.3.1 Confidentiality

In order to translate the standard confidentiality requirements against chosen-plaintext attacks
and chosen-ciphertext attacks to the setting of atomic-message channels supporting fragmentation
we formulate the notions of atomic-message indistinguishability under chosen-plaintext attacks
(aIND-CPA) as well as under chosen ciphertext-fragment attacks (aIND-CCFA). The former
provides the adversary with a left-or-right sending oracle defined in the natural way. The latter
essentially transcribes the IND-sfCFA notion by Boldyreva et al. [BDPS12] to our setting for
atomic-message channels. Briefly, the decryption mechanism of our aIND-CCFA notion returns
to the adversary all non-genuine message blocks output on receiving the first deviating ciphertext
fragment and all follow-up calls.

In more detail, the adversary is provided with a left-or-right oracleOLoR and, in the aIND-CCFA
experiment, with a receiving oracle ORecv. Left-or-right queries do not include a flush flag (as
for stream-based channels); this is a consequence of the syntax. A major difference with the
streaming setting is that, since the receiving algorithm outputs atomic-message sequences rather
than portions of a stream, synchronization is lost at the ciphertext boundaries (similarly to the
case of symmetric encryption supporting fragmentation [BDPS12]). That is, the exact point
where synchronization is lost is not necessarily aligned with its counterpart in the streaming
setting. However, in contrast to symmetric encryption supporting fragmentation, here suppress-
ing from the received message sequence the (vector) prefix covered by correctness would be

174

11.3. Security of Atomic-Message Channels Supporting Fragmentation

inaccurate, as we explain next.
Suppose that A causes OLoR to send messages mb

1, . . . ,m
b
i and obtains challenge cipher-

texts c1, . . . , ci. For the sake of exposition let us make the first out-of-sync ciphertext coincide
with the first receiving query and suppose that A submits to ORecv a single ciphertext fragment c∗
that contains c1‖ · · · ‖cj−1 as a prefix, for some j ≤ i, but deviates from cj onwards. Correctness
then does not impose any requirement on the decryption m∗ of the adversarially chosen c∗: it
may contain none of the messages sent, but it may also contain the full sequence (mb

1, . . . ,m
b
j−1).

Thus, despite c∗ being out-of-sync, giving A the full decryption of c∗ could lead to trivial
wins. However, suppressing from m∗ its first j − 1 components may hide non-genuine messages,
excluding valid attacks from being caught. Intuitively, we want to suppress from the sequence
of received messages only the longest genuine prefix. This intuition explains the working prin-
ciple of the oracle ORecv, which answers the first out-of-sync query by returning the sequence
obtained from MR by stripping off the longest genuine prefix MS[1, . . . , j − 1] (see lines 21ff.
in Figure 11.1), and subsequent out-of-sync queries by returning the full output of aRecv. As
for the streaming setting, we define synchronization to be lost only on an exceeding ciphertext
fragment if that fragment produces (non-empty) output.

Definition 11.3 (aIND-CPA and aIND-CCFA Security). Let aCh = (aInit, aSend, aRecv) be an
atomic-message channel supporting fragmentation and ExptaIND-ATK,b

aCh,A (1λ) for an adversary A
and a bit b be defined as in Figure 11.1, where ATK is a placeholder for either CPA or CCFA.

We say that aCh provides atomic-message indistinguishability under chosen-plaintext attacks,
respectively, chosen ciphertext-fragment attacks (aIND-CPA resp. aIND-CCFA) if for all PPT
adversaries A the following advantage function is negligible:

AdvaIND-ATK
aCh,A (λ) := Pr

[
ExptaIND-ATK,1

aCh,A (1λ) = 1
]
− Pr

[
ExptaIND-ATK,0

aCh,A (1λ) = 1
]
.

11.3.2 Integrity

As for confidentiality we adapt the integrity notions from the streaming setting and define (atomic-
message) integrity of plaintexts (aINT-PTXT) and integrity of ciphertext streams (aINT-CST).
The idea behind plaintext integrity is that the adversary wins if it manages to make the
receiver output a valid message sequence that differs from the sequence of messages that have
been sent. In integrity of ciphertext streams, instead, the adversary wins if it submits a
modified ciphertext sequence for decryption whose deviating part produces some valid messages.
Again, our aINT-CST notion is analogous to the corresponding INT-sfCTF notion by Albrecht
et al. [ADHP16] for symmetric encryption supporting fragmentation, proposed concurrently to
our work.

In both integrity experiments the adversary is provided with a sending oracle OSend and a
receiving oracle ORecv that it can query on arbitrary messages, respectively, ciphertext fragments.
The aINT-PTXT experiments declares A successful if the sequence MR of received messages
deviates from the sequence MS of sent messages and if the deviation contains more than just
errors. In the aINT-CST experiment the adversary wins if the string CR submitted (in an
arbitrary fragmented way) for decryption deviates from the concatenation ‖CS of ciphertexts
that have been sent and if such deviation causes aRecv to output valid (genuine or non-genuine)
messages. In different words, ciphertext-stream integrity is violated if aRecv produces any valid
message once it lost synchronization. It is worth mentioning that, as for confidentiality, the
exact point where synchronization is lost is defined to align with one of the (sent) ciphertext
boundaries and, in contrast to the streaming setting, does not coincide with the first deviating
bit of ciphertext. To detect where this point falls the ORecv oracle uses the same mechanism as
in the aIND-CCFA experiment (see lines 25ff. of Figure 11.2).

175

Chapter 11. Atomic-Message Channels Supporting Fragmentation

ExptaINT-ATK
aCh,A (1λ):

1 (stS , stR) $←− aInit(1λ)
2 sync← 1, win← 0
3 i← 0, j ← 1
4 MS ← (), CS ← ()
5 MR ← (), CR ← ε
6 AOSend,ORecv (1λ)
7 return win

OSend(m):
8 (stS , c) $←− aSend(stS ,m)
9 i← i+ 1

10 MS[i]← m
11 CS[i]← c
12 return c

aINT-PTXT ORecv(c):
13 (stR,m)← aRecv(stR, c)
14 MR ←MR‖m
15 if MR % [MR,MS] /∈ E∗ then
16 win← 1
17 return m

aINT-CST ORecv(c):
18 (stR,m)← aRecv(stR, c)
19 CR ← CR‖c
20 MR ←MR‖m
21 if sync = 0 then // already out-of-sync
22 if m /∈ E∗ then
23 win← 1
24 else if CR 64 ‖CS then // deviating or exceeding
25 while j ≤ i and ‖CS[1, . . . , j] 4 CR and MS[1, . . . , j] 4 MR
26 do j ← j + 1
27 if j ≤ i or |MR| > i then

// deviation, or exceeding portion produces output
28 sync← 0
29 if j > |MR| then
30 m′ ← ()
31 else
32 m′ ←MR[j, . . . , |MR|]
33 if m′ /∈ E∗ then
34 win← 1
35 return m

Figure 11.2: Security experiment for integrity (aINT-ATK with ATK ∈ {PTXT,CST}) of atomic-
message channels. A PTXT-attacker is provided with access to the left ORecv oracle (INT-PTXT), whereas
a CST-attacker is instead granted access to the oracle on the right-hand side (INT-CST).

Definition 11.4 (aINT-PTXT and aINT-CST Security). Let aCh = (aInit, aSend, aRecv) be an
atomic-message channel supporting fragmentation and ExptaINT-ATK

aCh,A (1λ) for an adversary A be
defined as in Figure 11.2, where ATK is a placeholder for either PTXT or CST.

We say aCh provides atomic-message integrity of plaintexts, respectively, ciphertext streams
(aINT-PTXT resp. aINT-CST) if for all PPT adversaries A the following advantage function is
negligible:

AdvaINT-ATK
aCh,A (λ) := Pr

[
ExptaINT-ATK

aCh,A (1λ) = 1
]
.

11.3.3 Relations Amongst Notions and Composition

Here we explore how the different security notions for atomic-message channels supporting
fragmentation relate to each other. Similarly to the case of stream-based channels (cf. Sec-
tion 10.3.3), we can show that integrity of ciphertext streams implies integrity of plaintext
streams, that indistinguishability against chosen-ciphertext attacks implies indistinguishability
against chosen-plaintext attacks, and that the weaker confidentiality notion together with
ciphertext integrity and (an adaptation of) error predictability imply the stronger confidentiality
notion.

Confidentiality. The relation aIND-CCFA =⇒ aIND-CPA immediately follows from the fact
that the aIND-CCFA experiment gives access to a left-or-right oracle as in the aIND-CPA
experiment as well as to a decryption oracle. In particular, a successful chosen-plaintext attack
can be seen as a successful chosen ciphertext-fragment attack that ignores the decryption oracle.

176

11.3. Security of Atomic-Message Channels Supporting Fragmentation

Integrity. To see that aINT-CST =⇒ aINT-PTXT it suffices to observe that, in order to
produce a deviation in the sequence of messages accepted by aRecv an adversary must submit for
decryption a sequence of ciphertext fragments that, in turn, deviates from the genuine ciphertext
sequence so that the deviating part produces some valid messages. Put differently, an adversary
cannot violate the plaintext integrity property without violating integrity of ciphertext streams.
We formalize this intuition in the following proposition.

Proposition 11.5 (aINT-CST =⇒ aINT-PTXT). Let aCh = (aInit, aSend, aRecv) be a correct
atomic-message channel supporting fragmentation. If aCh provides integrity of ciphertext streams
then it also provides integrity of plaintexts and, in particular, AdvaINT-PTXT

aCh,A (λ) ≤ AdvaINT-CST
aCh,A (λ)

for any adversary A.

Proof. Consider an execution of the aINT-PTXT experiment with an adversary A against the
channel aCh. Since the aINT-PTXT and aINT-CST experiments both provide interfaces to a
sending oracle OSend and a receiving oracle ORecv we can imagine to run the two experiments
simultaneously and show that if A is successful in the former, so is in the latter. More specifically,
we show that if the aINT-PTXT experiment sets win← 1 in line 16 then the aINT-CST experiment
sets win← 1 in lines 23 or 34.

Observe that A triggers the execution of line 16 (setting win to 1) if it submits some ciphertext
fragments to ORecv in experiment aINT-PTXT that result in a message sequence MR deviating
from the genuine message sequence MS, beyond errors. By correctness, a deviation in the
message sequence can only originate from a deviation in the ciphertext sequence and, thus, we
know that A submits at least one out-of-sync ciphertext. Suppose that A triggers the execution
of line 16 of the aINT-PTXT experiment already when it submits the first out-of-sync ciphertext:
then such ciphertext causes the execution of line 28 and the following loop in the aINT-CST
experiment, yielding a vector m′ that contains all messages received so far but the longest
common prefix with the sequence of sent messages. It follows from the assumptions made that
m′ contains some valid message and, thus, win← 1 is set in line 34 in the aINT-CST experiment,
too. Suppose now that A enforces the execution of line 16 of the aINT-PTXT experiment after
the first out-of-sync ciphertext has been submitted. Then we have two possibilities: either the
deviating part of the first out-of-sync ciphertext fragment produces some valid messages and,
thus, in the aINT-CST experiment sets win← 1 in line 34, or some of the following ciphertext
fragments that A submits cause aRecv to output valid messages, hence causing aINT-CST to set
win← 1 in line 23.

Composition. As in the case of stream-based channels, we can prove that confidentiality
against passive adversaries in combination with ciphertext-stream integrity can be lifted to
confidentiality against active adversaries by additionally requiring that decryption errors are
efficiently predictable. For this we adapt our stream-based error predictability notion (see
Definition 10.9 on page 161) to the atomic-message setting in the natural way by demanding the
predictor to output the vector of errors that aRecv would return on input a given sequence of
ciphertext fragments. More formally, we say that an atomic-message channel provides (atomic-
message) error predictability (aERR-PRE) with respect to an efficient probabilistic predictor
algorithm Pred if this predictor Pred, given the vector CS of ciphertexts sent, the string CR of
ciphertext fragments received-so-far, and the ‘next’ ciphertext fragment c, returns a (potentially
empty) vector containing all the errors that aRecv would output on input the (arbitrarily
fragmented) string CR‖c, in the same order they appear when output by the latter.

Definition 11.6 (Atomic-message error predictability (aERR-PRE)). Let aCh = (aInit, aSend,
aRecv) be an atomic-message channel supporting fragmentation with message spaceM and error

177

Chapter 11. Atomic-Message Channels Supporting Fragmentation

ExptaERR-PRE
aCh,Pred,A(1λ):

1 (stS , stR) $←− aInit(1λ)
2 win← 0, i← 0
3 CS ← ()
4 CR ← ε
5 AOSend,ORecv (1λ)
6 return win

OSend(m):
7 (stS , c) $←− aSend(stS ,m)
8 i← i+ 1
9 CS[i]← c

10 return c

ORecv(c):
11 (stR,m)← aRecv(stR, c)
12 if 〈m〉E 6= Pred(CS, CR, c) then
13 win← 1
14 CR ← CR‖c
15 return m

Figure 11.3: Security experiment for error predictability (aERR-PRE) of atomic-message channels. We
denote by 〈·〉E : (M∪E)∗ → E∗ the ‘projection on the error space’, i.e., the mapping that removes from a
vector all occurrences that do not belong to the error space E . For instance, if m = (m1,⊥1,m2,m3,⊥2)
with m1,m2,m3 ∈M then 〈m〉E = (⊥1,⊥2).

space E, and let Pred be an efficient probabilistic algorithm. We say that aCh provides (atomic-
message) error predictability (aERR-PRE) with respect to Pred if for every PPT adversary A
playing in the experiment aERR-PRE defined in Figure 11.3 against channel aCh, the following
advantage function is negligible:

AdvaERR-PRE
aCh,Pred,A(λ) := Pr

[
ExptaERR-PRE

aCh,Pred,A(1λ) = 1
]
.

We are now ready to state a composition result for atomic-message channels analogous to
that for stream-based channels.

Theorem 11.7 (aINT-CST ∧ aIND-CPA ∧ aERR-PRE =⇒ aIND-CCFA). Let aCh be a (correct)
atomic-message channel supporting fragmentation. If aCh provides integrity of ciphertext streams
(aINT-CST), indistinguishability against chosen-plaintext attacks (aIND-CPA), as well as error
predictability (aERR-PRE) with respect to a predictor Pred, then it also provides indistinguisha-
bility against chosen ciphertext-fragment attacks (aIND-CCFA).

To prove this relation we can apply essentially the same strategy used in the proof of
Theorem 10.10 (page 161) and, for this reason, we abstain from providing a full proof but
recall the informal argument. Assume that we have an adversary A attacking the aIND-CCFA
property of a channel that provides aIND-CPA, aINT-CST, and aERR-PRE. Then given only CPA
capabilities one can answer A’s queries by forwarding sending queries to the left-or-right oracle
provided by the aIND-CPA experiment, returning empty vectors in response to in-sync decryption
queries, and returning the output of the error predictor on input out-of-sync decryption queries.
The aINT-CST property ensures that no valid message originates from out-of-sync decryption
queries, while the aERR-PRE property allows to (efficiently) compute decryption errors.

11.4 Generic Construction of Atomic-Message Channels from
Stream-Based Channels

In practice, applications relying on atomic-message processing perform some encoding of those
messages prior to handing them over to the underlying (stream-based) secure channel. The
HTTP protocol provides two prime examples for such encoding approaches. HTTP headers are
encoded by having an empty line indicate the end of the header section [FR14, Section 3], i.e.,
a header message ends with the distinguished “end-of-message” marker “\n\n” which is not
allowed to occur anywhere else in the header.57 An HTTP body message in contrast can be an

57As a technical side remark, violating the HTTP header decoding rules was part of what enabled the
‘cookie-cutter’ attack [BDF+14].

178

11.4. Generic Construction of Atomic-Message Channels from Stream-Based Channels

arbitrary byte string (i.e., the specification cannot single out a distinguished end-of-message
symbol) and is hence, as one option, demarcated through indicating the body length in the
Content-Length header field [FR14, Section 3.3]. Of course there are numerous alternative
approaches to encode atomic messages in a bit stream; prepending the message with a fixed-
length binary encoding of its length is a particularly efficient one, applicable whenever (an upper
bound on) the message length is known.

For our generic construction that enables secure transmission of atomic messages over a
generic secure stream-based channel we capture all these and further approaches under the
framework of instantaneously decodable encodings.

11.4.1 Length-Regular Instantaneously Decodable Encoding Schemes

We recall the properties of length-regular instantaneously decodable encoding schemes that will be
later used as a tool in our construction. The idea of using instantaneously decodable encodings
was already employed by Boldyreva et al. [BDPS12] in the context of symmetric encryption
supporting fragmentation in order to encode (atomic) messages in ciphertexts that might be
fragmented. Such an encoding consists of an algorithm Encode that turns a word w into a
codeword v, and an algorithm Decode which takes a string as input and outputs a vector w of
words and a string s (the latter is, in fact, the part of the input string which contains no full
words as a prefix).

Definition 11.8 (Length-regular instantaneously decodable encoding schemes). An encoding
scheme with word space W ⊆ {0, 1}∗ is a pair ES = (Encode,Decode) of efficient deterministic
algorithms defined as follows. The encoding algorithm Encode takes as input a word w ∈ W
and returns a codeword v ← Encode(w) where v ∈ {0, 1}∗. The decoding algorithm Decode
takes as input a string v′ ∈ {0, 1}∗ and outputs a (potentially empty) vector of words w′ ∈W ∗
and a string s′ ∈ {0, 1}∗. We indicate this by writing (w′, s′) ← Decode(v′). We use the
shorthand v← Encode(w) to indicate that Encode is executed sequentially on the components
of w = (w1, . . . , wn) ∈ W ∗ and the corresponding codewords are the components of v =
(v1, . . . , vn) ∈ ({0, 1}∗)∗ with vi ← Encode(wi).

We say that ES is instantaneously decodable if for all w ∈ W ∗ and s ∈ {0, 1}∗, and for
v← Encode(w) and (w′, s′)← Decode(v1‖ . . . ‖vn‖s) where v = (v1, . . . , vn), the following two
properties hold:

ID1. w 4 w′, i.e., all input words from w are recovered by Decode in w′ (and potentially
further words contained in the string s), and

ID2. If there is no w ∈W such that Encode(w) 4 s then w′ = w and s′ = s, i.e., if s does not
contain an encoded word then Decode recovers exactly the words in w = w′ and puts the
remaining bits in s′.

We furthermore say that ES is length-regular if for all w′, w with |w′| = |w| it holds that
|v| = |v′| where v← Encode(w) and v′ ← Encode(w′).

Since in this chapter we only make use of encoding schemes that are instantaneously decodable
and length-regular, from now on the term ‘encoding scheme’ refers to schemes fulfilling these
properties.

Remark 11.9. For every w ∈W ∗ and v← Encode(w) it holds that Decode(‖v) = (w, ε). Indeed,
for v = (v1, . . . , vn), s = ε and (w′, s′)← Decode(v1‖ · · · ‖vn‖s) property (ID2) implies w′ = w
and s′ = ε.

179

Chapter 11. Atomic-Message Channels Supporting Fragmentation

Remark 11.10. The set of codewords V = {Encode(w) | w ∈ W} induced by ES is prefix-free.
Indeed, let v, v′ ∈ V be such that v 4 v′ and write v′ = v‖s for some s ∈ {0, 1}∗. By definition
there exist w,w′ ∈ W such that v = Encode(w) and v′ = Encode(w′). By Remark 11.9 we
have Decode(v′) = ((w′), ε); similarly, by property (ID2) we derive Decode(v′) = Decode(v‖s) =
(w′′, s′′) where (w) 4 w′′. Putting these relations together we get (w) 4 w′′ = (w′) =⇒ w = w′

and thus v = Encode(w) = Encode(w′) = v′. In what follows, when writing that an encoding
scheme is prefix-free we mean that its set of codewords is.
Example 11.11 (The end-of-message encoding). Take any string � ∈ {0, 1}∗ and let κ = |�| be
its length. Define W ⊂ {0, 1}∗ recursively in such a way that no (finite) concatenation of words
in W contains the distinguished string �. Formally, we require that for all u ∈W with |u| ≥ κ
and for all i such that 1 ≤ i ≤ |u| − κ it holds � 6= u[i, . . . , i+ κ]. We define the end-of-message
encoding through the following functions.

We encode m ∈W by appending to it the end-of-message symbol �, i.e., Encode(m) = m‖�.
To decode a string y ∈ {0, 1}∗ we first initialize w← (), s← ε, then we scan y from left to right
until we find the first occurrence of �. If there is none, we set s = y and return (w, s). Otherwise
we found the first word w1 that y encodes, i.e., such that w1‖� 4 y; thus, we append w1 to
w and proceed (recursively) as above using the unprocessed string y′ ← y % (w1‖�) instead
of y. Observe that, by definition of W , any string y ∈ {0, 1}∗ admits a unique decomposition
y = w1‖ � ‖ · · · ‖w`‖ � ‖w`+1 with ` ≥ 0, w1, . . . , w` ∈W and w`+1 ∈ {0, 1}∗ \W . By the obvious
correctness of this algorithm, wee see that the end-of-message encoding is instantaneously
decodable. It is also length-regular due to the fixed length κ of the appended end-of-message
symbol �.

A specific instance of the end-of-message encoding is the HTTP header encoding where
� = \n\n (i.e., two ASCII newline characters) and header messages follow a specific format
which in particular forbids two subsequent newlines to occur in a message.

11.4.2 The Encode-then-Stream Construction

For our generic construction of an atomic-message channel from a stream-based channel we now
leverage a length-regular instantaneously decodable encoding scheme ES = (Encode,Decode)
with word space W = M as a generalization of both real-world and theoretical approaches
to convert atomic messages into a stream and, vice versa, a stream into (a vector of) atomic
messages. We name this paradigm encode-then-stream and denote by aChEtS the resulting
atomic-message channel.

The main idea is very natural: we encode atomic messages within the message stream sent
and, on the receiver’s side, to buffer the incoming stream and only output messages once they
are received completely. Briefly, algorithm aSend takes an atomic message m and first encodes
it by invoking v ← Encode(m). It then processes the corresponding string v using the stream-
based channel’s sending algorithm (with a flush request), obtaining (stS , c) $←− Send(stS , v, 1).
Correspondingly, algorithm aRecv takes as input a ciphertext fragment c ∈ {0, 1}∗ and first
invokes the streaming receiving algorithm (stR, v)← Recv(stR, c). It then extracts from v the
longest prefix v′ that does not contain error symbols and concatenates the latter to the buffer,
buf ← buf‖v′. Finally, it decodes the new buffer content to obtain an atomic-message vector
and an updated (potentially empty) buffer, (m, buf)← Decode(buf).

Construction 11.12 (Encode-then-stream construction aChEtS). Consider a stream-based
channel Ch = (Init,Send,Recv) with error space E and an encoding scheme ES = (Encode,Decode)
with word space W ⊆ {0, 1}∗. We define aChEtS = (aInit, aSend, aRecv) to be the atomic-message
channel with message space M = W and error space {⊥} obtained by applying to Ch the
transform described in Figure 11.4.

180

11.5. Security of the Encode-then-Stream Construction

aInit(1λ):
1 (st′S,0, st′R,0) $←− Init(1λ)
2 buf ← ε
3 fail← 0
4 stS,0 = st′S,0
5 stR,0 = (st′R,0, buf, fail)
6 return (stS,0, stR,0)

aSend(stS ,m):
1 v ← Encode(m)
2 (stS , c) $←− Send(stS , v, 1)
3 return (stS , c)

aRecv(stR, c):
1 parse stR as (st′R, buf, fail)
2 if fail = 1 then
3 return (stR, (⊥))
4 (st′R, v)← Recv(st′R, c)
5 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
6 v′ ← v[1, . . . , `] // longest non-error prefix of v
7 buf ← buf‖v′
8 (m, buf)← Decode(buf)
9 if v′ 6= v then

10 fail← 1
11 m←m‖(⊥)
12 stR ← (st′R, buf, fail)
13 return (stR,m)

Figure 11.4: Generic construction of an atomic-message channel aChEtS = (aInit, aSend, aRecv) with
message spaceM from any stream-based channel Ch = (Init, Send,Recv) and an encoding scheme ES =
(Encode,Decode) with word space W =M.

Correctness of aChEtS directly follows from the correctness of Ch and the instantaneous
decodability of ES, as we show in the following proposition.

Proposition 11.13 (Correctness of aChEtS). If the stream-based channel Ch = (Init, Send,Recv)
is correct and the encoding scheme ES = (Encode,Decode) is instantaneously decodable then the
atomic-message channel aChEtS = (aInit, aSend, aRecv) is correct, too.

Proof. Let (stS,0, stR,0) $←− aInit(1λ), ` ∈ N, and m ∈ M` be arbitrary and let c ∈ ({0, 1}∗)`
be such that (stS,`, c) $←− aSend(stS,0,m). Let `′ ∈ N and c′ ∈ ({0, 1}∗)`′ be arbitrary, and
let m′ ∈ M`′ be such that (stR,`′ ,m′) ← aRecv(stR,0, c′). Suppose that for some i ∈ [1, . . . , `]
it holds ‖c[1 . . . i] 4 ‖c′ 4 c. Using a similar notation let v ∈ ({0, 1}∗)` denote the vector of
codewords v ← Encode(m) and let v′ ∈ ({0, 1}∗)`′ be such that (st′R,`′ ,v′) ← Recv(st′R,0, c′).
Observe that c is generated by invoking the stream-based sending algorithm Send on input the
components of v and flush flags f = (1, . . . , 1). Then, by (stream-based) correctness of Ch we
have that for all j ∈ [1, . . . , `], and in particular for j = i, it holds ‖c[1, . . . , j] 4 ‖c′ 4 ‖c =⇒
‖v[1, . . . , j] 4 ‖v′ 4 ‖v. By construction we now have (m[1, . . . , i], ε) ← Decode(‖v[1, . . . , i]),
(m′, s)← Decode(‖v′) for some s ∈ {0, 1}∗ and (m, ε)← Decode(‖v). Using the property ID1
of encoding schemes we derive from ‖v[1, . . . , i] 4 ‖v′ that m[1, . . . , i] 4 m′. Furthermore,
m′ 4 m as property ID2 ensures that Decode only decodes full codewords in ‖v′ % ‖v[1, . . . , i]
namely, by property ID1 and as ‖v′ 4 ‖v, those codewords v[i + 1, . . . , `] corresponding to
m[i+ 1, . . . , `] fully contained in ‖v′.

11.5 Security of the Encode-then-Stream Construction
Ideally we would like to show that confidentiality and integrity properties of the stream-
based channel Ch can be lifted to the corresponding security properties of the atomic-message
channel aChEtS. Indeed, using a specific encoding to identify message boundaries—as our generic
construction aChEtS does—is a natural approach to encode atomic messages within a stream of
bits. This approach is pursued by numerous application layer protocols including, among others,
HTTP [FR14]. Surprisingly, not even the strongest confidentiality and integrity properties of
the underlying stream-based channel Ch (i.e., IND-CCFA and INT-CST) suffice to make our
atomic-message channel construction aChEtS aIND-CCFA- and aINT-CST-secure.

181

Chapter 11. Atomic-Message Channels Supporting Fragmentation

As a particular (and admittedly artificial) counterexample consider the following variant
Ch′AEAD = (Init′, Send′,Recv′) of the AEAD-based streaming channel construction ChAEAD (see
Construction 10.12): The Send′ algorithm processes the input message as Send does, but
additionally appends a 0-bit to each AEAD ciphertext c′ computed by Send. On the receiver’s
side, the AEAD ciphertext is processed as before and, if the appended bit following the AEAD
ciphertext (which is also allowed to arrive in a separate fragment) equals 1, then after decrypting
the ciphertext and adding the result to the output message m the failure flag is set to fail← 1
and the error symbol ⊥ is appended to m.

Observe that construction Ch′AEAD preserves the IND-CCFA and INT-CST security properties
of the original stream-based channel ChAEAD (cf. Section 10.4) since, intuitively, the ability to flip
the redundant bit allows the adversary only to create an extra error symbol which harms neither
confidentiality nor integrity. The reason is that the message part from the unaltered ciphertext
prefix, without the extra bit, is still suppressed in the stream-based confidentiality experiment.
Analogously, creating additional error symbols in the stream-based integrity experiment does
not violate security. However, as we show next, using Ch′AEAD as the underlying stream-based
channel results in the atomic-message construction aChEtS being insecure with respect to both
confidentiality and integrity, as we discuss next.

Let us consider confidentiality first: for any ciphertext c = len‖c′‖0 (where len‖c′ is the
ciphertext as generated by ChAEAD) output by the left-or-right oracle, an adversary against the
aIND-CCFA security of aChEtS can simply query the receiving oracle on c∗ = len‖c′‖1 and will
obtain the input message m′b used on the sender’s side. Indeed, as the AEAD ciphertext c′
is unmodified, the AEAD decryption will yield the full codeword v′ = Encode(m′b). Therefore
the (atomic-message) receiving oracle ORecv, treating c∗ as an atomic (and hence differing)
ciphertext, will return the pair (m′b,⊥) to the adversary, allowing it to break confidentiality.
However, since in the streaming setting the message m′b is already output upon receiving the
genuine part c̃∗ = len‖c′ of the ciphertext c∗, stream-based confidentiality of Ch′AEAD is not
affected by this attack.

A similar argument applies to the case of integrity: an adversary against the aINT-CST
property of aChEtS can, given a ciphertext c = len‖c′‖0, flip the last bit of c and make the
receiving oracle rate the resulting message m′ (where m′ = Decode(v′) and v′ is the codeword
obtained by AEAD decrypting c′) as a valid message output on a deviating ciphertext c∗.
The latter breaks the atomic ciphertext integrity of aChEtS without violating the notion of
stream-based integrity of Ch′AEAD.

We stress that the modified construction Ch′AEAD certainly constitutes a particularly un-
natural, yet secure stream-based channel. It nevertheless indicates the need for an additional
requirement on the stream-based channel, ruling out such behavior, for proving the security
of aChEtS generically.58 We conjecture that this is not a limitation specific to our aChEtS
construction but that indeed no generic atomic-message channel construction working, from
a protocol-layering perspective, on top of Ch′AEAD in a black-box manner can satisfy confiden-
tiality or integrity. As an attempt to formalize the additional requirement just mentioned, we
propose a new security notion that precludes a stream-based channel from behaving like Ch′AEAD
and prove it sufficient, together with INT-CST and IND-CCFA security, for the security of the

58We note that Canetti et al. [CKN03] introduced a relaxed notion of confidentiality (for public-key encryption,
but also applicable to the secret-key setting), so-called indistinguishability under replayable chosen-ciphertext
attacks (RCCA), capturing that an encryption scheme is non-malleable beyond trivial ciphertext modifications
(like our additional, flippable bit). It is plausible that the channel ChAEAD achieves a similar, relaxed notion of
confidentiality for stream-based channels (an RCCA-style notion in the streaming setting is yet to be defined,
though). Here we take a different route and, aiming at a stronger, CCA-like confidentiality property, we rather
make explicit an additional property for stream-based channels—conciseness of ciphertexts—that enables lifting
confidentiality and integrity of the underlying stream-based channel to the constructed atomic-message channel.

182

11.5. Security of the Encode-then-Stream Construction

ExptCON-CST
Ch,A (1λ):

1 (stS , stR) $←− Init(1λ)
2 i← 0, j ← 1
3 win← 0
4 MS ← (), CS ← ()
5 MR ← ε, CR ← ε
6 AOSend,ORecv (1λ)
7 if CR ≺ ‖CS then
8 while ‖CS[1, . . . , j] 4 CR
9 do j ← j + 1

//CS[j] is first ciphertext not received completely
10 if ‖MS[1, . . . , j] 4MR then
11 win← 1
12 return win

OSend(m, f):
13 (stS , c) $←− Send(stS ,m, f)
14 i← i+ 1
15 MS[i]← m
16 CS[i]← c
17 return c

ORecv(c):
18 (stR,m)← Recv(stR, c)
19 MR ←MR‖m
20 CR ← CR‖c
21 return m

Figure 11.5: Security experiment for conciseness of ciphertext streams (CON-CST) for stream-based
channels.

encode-then-stream paradigm.

11.5.1 Conciseness of ciphertext streams

Intuitively, we want to ensure that if one submits a strict prefix of the genuine ciphertext stream
for decryption then the complete message stream will not be output on the receiver’s side.
This, in particular, rules out those constructions for which Send appends redundant bits to the
ciphertext fragment (as the construction Ch′AEAD in our example above) that can be chopped
without affecting the underlying message fragment. Put differently, we require that accepted
ciphertexts are concise. We thus name this new security property conciseness of ciphertext
streams (CON-CST).59 The intuition behind our definition is as follows. The adversary’s goal is
to deliver only a strict prefix CR of the sender’s output stream ‖CS of the atomic ciphertexts
to the receiver, but such that the receiver still obtains all message chunks. In other words, the
adversary wins if it manages to cut some bits in the ciphertext stream (such as a redundant
bit in a ciphertext) without affecting the message delivery. As we will see below, conciseness is
naturally achievable by stream-based channel constructions, including ours. Investigating the
necessity of conciseness (or a different notion) for sending atomic messages over a stream-based
channel in a protocol-layered manner is a possible avenue for future work.

Definition 11.14 (Conciseness of ciphertext streams (CON-CST)). Let Ch = (Init, Send,Recv)
be a stream-based channel and experiment ExptCON-CST

Ch,A (1λ) for an adversary A be defined as in
Figure 11.5.

We say Ch provides conciseness of ciphertext streams (CON-CST) if for all PPT adversaries
A the following advantage function is negligible:

AdvCON-CST
Ch,A (λ) := Pr

[
ExptCON-CST

Ch,A (1λ) = 1
]
.

Remark 11.15. It is easy to see that for a stream-based channel with concise ciphertext
streams, the Send algorithm can never output a non-empty ciphertext c 6= ε on input an

59The scope of conciseness for stream-based channels is somewhat similar in spirit to that of tidiness [NRS14]
for nonce-based encryption: it is a natural requirement to rule out schemes for which the receiving algorithm
performs some useless operation allowing an adversary to trivially break security.

183

Chapter 11. Atomic-Message Channels Supporting Fragmentation

empty message m = ε and having no buffered message input from previous calls. As-
sume otherwise, i.e., a sequence of message fragments MS[1], . . . ,MS[i − 1],MS[i] trans-
formed by Send (with the flush flag always set to f = 1) into a sequence of ciphertext
fragments CS[1], . . . ,CS[i − 1],CS[i]; with MS[i] = ε while CS[i] 6= ε. Now, an adversary
can simply query ORecv on CS[1]‖ . . . ‖CS[i− 1] first, next query ORecv on the bit-wise inverse
of CS[i], and then stop. It wins the CON-CST experiment, as CS[i] is not contained in the
received ciphertext stream CR, yet all message fragments including MS[i] are contained in the
received message stream MR, as MS[1]‖ . . . ‖MS[i− 1]‖MS[i] = MS[1]‖ . . . ‖MS[i− 1] (recall
that MS[i] = ε) and the latter is contained by correctness.

We remark that in practice channel protocols including IPsec and TLS do specify the
possibility to send empty message fragments as a traffic analysis countermeasure; yet, popular
libraries (e.g., OpenSSL [Ope]) do not allow this option. The common ‘encode-then-stream’
approach which we capture in our generic aChEtS construction does not rely on the capability
of sending empty message fragments. We hence do consider the restriction to disallow empty
message fragments as non-critical in this setting.

11.5.2 Integrity and Confidentiality of Encode-then-Stream

We now turn towards analyzing the security of our generic construction of an atomic-message
channel aChEtS from a stream-based channel Ch and an encoding scheme ES. In brief, we
prove that integrity of ciphertext streams (INT-CST) of the stream-based channel Ch can be
lifted to the analogous property (aINT-CST) for the resulting atomic-message channel aChEtS,
provided that Ch also offers conciseness of ciphertexts (CON-CST). Due to the subtle difference
between the synchronization mechanisms in the streaming and the atomic-message setting,
the proof of this result is quite involved. We also show that indistinguishability under chosen
plaintext-fragment attacks (IND-CPFA) and error predictability (ERR-PRE) of Ch can be lifted
to the analogous properties (aIND-CPA and aERR-PRE) of aChEtS. These relations together with
Theorem 11.7 imply that INT-CST, IND-CPFA, CON-CST and ERR-PRE of Ch are sufficient
conditions for the encode-then-stream paradigm to provide indistinguishability under chosen
ciphertext-fragment attacks (IND-CCFA).

It is worth noting that, while integrity of ciphertext streams (INT-CST), given CON-CST,
directly carries over from the stream-based channel Ch to the atomic-message channel aChEtS,
the same does not seem to hold for confidentiality against active adversaries (IND-CCFA). While
our proof lifts aIND-CPA to aIND-CCFA security by leveraging ciphertext-stream integrity and
error predictability (via the compositional result from Theorem 11.7), one may wonder whether
requiring INT-CST and ERR-PRE is indeed necessary. A different route to achieve aIND-CCFA
security of the encode-then-stream paradigm could be used to lift confidentiality against an
active adversary directly from the IND-CCFA security of Ch (recall that CON-CST of Ch would
be necessary also in this case, as explained at the beginning of Section 11.5). At first glance,
one might expect lifting IND-CCFA to its analog in the atomic-message setting, aIND-CCFA,
should not rely on integrity of the stream-based channel. We however conjecture that such
integrity is in fact necessary. Without going into details, the reason for this is that a non-
integrous stream-based channel may possibly allow an attacker to modify the sent message
stream in an arbitrary manner from some point on. In particular, the adversary might be
able to modify the atomic-message encoding, e.g., by moving an employed end-of-message
symbol to some earlier position in the message stream. Such a modification does not imply a
stream-based confidentiality break, as the preceding challenge-message stream would still be
suppressed. In the atomic-message sense, however, the resulting received (challenge) message
is shortened, hence considered to be different and output to the adversary in the aIND-CCFA
experiment. We therefore expect that stream-based integrity is indeed necessary to bridge the

184

11.5. Security of the Encode-then-Stream Construction

gap from stream-based IND-CCFA to atomic-message aIND-CCFA security. This, in particular,
provides a glimpse into the formal causes enabling the cookie cutter attack [BDF+14]: ultimately,
atomic-message encodings need integrity protection as otherwise an adversary can restructure
application messages (in this case application-layer HTTP messages) in a way that may not
only violate their integrity, but also confidentiality.

In proving the theorem on integrity, the ideal target would be to build an efficient reduction
that turns any successful aINT-CST adversary against the atomic-message channel aChEtS into
a successful INT-CST adversary against the streaming channel Ch. Intuitively, the reduction
can simply perform the encoding and decoding operations of aChEtS by itself and realize the
streaming operations using sending and receiving oracles provided by the INT-CST experiment.
The challenging part is to guarantee that any success in the aINT-CST game translates to a
success in the INT-CST game. In fact, because of the different synchronization mechanisms
adopted in the atomic-message setting and in the streaming setting, it is not possible to exploit
every aINT-CST break against aChEtS to violate the INT-CST property of Ch. For stream-based
channels, synchronization is lost starting from the first deviating bit in the ciphertext stream. In
contrast, for atomic-message channels we declare the entire ciphertext to be out-of-sync as soon
as a deviation in the ciphertext sequence or in the message sequence is detected. Therefore,
the receiving oracle in the atomic-message setting may lose synchronization ‘earlier’ than in
the streaming setting. As we will see explicitly in the proof, CON-CST ensures that the oracle
provided to the reduction from the INT-CST experiment and the one that A is presented with
from the emulated aINT-CST experiment are consistent.

Theorem 11.16 (aINT-CST security of aChEtS). Let Ch = (Init, Send,Recv) be a stream-based
channel and aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch
via the encode-then-stream construction (see Construction 11.12). If Ch provides integrity and
conciseness of ciphertext streams (INT-CST and CON-CST) then aChEtS provides atomic-message
integrity of ciphertexts (aINT-CST). Formally, for every efficient aINT-CST adversary A there
exist an efficient CON-CST adversary B and INT-CST adversary C such that

AdvaINT-CST
aChEtS,A (λ) ≤ AdvCON-CST

Ch,B (λ) + AdvINT-CST
Ch,C (λ).

Proof. We will show that if A wins the aINT-CST game against aChEtS then we can either
violate the CON-CST or the INT-CST properties of the underlying stream-based channel Ch.
We start with an intuitive explanation and then give explicit reductions. Assume that A
wins the aINT-CST game (from Figure 11.2). Then there are four possibilities for the win
flag win ← 1 to be set the first time—as we sketch below and explore in detail in the course
of the proof—depending on whether win← 1 is set in line 23 (option #1 below) or in line 34
(options #2, #3, and #4).

#1. Synchronization has been lost before. Then CR must be deviating from ‖CS and a (fully)
deviating fragment causes aRecv to output some valid message.60 As we will see, this
leads to violating the INT-CST property of Ch.

#2. The stream CR goes ahead of ‖CS (the loop of lines 25–26 terminates because j > i) and
the exceeding part produces some valid message when processed by aRecv. This violates
the INT-CST property of Ch, too.

60 In principle, CR could also be ahead of ‖CS. However, in this case we can have sync = 0 only if a valid
message was already output upon processing some previous (ahead) fragment; but then win← 1 would have been
already set. Note that once aChEtS output the first error symbol, by construction it only outputs errors from that
point on. Hence, win← 1 cannot be set after the first error output occurred.

185

Chapter 11. Atomic-Message Channels Supporting Fragmentation

#3. The stream CR deviates from ‖CS after the first j − 1 sent ciphertexts and messages are
received entirely (the loop terminates because j ≤ i but ‖CS[1, . . . , j] 64 CR). Here the
fact that A wins the aINT-CST game does not necessarily lead to violating the INT-CST
property of Ch but, if not, it infringes its CON-CST property.

#4. The sequence MR deviates from MS after the first j − 1 sent messages are received
completely (the loop terminates because j ≤ i and ‖CS[1, . . . , j] 4 CR but MS[1, . . . , j] 64
MR[1, . . . , j]). Also in this case we can leverage A’s strategy in aINT-CST to break the
INT-CST security of Ch.

In the rest of the proof we first isolate the conditions causing A to be successful in the aINT-CST
game without violating the INT-CST security of Ch—note that this can only happen for option #3.
We then define a new game which penalizes A if the latter occurs, and bound the difference in
probability between the modified game and the original one with the CON-CST advantage of an
efficient adversary B. Finally, we show that the modified game can be simulated by an efficient
adversary C which breaks the INT-CST property whenever A wins the aINT-CST game.

We first set some notation. Let E0 denote the aINT-CST experiment with the algorithms
of aChEtS plugged-in, as depicted in Figure 11.6 (ignore the framed instructions for now). Now
we define a new experiment E1 starting from E0 by including the framed instructions (lines 9, 11,
18, 21, 33, 36–37, and 45–49). The resulting game essentially works as E0 but it resets win← 0 if,
although CR contains only up to the first j − 1 genuine ciphertexts and then deviates from CS,
Recv produces a stream V ′R‖ṽ which contains the first j genuine codewords upon processing
the longest genuine prefix c̃ of the first deviating query c. Informally, this change isolates the
event that A wins the aINT-CST experiment against aChEtS without causing a violation of
the INT-CST property of Ch (i.e., a deviation from CS does not translate to a deviation from
the underlying message stream), and prevents A from winning the game in such a case. In
more detail, through lines 9, 18, and 36 the new game additionally maintains a sequence VS
for bookkeeping the codewords input to Send as well as a string VR for the fragments output
by Recv. It makes a copy s̃t′R of the current state st′R (of the streaming algorithm) in line 21
as well as copies C ′R and V ′R of the current strings CR and VR in lines 33, 36, and 37 before
the current query is processed by Recv. Instructions 45–47 identify the first deviating query c
and perform an auxiliary call to Recv (with state s̃t′R, i.e., prior to processing c) on the longest
genuine prefix c̃ of c. Finally, instructions 48–49 detect whether processing the longest genuine
prefix of VR through Recv yields the first j codewords entirely, and, if so, set the flag bad. In
what follows we denote by bad the event that bad ← 1 is triggered. Finally, instruction 11
penalizes the adversary if it triggers event bad. Since the experiments E0 and E1 returns the
same outcome as long as bad does not occur, we can bound their difference in probability by∣∣∣AdvE0

aChEtS,A(λ)− AdvE1

aChEtS,A(λ)
∣∣∣ ≤ Pr[bad].

We now show that the occurring of event bad translates to a violation of the CON-CST
property of the stream-based channel Ch. To this end, we build an explicit reduction B
which simulates the game for A using the oracles provided by the CON-CST experiment (from
Figure 11.5). The reduction B emulates the steps of the aChEtS construction (cf. Figure 11.4)
and uses its sending and receiving oracles from the CON-CST game to perform Send and Recv
operations. However, when A queries the first deviating fragment c, B queries to its ORecv oracle
the longest genuine prefix c̃ of c and halts (terminating the simulation). We give the explicit
code of algorithm B in Figure 11.7.

To see that B perfectly simulates the oracles of the aINT-CST experiment for A up to the bad
event occurring, note that B essentially uses its OSend and ORecv oracles as a drop-in replacement

186

11.5. Security of the Encode-then-Stream Construction

E0
A(1λ), E1

A(1λ):
1 (st′S,0, st′R,0) $←− Init(1λ)
2 buf ← ε, fail← 0
3 stS ← st′S,0
4 stR ← (st′R,0, buf, fail)
5 sync← 1, win← 0
6 i← 0
7 MS ← (), CS ← ()
8 MR ← (), CR ← ε

9 VS ← (), VR ← ε

10 AOSend,ORecv (1λ)
11 if bad = 1 then win← 0
12 return win

OSend(m):
13 v ← Encode(m)
14 (stS , c) $←− Send(stS , v, 1)
15 i← i+ 1
16 MS[i]← m
17 CS[i]← c
18 VS[i]← v
19 return c

ORecv(c):
20 parse stR as (st′R, buf, fail)
21 s̃t′R ← st′R // copy of current state
22 if fail = 1 then
23 m← (⊥)
24 else
25 (st′R, v)← Recv(st′R, c)
26 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
27 v′ ← v[1..`] // v′ is the longest error-free prefix of v
28 buf ← buf‖v′
29 (m, buf)← Decode(buf)
30 if v′ 6= v then
31 fail← 1,m←m‖(⊥)
32 stR ← (st′R, buf, fail)
33 C′R ← CR
34 CR ← CR‖c
35 MR ←MR‖m
36 V ′R ← VR
37 VR ← VR‖v
38 if sync = 0 then
39 if m /∈ E∗ then
40 win← 1
41 else if CR 64 ‖CS then
42 j ← 1
43 while j ≤ i and ‖CS[1, . . . , j] 4 CR

and MS[1, . . . , j] 4 MR
44 do j ← j + 1
45 if ‖CS 64 CR then
46 c̃← [CR, ‖CS] % C′R

47 (s̃t′R, ṽ)← Recv(s̃t′R, c̃)
48 if ‖VS[1, . . . , j] 4 V ′R‖ṽ then
49 bad← 1
50 if j ≤ i or |MR| > i then
51 sync← 0
52 m′ ←MR[j, . . . , |MR|]
53 if m′ /∈ E∗ then
54 win← 1
55 return m

Figure 11.6: Security experiments E0
A = ExptaINT-CST

aChEtS,A and E1
A, derived from E0

A by including the
framed instructions, described in the proof of Theorem 11.16.

187

Chapter 11. Atomic-Message Channels Supporting Fragmentation

BA,OSend,ORecv (1λ):
1 buf ← ε, fail← 0
2 sync← 1
3 i← 0
4 MS ← CS ← ()
5 MR ← (), CR ← ε
6 AO

∗
Send,O

∗
Recv (1λ)

If A queries O∗Send(m):
7 v ← Encode(m)
8 c← OSend(v, 1)
9 i← i+ 1

10 MS[i]← m
11 CS[i]← c
12 return c to A

If A queries O∗Recv(c):
13 if fail = 1 then return ⊥ to A
14 if sync = 1 and CR‖c 64 ‖CS and ‖CS 64 CR‖c then
15 c̃← [CR‖c, ‖CS] % CR
16 ṽ ← ORecv(c̃)
17 halt
18 v ← ORecv(c)
19 ` = max{|u| : u 4 v ∧ u ∈ {0, 1}∗}
20 v′ ← s[1..`]
21 buf ← buf‖v′
22 (m, buf)← Decode(buf)
23 if v′ 6= v then
24 fail← 1,m←m‖(⊥)
25 CR ← CR‖c
26 MR ←MR‖m
27 return m to A

Figure 11.7: Reduction B from the aINT-CST of aChEtS to the CON-CST of Ch used in the proof
of Theorem 11.16. Note that B does nothing more than emulating the construction (see Figure 11.4)
until the first deviating query. Specifically, it deviates from emulating the construction only with
instructions 14–17.

for the Send and Recv operations performed by the channel aChEtS, and executes the (public)
encoding and decoding operations by itself.

It remains to argue that if bad occurs then B violates the CON-CST property of Ch. To
this end, recall that the instructions specified in lines 45–47 identify the first deviating query c
and perform an auxiliary invocation of Recv on input the longest genuine prefix c̃, the latter
yielding a (potentially empty) string ṽ. Now, in the CON-CST experiment (see Figure 11.5
for reference) for B, once B has posed its last query we have that the sequence of sent ci-
phertexts and the strings of received ciphertext fragments, sent stream message fragments,
and received stream message fragments coincide with CS, CR‖c̃, ‖VS, and VR‖ṽ, respectively,
from the experiment E1. By definition of bad, B’s receiving queries cause Recv to output the
full stream message string ‖VS[1, . . . , j] although only a strict prefix of the corresponding
ciphertext sequence CS[1, . . . , j] has been submitted for decryption, i.e., ‖CS[1, . . . , j] 64 CR‖c̃
and ‖VS[1, . . . , j] 4 VR‖ṽ. This precisely violates the CON-CST property of Ch and hence we
have

Pr[bad] ≤ AdvCON-CST
Ch,B (λ).

We finally note that any A which is successful in experiment E1 (from Figure 11.6) can
be turned into an efficient adversary C that breaks the INT-CST property of Ch. Similarly
to B, algorithm C simulates the aChEtS operations using the oracles provided by the INT-CST
experiment to perform Send and Recv on message fragments. In contrast to B (which halts
when A poses the first deviating query), C’s simulation goes on until A stops.

As for B, it is immediate to see that C perfectly emulates the oracles for A. The more
challenging part of the proof is to show that if A is successful, so is C. More specifically, we
show that if A wins, by triggering lines 40 or 54 in game E1 (from Figure 11.6) but not the bad
event (lines 49 and 11), then C wins through triggering lines 18 or 35 in the INT-CST game
(from Figure 10.5 on page 158).

In the rest of the proof we will use the properties of the aChEtS construction. First, aSend
always invokes Send with flush flag set to f = 1: this induces a natural correspondence
between MS, VS and CS. Second, upon processing a receiving query c and the corresponding
string v output by Recv in experiment E1, the sequence MR is updated by first appending the

188

11.5. Security of the Encode-then-Stream Construction

message vector m obtained by decoding the valid part v′ of fragment v and then, if v contains
any error, by also appending the symbol ⊥ (see lines 26–29 in Figure 11.6). Moreover, once
the first error occurs, MR is only further augmented with errors (see line 23), so A cannot win
after this point.

We already saw that there are essentially four possibilities for A to win the aINT-CST
experiment (and so in game E1). We next show that, assuming that A is successful, in each of
these cases C violates the INT-CST property of Ch. Let c denote the receiving query (input)
that causes win← 1 to be set the first time.

We consider first the case in which sync← 0 is set with some query prior to c (A wins by
triggering instruction 40 in Figure 11.6).

Case #1. Synchronization has been lost before. Then CR must be deviating from ‖CS
(see footnote 60 on page 185). Note that for A to win, aRecv on input the (fully deviating)
fragment c must output some message sequence m 6= (⊥). That is, if buf denotes the buffer
kept by aRecv prior to processing c, we have that Recv on input c returns a string v such
that Decode(buf‖v′) = (m, buf ′), where v′ is the longest error-free prefix of v. In other words,
processing c augments the buffer to contain (at least) a full codeword v∗ that was not completed
before receiving c (otherwise win← 1 would have been set with some previous query).

In more detail, let c′1 denote the first deviating query, let c′2, . . . , c′` be the subsequent
decryption queries prior to c, and let v′1, . . . , v′` be the output of Recv on input these queries.
Since win← 1 is only set when A queries ORecv on c, the sequence of messages received after
processing each of c′1, . . . , c′` must be a prefix of MS, i.e., MR = MS[1, . . . , k] for some 1 ≤ k < i,
and moreover v′1, . . . , v′` ∈ {0, 1}∗ do not contain an error symbol. Prior to receiving c we must
have that ‖VS[1, . . . , k] 4 VR and the remainder VR % ‖VS[1, . . . , k] = v′′1‖v′2‖ · · · ‖v′`, where
v′′1 is a suffix of v′1 (some genuine prefix of v′1 may complete the codeword VS[k]), does not
contain any full codeword (again, otherwise win ← 1 would be set earlier). Only when c is
processed and its output v′ appended to the current buffer can we isolate a full codeword v∗,
i.e., v∗ 4 buf = v′′1‖ · · · ‖v′`‖v′ such that Decode(v∗) = (MR[k + 1], ε). In particular, v∗ /∈ E∗.
Thus, some among the deviating queries c′1, . . . , c′`, c that C forwards to its own receiving oracle
will make C win in the INT-CST experiment by triggering line 18 or line 35 in Figure 10.5.

The next three cases are those induced by the clauses defining the predicate of line 25 in
the aINT-CST experiment (Figure 11.2). Here win← 1 and sync← 0 are set within the same
ORecv call in E1 (in lines 51 and 54). Note that for the aINT-CST experiment to enter the loop
of lines 25–26 the current query c must cause CR 64 ‖CS. The three cases to consider are the
following.

Case #2. CR goes ahead of ‖CS (the loop terminates because j > i). Then after c is
processed we have j = i+ 1, ‖CS ≺ CR and MS 4 MR. Assuming that A wins the game we
must additionally have MS[1, . . . , i] ≺MR and in particular MR[j] 6= ⊥. It follows from the
conditions above that VR = ‖VS[1, . . . , i]‖v∗‖s such that Decode(v∗) = (MR[j], ε).61 That is,
Recv outputs on input c a string v′‖v∗‖s /∈ E∗, where v′ might complete previous fragments.
Hence, this triggers instruction 35 (in Figure 10.5), making C violate the INT-CST property
of Ch.

61In fact, the implication MS 4 MR =⇒ ‖VS 4 VR holds under the assumption that only codewords are
decoded to valid messages (i.e., there exists no string x ∈ {0, 1}∗ \V such that Decode(x) = (m, s) with m ∈M∗).
For the argument to go through, however, we do not need such an assumption, as having ‖VS 64 VR here would
immediately lead to a violation of the INT-CST property of Ch. A similar argument also applies to cases #3
and #4.

189

Chapter 11. Atomic-Message Channels Supporting Fragmentation

Case #3. The stream CR deviates from ‖CS after the first j − 1 sent ciphertexts and
messages are received entirely (the loop terminates because j ≤ i but ‖CS[1, . . . , j] 64 CR). In
this case we have ‖CS[1, . . . , j − 1] ≺ CR and MS[1, . . . , j − 1] 4 MR, but ‖CS[1, . . . , j] 64 CR.
Again assuming that win ← 1 is set with the current query we have MS[1, . . . , j − 1] ≺ MR
and MR[j] 6= ⊥. Then VR = ‖VS[1, . . . , j − 1]‖v∗‖s with v∗ ∈ {0, 1}∗, s ∈ ({0, 1} ∪ E)∗
and Decode(v∗) = (MR[j], ε). This means that on processing the current (deviating) query
the stream-based algorithm Recv returns (beyond a potential genuine prefix) a non-error
output v = v∗‖s, i.e., v /∈ E∗. Now, if MR[j] 6= MS[j] we have v∗ 6= VS[j] and, because of the
prefix-freeness of the set of codewords, that v∗ 64 VS[j], which is an evident violation of the
INT-CST property. The case MR[j] = MS[j] requires more care. Indeed, since v∗ = VS[j], we
cannot directly argue that having v∗ ∈ {0, 1}∗ violates the INT-CST property of Ch, as v∗ may
be also output by Recv when processing the genuine prefix c̃ of c. However, the latter would
imply v∗ = VS[j] 4 ṽ, hence triggering the bad event (instructions 49 and 11 in Figure 11.6),
meaning that A loses the game, against our assumption. That is, Recv only outputs the full v∗
after processing the deviating part of c, hence violating the INT-CST security of Ch.

Case #4. The sequence MR deviates from MS after the first j− 1 sent messages are received
completely (the loop terminates because j ≤ i and ‖CS[1, . . . , j] 4 CR but MS[1, . . . , j] 64
MR[1, . . . , j]). As win ← 1 is set with the current query we have MS[1, . . . , j − 1] 4 MR,
MS[1, . . . , j] 64 MR and MR[j] 6= ⊥. Then VR = ‖VS[1, . . . , j − 1]‖v∗‖s for some v∗ ∈ {0, 1}∗
and s ∈ ({0, 1} ∪ E)∗ such that Decode(v∗) = (MR[j], ε), where v∗ 6= VS[j] and, for the
prefix-freenes, v∗ 64 VS[j], which again violates the INT-CST of Ch.

The analysis above proves that

AdvE1

aChEtS,A(λ) ≤ AdvINT-CST
Ch,A (λ).

Overall, we hence obtain the final bound

AdvaINT-CST
aChEtS,A (λ) ≤ AdvCON-CST

Ch,B (λ) + AdvINT-CST
Ch,C (λ).

We saw in Theorem 11.16 that the encode-then-stream paradigm allows us to leverage in-
tegrity and conciseness of ciphertext streams for stream-based channels (INT-CST and CON-CST)
to integrity of ciphertexts for atomic-message channels (aINT-CST). In the following theorems
we prove a similar result for confidentiality. First, we show in Theorem 11.17 that the encode-
then-stream paradigm lifts confidentiality against chosen plaintext-fragment attacks (IND-CPFA)
to confidentiality against (atomic) chosen-plaintext attacks (aIND-CPA). Then, we prove in
Theorem 11.18 that aChEtS maintains (in the atomic setting) the error predictability of the
underlying stream-based channel. Finally, as a corollary of the above results together with
Theorem 11.7, we conclude that CON-CST, INT-CST, IND-CPFA, and ERR-PRE of Ch imply
aIND-CCFA security of aChEtS.

Theorem 11.17 (aIND-CPA security of aChEtS). Let Ch = (Init, Send,Recv) be a stream-based
channel and aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via
the encode-then-stream construction (see Construction 11.12). If Ch provides indistinguishability
under chosen plaintext-fragment attacks (IND-CPFA) then aChEtS provides indistinguishability
under chosen-plaintext attacks in the atomic-message setting (aIND-CPA). Formally, for every
efficient aIND-CPA adversary A there exists an efficient IND-CPFA adversary B such that

AdvaIND-CPA
aChEtS,A ≤ AdvIND-CPFA

Ch,B .

Proof. Given a left-or-right oracle from the IND-CPFA experiment against Ch it is immediate to
simulate the aIND-CPA experiment. Whenever A queries (m0,m1), algorithm B computes v0 =

190

11.5. Security of the Encode-then-Stream Construction

Encode(m0), v1 = Encode(m1), queries(v0, v1, 1) to its own oracle OLoR, and gives the result c
to A. Observe that |v0| = |v1| due to the length-regularity of ES, so the queries made by B to
its oracle are valid. As soon as A stops and returns a bit b′, so does B. Hence, analogously
to the reductions described in the proof of Theorem 11.16, B perfectly emulates the oracle
for A, executing the streaming Send operation via its oracle. Thus, B has the same advantage
as A.

Theorem 11.18 (aERR-PRE security of aChEtS). Let Ch = (Init,Send,Recv) be a stream-based
channel and aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch via
the encode-then-stream construction (see Construction 11.12). If Ch provides error predictability
(ERR-PRE) with respect to some efficient predictor Pred then there exists an efficient predic-
tor Pred′ (described in the proof) such that aChEtS is error predictable (aERR-PRE) with respect
to Pred′. Formally, for every efficient aERR-PRE adversary A there exist an efficient ERR-PRE
adversary B such that

AdvaERR-PRE
aChEtS,Pred′,A ≤ AdvERR-PRE

Ch,Pred,B.

Proof. Let Pred′ be an algorithm that on input CS, CR, and c (as described in the experiment
from Figure 11.3) invokes Pred as a subroutine on input ‖CS, CR, and c. Then, depending on
the output e of Pred, Pred′ returns an empty vector () if e = ε is the empty string, otherwise it
returns (⊥).

To see that Pred′ is a valid error predictor for aChEtS, notice first that by construction
algorithm aRecv always outputs an element m inM∗ ∪ (M∗ × ⊥), i.e., a vector of messages
possibly followed by the error symbol ⊥. Thus, for the projection 〈m〉E there are only two
possibilities: it is either the empty vector () or the singleton (⊥). Now let A be a successful
adversary in the aERR-PRE experiment (from Figure 11.3) against the error predictor Pred′.
Then we can build an algorithm B, to be run in the ERR-PRE experiment (from Figure 10.6)
against Pred, similarly to the reductions described in Theorems 11.16 and 11.17, i.e., by letting B
emulate the oracles for A by performing the public encoding and decoding operations of aChEtS
and using its sending and receiving oracles for the streaming operations.

There are only two possibilities for A to be successful (in line 13 of Figure 11.3): either
(i) Pred′ returns () while aRecv outputs an error, thus 〈m〉E = (⊥), or (ii) Pred′ returns (⊥)
but aRecv only produces valid messages, thus 〈m〉E = (). Observe that by construction Pred′
returns an empty vector if and only if Pred returns an empty string. Similarly, aRecv outputs ⊥
if and only if Recv also returns some error symbols. We hence deduce that, in the first case,
Recv on input c returns error symbols but Pred erroneously predicts that no error occurred,
causing the execution of line 11. The second case is analogous: Recv on input c only produces
valid message bits, while Pred falsely predicts errors. In either case, B wins by causing the
execution of line 11 in Figure 10.6.

Corollary 11.19 (aIND-CCFA security of aChEtS). Let Ch = (Init,Send,Recv) be a stream-based
channel and aChEtS = (aInit, aSend, aRecv) be the atomic-message channel obtained from Ch
via the encode-then-stream construction (see Construction 11.12). If Ch provides integrity and
conciseness of ciphertext streams (INT-CST and CON-CST), error predictability (ERR-PRE), and
indistinguishability under chosen plaintext-fragment attacks (IND-CPFA), then aChEtS provides
indistinguishability under chosen-ciphertext attacks in the atomic-message setting (aIND-CCFA).

11.5.3 Secure Instantiation from the AEAD-based Streaming Channel

The results of the previous section establish sufficient security requirements on the underlying
stream-based channel to obtain a secure atomic-message channel via the encode-then-stream
paradigm. One of these requirements is conciseness of ciphertext streams (CON-CST), which

191

Chapter 11. Atomic-Message Channels Supporting Fragmentation

essentially says that ciphertext fragments produced by the streaming sending algorithm contain
no redundant bits that can be chopped or modified without altering the underlying message
fragment. It is not difficult to achieve this property. Indeed, as we show in the next theorem,
our AEAD-based streaming channel ChAEAD from Construction 10.12 in Section 10.4 provides
conciseness of ciphertext streams. This result holds unconditionally in an information-theoretic
sense; even an unbounded adversary cannot violate CON-CST of ChAEAD.

Theorem 11.20 (CON-CST of ChAEAD). The stream-based channel ChAEAD from Construc-
tion 10.12 in Section 10.4 unconditionally provides conciseness of ciphertext streams (CON-CST).
Formally, for any (even unbounded) CON-CST adversary A against ChAEAD it holds that

AdvCON-CST
ChAEAD,A = 0.

Proof. Observe that a genuine ciphertext fragment c produced by Send on input some message
fragment m ∈ {0, 1}∗ is, by construction, the concatenation of a number of blocks B1, B2, . . . ,
each containing an AEAD ciphertext c′i preceded by (the bit representation of) its length leni.
Importantly, Recv identifies these blocks in the received ciphertext stream and only upon receiving
a full block Bi = leni‖c′i does it invoke the AEAD decryption algorithm on ciphertext c′i. Thus,
it is impossible to violate conciseness of ciphertexts. Indeed, recall from the CON-CST game (see
Figure 11.5) that in order to win the adversary can only submit to ORecv a strict prefix of the
genuine ciphertext stream. However, in the case of ChAEAD not even an unbounded adversary
can make Recv output one of the sent message fragments entirely by submitting a truncation of
the corresponding ciphertext fragment: chopping the ciphertext prevents the AEAD decryption
from being invoked on some block Bi and, consequently, causes a truncation of the genuine
message stream.

Remark 11.21. The TLS record protocol in both versions 1.2 and 1.3 [DR08, Res18] also
provides conciseness of its ciphertext stream when using an AEAD scheme and omitting
the option to send zero-length message fragments. As in our construction, TLS records are
data structures clearly marked-out via a length header, forming blocks within the ciphertext
fragments output by the sender. Hence, for reasons similar to those in Theorem 11.20, even
an unbounded adversary cannot force entire message fragments to be output when receiving
truncated ciphertext fragments.

Theorem 11.20 together with the already established INT-CST and IND-CCFA security
of ChAEAD under the mild assumption that the authenticated encryption scheme with associated
data AEAD provides INT-CTXT and IND-CPA security suggests that ChAEAD is a ‘good’ stream-
based channel to start with for building secure atomic-message channels using the encode-then-
stream transform. Moreover, the atomic-message channel construction aChEtS applied to ChAEAD
yields a secure atomic-message channel from AEAD.

Corollary 11.22 (Atomic-message channels from AEAD). Let AEAD be an authenticated en-
cryption scheme with associated data, let ChAEAD be the streaming channel obtained from AEAD
via Construction 10.12 in Section 10.4, and let aChEtS be the atomic-message channel con-
struction from Construction 11.12 applied to ChAEAD. If AEAD provides integrity of ciphertexts
(INT-CTXT) and indistinguishability under chosen-plaintext attacks (IND-CPA) then aChEtS
provides atomic integrity of ciphertext streams (aINT-CST) and atomic indistinguishability under
chosen ciphertext-fragment attacks (aIND-CCFA).

192

Chapter 12
Multi-key Channels

Summary. In this chapter we present our framework for multi-key channels that captures
secure channel designs in which a key-updating mechanism allows to deploy a sequence of multiple
encryption keys instead of a single, fixed key. We begin by presenting a modular specification
and security notions for confidentiality and integrity of multi-key channels, integrating two
advanced security aspects aimed at by key updating, forward security and phase-key insulation.
We study relations within the resulting hierarchy of security notions and show that the lower-end
notions naturally connect to the existing notions of stateful encryption established for single-key
channels. We finally instantiate the strongest security notions in our model with a construction
based on authenticated encryption with associated data and a pseudorandom function which
reflects aspects of the TLS 1.3 record protocol design and hence enables a comparative discussion.
The results in this chapter are based on a work published at CRYPTO 2017 [GM17].

12.1 Introduction

In all cryptographic models of secure channels established so far, security originates from a
single, symmetric key shared between the two endpoints of the channel (see Chapters 1 and 9
for an overview). The upcoming version of the TLS protocol, TLS 1.3 [Res18], however deviates
from this paradigm and instead deploys a series of multiple keys in a sequence of phases. The
TLS 1.3 channel (the so-called record protocol) as usual begins with deriving an initial key for
encryption and decryption of messages. As a novel component, both parties are further able to
trigger key updates, leading to a key switch and new phase according to a pre-defined schedule
while maintaining the channel’s operation. One particular motivation for this approach is that
long-lived TLS connections may exhaust the cryptographic limits of some algorithms on how
much data can be safely encrypted under a single key (cf. [Res18, Section 5.5], [LP16]).

A more general, major reason for refreshing the key used in a secure channel and specifically
TLS 1.3 is forward security, a notion primarily known from and well-established in the context
of key exchange protocols [Gün90, DVOW92, CK01] (see also Part I of this thesis). When using
the same key throughout the lifetime of a channel, an attacker that learns this key (e.g., through
cryptanalysis or even temporary break-in into the system) immediately compromises the confi-
dentiality of previous and the integrity of future communication. In contrast, forward security
demands that even if key material is leaked at some point, previous communication remains
secure. Forward-secure symmetric encryption in the non-stateful setting is considered understood
and in particular can be built from forward-secure pseudorandom bit generators [BY03] or,
more generally, through re-keying [AB00]. In the context of secure channels, a formal treatment
of forward security is however lacking so far.

193

Chapter 12. Multi-key Channels

Beyond forward security, a second security property arises for secure channels (in particular
in the design of TLS 1.3) which we refer to as phase-key insulation. While forward security
targets a full compromise (and prior security), phase-key insulation is concerned with the
temporary compromise of a channel in the form of leaking the key used in a certain phase
(i.e., time period), but not in others. Such temporary compromise might, e.g., result from
differing strengths of key material used to derive some of the phase keys (as is the case for
keys established in the TLS 1.3 key exchange [KW16, DFGS15a, FG17], see also Chapters 6
and 7) or from storing the currently active key in less secure memory for efficiency reasons. A
secure channel with phase-key insulation should then uphold confidentiality and integrity in
uncompromised phases, even if the key of prior or later phases is revealed. Moreover, security
should be retained even if the attacker learned a phase’s key while that phase was still active.
Our notion of phase-key insulation is similar in spirit to (and hence borrows its name from)
the notion of key insulation introduced in the public-key setting [DKXY02, DKXY03] and also
transferred to (non-stateful) symmetric encryption [DLXY12].

As we will see, phase-key insulation complements and is orthogonal to the notion of forward
security, which is only concerned with a-posteriori leakage of keys. Requiring it furthermore
introduces new pitfalls in the design of secure channels. For example, the initial draft design of
the TLS 1.3 record protocol with key updates enabled truncation attacks in non-compromised
phases that would go unnoticed during the further execution of the protocol, as Fournet and
the miTLS [miT] team discovered [Fou15]. We hence consider it being crucial to establish a
formal understanding of channels using multiple keys in order to provide means for evaluating
the provable security guarantees of proposed protocols.

Multi-key channels. In this chapter we study channels that employ a sequence of multiple
keys. To this end, we introduce a formalization of such multi-key channels and set up an
according framework of game-based security notions. We then analyze the relations between
our security notions as well as connections to the established notions for stateful encryption.
Finally, we provide a generic construction of a provably secure multi-key channel achieving the
strongest notions in our framework.

Following the game-based tradition in modeling channels, our formalism builds upon and
extends that of Bellare, Kohno, and Namprempre [BKN04] (cf. Section 9.3) and Bellare and
Yee [BY03]. More specifically, our notion of multi-key channels augments that of regular stateful
encryption in three aspects. Obviously, we first of all consider a sequence of keys to be used
for encryption and decryption. Secondly, switches between these keys are initiated through a
specific key-update algorithm which makes the channel proceed from one phase to the next.
Lastly, we separate two hierarchies of keys by additionally considering a level of master secret
keys which, also evolving over time, are used to derive the channel key for each phase. As we
will discuss, this carefully crafted syntax and key hierarchy in particular allows us to closely
model the key schedule of the TLS 1.3 record protocol draft [Res18].

We then define security of multi-key channels via a framework of notions. Beyond capturing
the classical requirements of confidentiality and integrity, our notions modularly integrate
the advanced security properties of forward security and phase-key insulation arising in the
context of multi-key channels. The core technical challenge here is to appropriately capture
the desired security properties while excluding trivial attacks in the stateful multi-key setting.
We furthermore modularize the adversary’s capability to proceed a channel to a next phase
through key updates. Thereby, our framework elegantly also captures the single-key variants of
our security notions, i.e., the cases where a multi-key channel only operates in a single phase.

Our single-key security notions enable us to provide a formal link to the established stateful-
encryption notions for regular channels. We show that analogous notions in both models are

194

12.2. Syntax and Functionality of Multi-key Channels

essentially equivalent (modulo the differences in syntax) by providing natural, generic transforms
between each pair of corresponding confidentiality and integrity notions. Furthermore, we
establish separations that give rise to a hierarchy of our security notions and in particular
establish forward security and phase-key insulation as independent security properties. To
complete the picture of relations, we also translate the classical composition result for symmetric
encryption by Bellare and Namprempre [BN00] to the setting of multi-key channels, showing
that chosen-plaintext confidentiality combined with ciphertext integrity implies the stronger
chosen-ciphertext notion of confidentiality.

Finally, we instantiate our model by providing a construction of a multi-key channel from a
nonce-based authenticated encryption with associated data (AEAD) scheme and a pseudorandom
function. To ensure both forward security and phase-key insulation, we match suitable techniques
established for forward-secure key generation and for ensuring causal integrity. Leveraging our
composition theorem, we then prove that our construction meets our strongest confidentiality
and integrity notions for multi-key channels. Coming back to the initial motivation from
real-world protocol design, we compare our construction with the draft design of the TLS 1.3
record protocol.

12.2 Syntax and Functionality of Multi-key Channels

We begin with defining the syntax and correctness of multi-key channels, focusing on their
functionality in this section; we will treat their security in Section 12.3. In Figure 12.1 we
exemplify the operations of a multi-key channel and already hint at their expected security.

Like a regular, single-key channel (abstractly modeled as stateful encryption [BKN04], cf.
Section 9.3), a multi-key channel is used by a sender to transform a sequence of messages m1,
m2, . . . ∈ {0, 1}∗ into a corresponding sequence of ciphertexts c1, c2, . . . ∈ {0, 1}∗ using a sending
algorithm Send. The receiver then sequentially uses a corresponding Recv algorithm on each
transmitted ciphertext to recover the sent message sequence.

In contrast to the preceding Chapters 10 and 11, we model the sending and receiving
algorithms again as processing atomic messages and ciphertext without fragmentation, as for
the original notion of stateful encryption. Without question, a comprehensive game-based
security treatment of, e.g., the TLS 1.3 record protocol would in the end need to capture both
its streaming behavior (cf. Chapter 10) and multi-key properties. As we will see, capturing the
effects of key updating however introduces a significant amount of complexity already in the
simpler setting with atomic messages and ciphertexts. We therefore choose to restrict ourselves
to this setting for the first exploration of multi-key channels and leave combining multi-key and
streaming channels as an interesting avenue for future work.

In addition to regular channels, in a multi-key channel both sender and receiver can decide
to update their keys used for sending and receiving, thereby switching to the next phase of the
channel. In our model, we consider a two-level hierarchy for key derivation. On the first level,
the whole multi-key channel is bootstrapped from a single, initial master secret key generated
upon initialization of the channel. Master secret keys are furthermore evolved when switching
to the next phase, following a deterministic key schedule to derive the master secret key mskt+1
for phase t + 1 from the master secret key mskt of the previous phase. On the second level,
the actual phase key Kt used in the channel for sending and receiving messages in a phase t is
derived (again deterministically) from that phase’s master secret key mskt. In order to make
the current phase key used for sending and receiving explicit we provide it as an distinguished
input to the Send and Recv algorithms beyond the general sending and receiving state.

Although Figure 12.1 depicts only a single key schedule with the phase keys forwarded to
both the Send and Recv algorithms of that phase, in a real execution of the channel, the key

195

Chapter 12. Multi-key Channels

msk0 msk1 msk2 msk3 msk4

corrupted
K0 K1 K2 K3 K4

revealed

m1 m2 m3 m4 m5 m6 m7 m8 m9 m10 m11m12 m13

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

Send Send Send Send Send

m1 m2 m3 m4 m5 m6 m7

Recv Recv Recv

t = 0 t = 1 t = 2 t = 3 t = 4

Figure 12.1: Illustration of the behavior of a multi-key channel (cf. Definition 12.1). The beginning
of a new phase t is indicated by the derivation of a phase key Kt from the corresponding master secret
key mskt. The phase key Kt is then used to send and receive in-order messages, resp. ciphertexts, via
algorithms Send and Recv in this phase.
In this example, the phase key K1 of phase t = 1 is revealed and the master secret key msk3 of phase t = 3
is corrupted. The affected phases 1, resp. 3, 4, and following are marked in hatched-pattern red (with
lines towards top right for the effects of the revealed K1 and towards bottom right for the effects of the
corrupted msk3). For security (cf. Section 12.3), a forward-secure and phase-key–insulated multi-key
channel is demanded to provide security in the non-affected phases 0 and 2, marked by non-hatched
green areas.

updates and derivations are invoked independently on the sending and receiving side. For correct
functionality, key updates need to be aligned in order to process sent and received ciphertexts
under matching keys on both sides. In practice, key update notifications may be either delivered
alongside of the messages transmitted in the channel (and hence potentially authenticated) or
in an out-of-band manner, e.g., via a separate control channel, and with their position in the
channel’s ciphertext sequence not being explicitly authenticated.62 Alternatively, key updates
may also be scheduled deterministically, e.g., after a certain maximum number of messages have
been sent within one phase. In our abstraction of multi-key channels, we do not rely on the
authenticity of the key-update signaling (in particular, we will later allow adversaries to tamper
with the timing of key updates) but leave it up to the multi-key channel to ensure their correct
position with respect to the transmitted ciphertexts.

We now define the syntax and correctness of multi-key channels capturing the given intuition.

Definition 12.1 (Syntax of multi-key channels). A multi-key channel Ch = (Init,Send,Recv,
Update) with associated sending and receiving state space SS resp. SR, master secret key
space MSK, phase key space K, error space E with E ∩ {0, 1}∗ = ∅, and maximum num-
ber maxmsg ∈ N ∪ {∞} of messages supported per phase consists of four efficient algorithms
defined as follows.

• Init(1λ) $−→ (msk0,K0, stS,0, stR,0). This probabilistic algorithm is composed of three sub-
algorithms:

– MasterKeyGen(1λ) $−→ msk0. On input a security parameter 1λ, this probabilistic
algorithm outputs an initial master secret key msk0 ∈MSK.

62In the context of TLS 1.3, for example, both variants have been discussed. The current draft design [Res18]
specifies that key update notifications are transmitted (and authenticated) within the data channel.

196

12.2. Syntax and Functionality of Multi-key Channels

– KeyDerive(msk)→ K. On input a master secret key msk, this deterministic algorithm
outputs a phase key K ∈ K. The initial phase key is derived as K0 ← KeyDerive(msk0).

– StateGen(1λ) → (stS,0, stR,0). On input a security parameter 1λ, this deterministic
algorithm outputs initial sending and receiving states stS,0 ∈ SS resp. stR,0 ∈ SR.

• Send(stS,t,Kt,m) $−→ (st′S,t, c). On input a sending state stS,t ∈ SS, a phase key Kt ∈ K,
and a message m ∈ {0, 1}∗, this (possibly) probabilistic algorithm outputs an updated
state st′S,t ∈ SS and a ciphertext (or error symbol) c ∈ {0, 1}∗ ∪ E.

• Recv(stR,t,Kt, c)→ (st′R,t,m). On input a receiving state stR,t ∈ SR, a phase key Kt ∈ K,
and a ciphertext c ∈ {0, 1}∗, this deterministic algorithm outputs an updated state st′R,t ∈ SR
and a message (or error symbol) m ∈ {0, 1}∗ ∪ E.

• Update(mskt, stS,t/stR,t)→ (mskt+1,Kt+1, stS,t+1/stR,t+1). This deterministic algorithm is
composed of the following two sub-algorithms:

– MasterKeyUp(mskt) → mskt+1. On input a master secret key mskt ∈ MSK, this
deterministic algorithm outputs a master secret key mskt+1 ∈ MSK for the next
phase.

– StateUp(stS,t/stR,t)→ stS,t+1/stR,t+1. On input a sending or receiving state stS,t ∈
SS, resp. stR,t ∈ SR, this deterministic algorithm derives the next phase’s state
stS,t+1 ∈ SS, resp. stR,t+1 ∈ SR.

It further employs the (same) deterministic algorithm KeyDerive as given for Init to derive
an updated phase key Kt+1 ∈ K as Kt+1 ← KeyDerive(mskt+1).

We call a multi-key channel with a deterministic Send algorithm a deterministic multi-key
channel.

Shorthand notation. Similar to the previous chapters, we introduce the following shorthand
notation. Given a sending state stS ∈ SS , a phase key K ∈ K, an integer ` ≥ 0, and a vector
of messages m = (m1, . . . ,m`) ∈ ({0, 1}∗)`, let (st′S , c) $←− Send(stS ,K,m) be shorthand for
the sequential execution (st1

S , c1) $←− Send(st0
S ,K,m1), . . . , (st`S , c`) $←− Send(st`−1

S ,K,m`) with
c = (c1, . . . , c`), st0

S = stS , and st′S = st`S . For ` = 0 we define c to be the empty vector and
the final state st`S = st′S to be the initial state stS . We use an analogous notation for the Recv
algorithm.

Correctness of multi-key channels intuitively guarantees that if at the receiver side the keys
are updated after having received all messages sent in the previous phase, then the received
messages are equal to those sent in the entire communication.

Definition 12.2 (Correctness of multi-key channels). Let t ∈ N and (msk0,K0, stS,0, stR,0) $←−
Init(1λ). Let m0, . . . ,mt ∈ ({0, 1}∗)∗ be t+ 1 vectors of messages of lengths |mi| ≤ maxmsg (for
i ∈ {0, . . . , t}). Let c0, . . . , ct ∈ ({0, 1}∗)∗ be the corresponding ciphertext vectors output by Send
given that Update is invoked between each sending of two subsequent message sequences, i.e.,
such that for k = 0, . . . , t, (st′S,k, ck) $←− Send(stS,k,Kk,mk) and for k = 0, . . . , t − 1, (mskk+1,
Kk+1, stS,k+1)← Update(mskk, st′S,k).

Now let m′0, . . . ,m′t ∈ ({0, 1}∗)∗ be the results of receiving these ciphertexts with likewise
interleaved Update invocations on the receiver’s side, i.e., for k = 0, . . . , t, let (st′R,k,m′k) ←
Recv(stR,k,Kk, ck) and for k = 0, . . . , t− 1, let (mskk+1,Kk+1, stR,k+1)← Update(mskk, st′R,k).

We say that a multi-key channel Ch is correct if for any choice of t, m0, . . . , mt, and all
choices of the randomness in the channel algorithms it holds that m0 = m′0, . . . , mt = m′t.

197

Chapter 12. Multi-key Channels

12.3 Security of Multi-key Channels

Classically, two security properties are expected from a secure channel. Confidentiality aims
at protecting the content of transported messages from being read by eavesdroppers or active
adversaries on the network. In contrast, integrity ensures that messages are received unmodified
and in correct order, i.e., without messages being reordered or intermediate messages being
dropped. We take up these notions in the context of multi-key channels and extend them to
capture two more advanced security aspects arising in this scenario which we denote as forward
security and phase-key insulation.

Forward security, as established also in other settings, is concerned with the effects leaking
a channel’s master secret key has on prior communication. The notion aims at situations
where all key material of a communicating party becomes known to an attacker, e.g., through a
break-in into a system or exfiltration of secrets. Following common terminology, we demand
that a forward-secure multi-key channel upholds both confidentiality and integrity for messages
sent in phases before corruption of a master secret key took place, even if one endpoint of the
channel is still processing data in these phases when the corruption happens. Naturally, as the
deterministic key schedule implies that the current and any future phase’s key can be derived
from a master secret key, we cannot expect confidentiality or integrity for messages sent from
the point of corruption on.

Phase-key insulation in contrast captures the selective leakage of some phases’ keys while
the master secret key remains uncompromised. Such leakage may be due to cryptanalysis of
some of these keys, partial misuse of the key material, or temporary compromise. In particular,
it reflects that the master secret key of a channel may be stored in more secure memory (e.g.,
trusted hardware) while the current phase key potentially resides in lesser-secured memory for
performance reasons. From a phase-key–insulated multi-key channel we demand, on a high level,
that confidentiality and integrity in a certain phase is not endangered by the leakage of keys in
prior or later phases.

12.3.1 Confidentiality

Recall that the established way of modeling confidentiality for channels is by demanding that the
encryptions of two (left and right) sequences of messages are indistinguishable [GM84, BKN04],
see Section 9.3.1. Formally, an adversary sequentially inputs pairs of messages m0, m1 of its
choice to a sending oracle OSend and is given the encryption cb of always either the first or the
second message depending on an initially fixed, random challenge bit b $←− {0, 1}. The adversary’s
task is to finally determine b. Hence, the corresponding security notion is established under
the name of (stateful) indistinguishability under chosen-plaintext attacks (IND-sfCPA). In the
stronger setting of chosen-ciphertext attacks (IND-sfCCA), the adversary is additionally given
a receiving oracle ORecv with the limitation that it may not query it on challenge ciphertexts,
defined via a synchronization mechanism (cf. Section 9.3.1).

In the multi-key setting however, the advanced security aspects of forward security and
particularly phase-key insulation render it impossible to use a single challenge bit throughout all
phases. An adversary that adaptively learns keys for some phases is immediately able to learn
whether the left or the right messages were encrypted in these phases. If this would be a fixed
choice for all phases, the adversary could also tell which messages were encrypted in all other
phases. In our formalization of multi-key confidentiality we hence deploy a separate challenge
bit bi for each phase i, chosen independently at random. This allows us to capture the expected
insulation of phases against compromises in other phases and, ultimately, later corruption.

We define confidentiality in a modular notion s-IND-kATK through the security experi-
ment Expts-IND-kATK

Ch,A given in Figure 12.2. The experiment is parameterized with the following

198

12.3. Security of Multi-key Channels

parameters s, k, and ATK.

• The parameter s specifies the advanced security aspects captured in the notion and can be
either empty (s = ε) or take one of the values ki, fs, or fski. As expected, fs indicates that
the notion ensures forward security and ki denotes that the notion demands phase-key
insulation; for fski both properties are integrated and the empty string ε indicates a plain
notion without forward security or phase-key insulation.63 Forward security is modeled
through allowing the adversary to learn the master secret key at some point through a
corruption oracle OCorrupt. When ensuring phase-key insulation, the adversary is given a
reveal oracle OReveal which enables it to selectively learn the keys of some phases.

• Via the parameter k, we capture both single-key (sk) and multi-key (mk) security notions
in a single experiment. To model the single-key setting, we simply drop the adversary’s
capability to proceed to a next phase via an OUpdate oracle, essentially restricting it to a
single phase (and hence key).

• Finally, the parameter ATK distinguishes between chosen-plaintext (ATK = CPA) and
chosen-ciphertext (ATK = CCA) attacks. While the adversary always has access to a
left-or-right encryption oracle OLoR, the receiving oracle ORecv is only available for CCA
notions.

The adversary finally has to output a phase t and a bit guess b. It wins if the challenge bit used
in phase t by the left-or-right oracle OLoR is equal to b and the targeted challenge phase t is
neither revealed (t 6∈ Rev, where Rev is the set of all revealed phases) nor affected by corruption
(i.e., t < tcorr , where tcorr is the corrupted phase, initialized to infinity).

In order to prevent trivial attacks, we have to restrict the output of adversarial queries to
the receiving oracle ORecv in the setting of chosen-ciphertext attacks. Obviously, if ORecv were
to output the message decrypted on input the unmodified challenge ciphertext sequence, the
challenge bit used in OLoR would be immediately distinguishable. Still, as the Recv algorithm is
stateful, we must allow the adversary to first make this algorithm proceed to a certain, potentially
vulnerable state, before mounting its attack. For this purpose, we (as in the previous chapters)
follow the concept of Bellare et al. [BKN04] to suppress the output of the Recv algorithm as long
as the adversary’s inputs to ORecv are in sync with the challenge ciphertext sequence output
by OLoR. As soon as synchronization is lost though, ORecv returns the output of the receiving
algorithm Recv to the adversary.

Defining what it means to be in sync now becomes the crucial task in defining CCA security:
we want to make the security notion as strong as possible without allowing trivial attacks.
Intuitively, ORecv stays in sync (denoted by a flag sync = 1) and decryptions are suppressed as
long as the adversary queries ciphertexts to ORecv that are obtained in that order from OLoR in
the same phase. So far, this is essentially a transcription of the stateful encryption definition of
CCA security, IND-sfCCA (cf. Section 9.3.1), to the multi-key setting with multiple phases. When
targeting forward security and phase-key insulation, we however also need to consider how to
define synchronization in phases where the adversary knows the key. Obviously, in such phases
we cannot demand that a channel can strictly distinguish adversarial encryptions from the
honest ciphertext sequence generated in OLoR as the adversary may simply replicate the latter’s
behavior. We accordingly do not consider synchronization to become lost in revealed phases.
Still, we demand that a secure channel notices modifications later in uncompromised phases.
Moreover, it should even detect truncations at the end of an uncompromised phase if the next
phase’s key is revealed, latest when the channel recovers from temporary compromise and enters

63For legibility, we also drop the leading dash in a notion s-IND-kATK if s = ε is the empty string and simply
write IND-kATK in this case.

199

Chapter 12. Multi-key Channels

Expts-IND-kATK
Ch,A (1λ):

1 (msk0,K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 b0

$←− {0, 1}
4 i0 ← 0, j0 ← 0
5 sync← 1
6 tcorr ← +∞
7 Rev ← ∅
8 (t, b) $←− AOLoR, [ORecv]ATK=CCA, [OUpdate]k=mk, [OReveal]s∈{ki,fski}, [OCorrupt]s∈{fs,fski}(1λ)
9 if t > max(tS , tR) then

10 return 0
11 return ((bt = b) ∧ (t 6∈ Rev) ∧ (t < tcorr))

OLoR(m0,m1):
12 if |m0| 6= |m1| then
13 return
14 itS ← itS + 1
15 (stS ,C[tS][itS]) $←− Send(stS ,KtS ,mbtS

)
16 if tR > tS and tS /∈ Rev then
17 sync← 0
18 return C[tS][itS]

ORecv(c):
19 jtR ← jtR + 1
20 (stR,m)← Recv(stR,KtR , c)
21 if (tR > tS or jtR > itR or c 6= C[tR][jtR])

and tR /∈ Rev then
22 sync← 0
23 if sync = 0 then
24 return m
25 else
26 return

OUpdate(role):
27 (msktrole+1,Ktrole+1, strole)← Update(msktrole , strole)
28 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
29 sync← 0
30 trole ← trole + 1
31 stbegin

role,trole
← strole

32 if role = S then
33 btS

$←− {0, 1}

OReveal(t, role):
34 if t > trole then
35 return
36 Rev ← Rev ∪ {t}
37 return (stbegin

role,t,Kt)

OCorrupt(role):
38 if tcorr < +∞ then
39 return (stbegin

role,tcorr
,msktcorr)

40 tcorr ← trole
41 return (stbegin

role,trole
,msktrole)

Figure 12.2: Security experiment for confidentiality (s-IND-kATK) of multi-key channels. The brackets
[OX]c indicate that the adversary has access to the OX oracle only if the condition c is satisfied.

the next, uncompromised phase.64 We hence, additionally to the regular stateful encryption
setting, define synchronization to be lost if the receiver proceeds from an uncompromised phase
to the next phase without having received all sent ciphertexts, or if the sender issues a ciphertext
in a phase when the receiver already proceeded to the next phase.

In the following we describe the functionality and purpose of the oracles in the multi-key
confidentiality experiment in Figure 12.2 in detail.

• The OLoR oracle can be queried with a pair of messages (m0,m1) of equal length. It
responds with the output of Send on message mbtS

, where btS is the challenge bit for the
current sending phase tS .
If the receiver already proceeded to a later phase, the sent message cannot be received
correctly anymore. As long as the key of the sender’s phase is unrevealed, we hence declare

64Recall that we consider key updates to be unauthenticated, possibly transmitted out-of-band.

200

12.3. Security of Multi-key Channels

synchronization to be lost (setting sync← 0). The restriction to uncompromised phases is
to prevent trivial attacks where the adversary leverages the phase key to, e.g., make the
receiver process more messages than sent earlier to cover up the mismatch.

• The ORecv oracle can only be queried if ATK = CCA. On input a ciphertext c, ORecv
computes the corresponding messages obtained under Recv. In case the receiving oracle is
ahead in phase, has received more messages than sent, or c deviates from the corresponding
sent ciphertext, synchronization is lost (again, to ignore trivial forgeries, as long the
receiver’s current phase is unrevealed). Finally, if still in sync, ORecv suppresses the
message output and returns an according flag to the adversary A. Otherwise it
provides A with the obtained message m.

• The OUpdate oracle is only available if k = mk. Using the oracle, the adversary can
separately make both the sender or receiver proceed to the next phase (indicating sender
and receiver through role = S, resp. role = R), updating their master secret, phase key,
and state. If the sender side is updated, a fresh challenge bit btS $←− {0, 1} for the new
phase tS is chosen at random. The experiment goes out of sync if the receiver side is
updated too soon, i.e., without having received all sent ciphertexts, and the receiver’s
phase is not revealed. Furthermore, the next phase’s initial state is stored in stbegin

role,trole
for

answering potential future reveal and corrupt queries.

• The OReveal oracle can be used by the adversary to obtain the key of any phase t (along
with this phase’s initial sender resp. receiver state) and is accessible if s ∈ {ki, fski}. Phase t
is then added to the set of revealed phases Rev.

• The OCorrupt oracle is provided if s ∈ {fs, fski}. Upon the first call, the adversary obtains
for a chosen role role the current phase’s master secret key and initial state. This phase is
then recorded as the phase of corruption tcorr for later comparison. If a corruption has
already taken place (i.e., tcorr < +∞), the adversary can obtain the other role’s initial
state in the corrupted phase via a further OCorrupt call. For simplicity, we assume the
state to be empty in phases not yet entered. Observe that it suffices to consider a single
point in time for corruption, as later master keys are deterministically derived from the
corrupted one.

We are now ready to state the formal generic definition of s-IND-kATK security for multi-key
channels.

Definition 12.3 (s-IND-kATK security). Let Ch = (Init,Send,Recv,Update) be a multi-key
channel and experiment Expts-IND-kATK

Ch,A (1λ) for an adversary A be defined as in Figure 12.2,
parameterized in three dimensions by s, k, and ATK as specified above.

We say that Ch provides indistinguishability under multi-key (resp. single-key) chosen-
plaintext (resp. chosen-ciphertext) attacks (s-IND-kCPA, resp. s-IND-kCCA, for k = mk, resp.
k = sk), potentially with forward security (if s ∈ {fs, fski}) and/or phase-key insulation (if
s ∈ {ki, fski}) if for all PPT adversaries A the following advantage function is negligible in the
security parameter:

Advs-IND-kATK
Ch,A (λ) := Pr

[
Expts-IND-kATK

Ch,A (1λ) = 1
]
− 1

2 .

Our generic confidentiality notion in Definition 12.3 captures as its weakest variant in-
distinguishability under single-key chosen-plaintext attacks (IND-skCPA) and as its strongest
variant indistinguishability under multi-key chosen-ciphertext attacks with forward security and
phase-key insulation (fski-IND-mkCCA). We discuss the relations among these notions in more
detail in Section 12.3.3.

201

Chapter 12. Multi-key Channels

Remark 12.4. As pointed out earlier, using a single challenge bit across all phases in the given
confidentiality experiment is infeasible: an adaptive Reveal query for some phase would in this
case also disclose the challenge phase’s (same) bit. We hence deploy multiple, independent
challenge bits for each phase.

Alternative options would be to employ a single challenge bit in one phase and provide
regular (non–LoR) encryption oracles for all other phases, or to have the adversary choose
whether to compromise a phase at its beginning. We however deem these approaches not
only more complex, but most importantly less adaptive, as they prevent the adversary from
retrospectively choosing (non-)challenge phases.

12.3.2 Integrity

Integrity is traditionally defined in two flavors: integrity of plaintexts (INT-PTXT) and integrity of
ciphertexts (INT-CTXT), see Chapter 9 for definitions in the stateless and stateful setting [BN00,
BSWW13, BKN04]. Integrity of plaintexts intuitively ensures that no adversary is able to make
the receiver output a valid message that differs from the previously sent (sequence of) messages.
The stronger notion of ciphertext integrity ensures that no adversary can make the receiver
output any valid, even recurring message by inputting a forged or modified ciphertext.

Similarly to confidentiality, we define a modular multi-key integrity notion s-INT-kATK,
given through the experiment Expts-INT-kATK

Ch,A in Figure 12.3. Again, the notion is parameterized
to integrate forward security and phase-key insulation (via s), the single- and multi-key setting
(via k), as well as the two attack targets, ATK = PTXT and ATK = CTXT. An adversary A in
the experiment Expts-INT-kATK

Ch,A has access to a sending oracle OSend (in contrast to confidential-
ity without left-or-right functionality), one of two receiving oracles OATK

Recv depending on ATK,
and—depending on the advanced security properties and key setting captured—oracles OUpdate
(without setting a new challenge bit), and OReveal and OCorrupt, identical to those for confiden-
tiality. In the integrity experiment, the adversary does not provide a particular challenge output,
but instead needs to trigger a winning flag win to be set within the experiment run.

Beyond the sending oracle OSend only taking and encrypting a single message, the major
difference to the confidentiality setting lies in the definition of the OATK

Recv oracle, which in
particular comprises the winning condition check. Depending on the attack target, the adversary
has access to either the OPTXT

Recv or the OCTXT
Recv variant of the receiving oracle. Both oracles first

of all obtain a ciphertext c and provide the adversary A with the decrypted message m output
by Recv on that ciphertext. Beyond this, they differ in assessing whether A has succeeded in
breaking plaintext, resp. ciphertext, integrity (in which case they set win← 1).

• The OPTXT
Recv oracle declares the adversary successful if the received message m differs from

the corresponding sent message in this phase and position, given that the current receiving
phase is neither revealed nor corrupted.

• The OCTXT
Recv in contrast requires for winning that, on input an out-of-sync ciphertext in a

phase neither revealed nor corrupted, Recv outputs a valid (non-error) message m /∈ E .

In the same way as for confidentiality, synchronization is considered to be lost in an OCTXT
Recv

oracle call if the receiving oracle, in a non-revealed phase, is ahead of the sending oracle in
phase or message count, or if c deviates from the corresponding sent message. Furthermore,
synchronization may be lost by non-aligned key updates on both sides of the channel,
captured in OSend and OUpdate as in the confidentiality experiment (cf. Figure 12.2).

The generic notion of s-INT-kATK security for multi-key channels is then defined as follows.

202

12.3. Security of Multi-key Channels

Expts-INT-kATK
Ch,A (1λ):

1 (msk0,K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0, i0 ← 0, j0 ← 0
3 sync← 1, win← 0
4 tcorr ← +∞, Rev ← ∅
5 AOSend, OATK

Recv, [OUpdate]k=mk, [OReveal]s∈{ki,fski}, [OCorrupt]s∈{fs,fski}(1λ)
6 return win

OSend(m):
7 itS ← itS + 1
8 (stS ,C[tS][itS]) $←− Send(stS ,KtS ,m)
9 M[tS][itS]← m

10 if tR > tS and tS /∈ Rev then
11 sync← 0
12 return C[tS][itS]

OPTXT
Recv (c):

13 jtR ← jtR + 1
14 (stR,m)← Recv(stR,KtR , c)
15 if m 6= M[tR][jtR] and m /∈ E and tR /∈ Rev

and tR < tcorr then
16 win← 1
17 return m

OCTXT
Recv (c):

18 jtR ← jtR + 1
19 (stR,m)← Recv(stR,KtR , c)
20 if (tR > tS or jtR > itR or c 6= C[tR][jtR])

and tR /∈ Rev then
21 sync← 0
22 if sync = 0 and m /∈ E and tR /∈ Rev

and tR < tcorr then
23 win← 1
24 return m

OUpdate(role):
25 (msktrole+1,Ktrole+1, strole)← Update(msktrole , strole)
26 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
27 sync← 0
28 trole ← trole + 1
29 stbegin

role,trole
← strole

OReveal(t, role):
30 if t > trole then
31 return
32 Rev ← Rev ∪ {t}
33 return (stbegin

role,t,Kt)

OCorrupt(role):
34 if tcorr < +∞ then
35 return (stbegin

role,tcorr
,msktcorr)

36 tcorr ← trole
37 return (stbegin

role,trole
,msktrole)

Figure 12.3: Security experiment for integrity (s-INT-kATK) of multi-key channels. The brackets
[OX]c indicate that the adversary has access to the OX oracle only if the condition c is satisfied; the ORecv
differs depending on the parameter ATK ∈ {PTXT,CTXT}.

Definition 12.5 (s-INT-kATK security). Let Ch = (Init, Send,Recv,Update) be a multi-key
channel and experiment Expts-INT-kATK

Ch,A (1λ) for an adversary A be defined as in Figure 12.3,
parameterized in three dimensions by s, k, and ATK as specified above.

We say that Ch provides multi-key (resp. single-key) integrity of plaintexts (resp. ciphertexts)
(s-INT-kPTXT, resp. s-INT-kCTXT, for k = mk, resp. k = sk), potentially with forward security
(if s ∈ {fs, fski}) and/or phase-key insulation (if s ∈ {ki, fski}) if for all PPT adversaries A the
following advantage function is negligible in the security parameter:

Advs-INT-kATK
Ch,A (λ) := Pr

[
Expts-INT-kATK

Ch,A (1λ) = 1
]
.

12.3.3 Relations Between Multi- and Single-key Notions

The modularity of our notions for multi-key confidentiality and integrity, parameterized by
forward security and phase-key insulation, leads to a set of notions of varying strength. In the

203

Chapter 12. Multi-key Channels

fski-I-mkATK

fs-I-mkATK ki-I-mkATK

I-mkATK

I-skATKI-sfATK

AEAD + PRF

Chfs Chki

Chplain Chplain
Chfs

Chki

Chmk-0

sfAEsk

Chsf
[Chsf](I,ATK)=(IND,CPA)

ChAEAD-PRF

Figure 12.4: Illustration of the relations between different flavors of confidentiality and integrity in our
multi-key and single-key settings as well as for stateful authenticated encryption [BKN04] (cf. Section 9.3).
The variables I and ATK are placeholders for confidentiality notions (I = IND with ATK = CPA/CCA)
and integrity notions (I = INT with ATK = PTXT/CTXT).
Rounded rectangles indicate multi-key (solid-line, green), single-key (dashed-line, blue), or stateful-AE
notions (dotted-line, purple); regular (orange) rectangles indicate building blocks. Solid arrows indicate
trivial implications (through omission of oracles in the respective experiment). Dashed, stroke-out arrows
indicate separations and dotted arrows generic transforms we establish, both provided in Section 12.3.3.
The dash-dotted arrow indicates the generic ChAEAD-PRF construction we provide in Section 12.4. Labels
on arrows refer to the respective construction providing the implication, separation, or transform. For
a construction X in brackets [X]c, the relation only holds between notions for which the condition c is
satisfied.

following, we establish that forward security and phase-key insulation are orthogonal properties
(expectedly both adding to the strength of a security notion) and only take effect in the multi-
key setting. Furthermore, we show that the single-key security notions of our framework are
essentially equivalent to the respective established stateful encryption notions: we give generic,
purely syntactical transforms to translate secure single-key schemes between the two realms.
Figure 12.4 illustrates the relations we establish.

Trivial implications

First of all, let us observe the trivial implications between the security notions of our framework,
indicated by solid arrows in Figure 12.4. Those implications arise by restricting the access to
one (or multiple) oracles in the security experiments: a notion with access to a certain oracle
immediately implies an otherwise identical notion without this oracle access. For instance, a
fski-IND-mkCPA-secure channel is also ki-IND-mkCPA-secure, since if no adversary can distinguish
left-or-right ciphertexts when being able to corrupt the master secret key, then doing so does
not become easier when corruption is not possible.

We furthermore observe that the advanced properties of forward security and phase-key
insulation are only reasonable to consider in the multi-key setting (k = mk), for both confiden-
tiality and integrity. Indeed, for the single-key setting (k = sk), the plain, fs, ki, and fski flavors
of each notion collapse to being equivalent. For this, observe that an adversary in the single-key

204

12.3. Security of Multi-key Channels

setting, lacking access to the OUpdate oracle, is restricted to the initial phase tS = tR = 0. At the
same time, in order to win in this phase (by outputting a confidentiality guess, resp. breaking
integrity), it must neither reveal the single phase key used nor corrupt either of the parties.
Hence, the adversary effectively cannot make use of the OReveal and OCorrupt queries, rendering
both non-effective. Consequently, we can focus on the plain version of our single-key security
notions only, as reflected in Figure 12.4.

Separations

We discuss the separations between notions possibly providing forward security and phase-key in-
sulation starting from a multi-key channel that provides both properties at the example of indistin-
guishability under chosen-plaintext attacks. The cases of integrity and indistinguishability under
chosen-ciphertext attacks are analogous. More precisely, let Chfski := (Initfski, Sendfski,Recvfski,
Updatefski) be a multi-key channel which provides fski-IND-mkCPA security. Recall that master
secret and phase keys are computed using two deterministic sub-algorithms MasterKeyUpfski
and KeyDerivefski, respectively.

First, we construct a new channel Chfs which differs from Chfski only in its key derivation al-
gorithm KeyDerive which we replace by the identity function, i.e., we define KeyDerivefs(mski) :=
mski for all phases i ∈ N. As MasterKeyUp remains unmodified, master or phase keys can
not be used to compute previous phases’ keys, so Chfs inherits the forward security of Chfski.
However, observe that a revealed phase key (equal to the master secret key Ki = mski) can
now be iteratively used to compute the next master secret keys mski+1 = MasterKeyUpfs(mski)
and therefore also the next phase keys Ki+1 = KeyDerivefs(mski+1). Thus, Chfs has dependent
phase keys and hence only provides fs-IND-mkCPA security, but not fski-IND-mkCPA security,
separating the two notions.

Next we build a channel Chki from Chfski which has a master secret key space MSKki =
MSK∗fski and updates its master secret keys using a function MasterKeyUpki(mski) := (mski,
MasterKeyUpfski(mski[i])), where msk0 = (MasterKeyGenfski(1λ)). In other words, Chki keeps a
copy of all master secret keys generated so far in the current master secret key, and uses the last
entry to derive the next master secret key. The phase keys are then derived from the last master
secret key entry, i.e., we define KeyDeriveki(mski) := KeyDerivefski(mski[i]). Observe that Chki
provides the phase-key insulation of Chfski: the phase keys are computed and used as before and
hence in particular cannot be leveraged to gain information about the now accumulated master
secrets, as otherwise phase-key insulation would be broken in Chfski already. Forward security
however is lost. On corruption in any phase, all previous master secret keys are leaked, allowing
an adversary to derive any previous phase key. Therefore Chki only provides ki-IND-mkCPA
security, but not fski-IND-mkCPA security.

Combining the two modifications above leads to a channel Chplain which only satisfies plain
IND-mkCPA security, but provides neither phase-key insulation nor forward security. This hence
separates IND-mkCPA from both ki-IND-mkCPA and fs-IND-mkCPA.

Finally, we consider the separation between the single-key notions and their corresponding
multi-key notions, both without forward security and phase-key insulation. Again, we only
discuss the notions IND-skCPA and IND-mkCPA as an example; the other cases follow identically.
We build from an IND-skCPA secure single-key channel Chsk a multi-key channel Chmk-0 which
uses the single-key channel’s key for the initial phase both as master secret and phase key. As
the master secret key for the second and all following phases it then uses the zero-string, i.e.,
MasterKeyUpmk(mski) := 0λ. Clearly the security is not preserved by Chmk-0 in any phase other
than the initial one, in which it behaves exactly like Chsk. Hence, Chmk-0 is IND-skCPA-secure,
but not IND-mkCPA-secure.

205

Chapter 12. Multi-key Channels

Generic Transforms Between Stateful Authenticated Encryption and Multi-key
Channels

To complete the picture, we finally study the relations between the traditional notion of stateful
authenticated encryption (see Section 9.3 for their syntax and security definition) and our notion
of multi-key channels.

Clearly, stateful encryption does not aim at achieving the advanced security properties we
consider in this work, forward security and phase-key insulation. In our comparison, we hence
focus on the plain confidentiality and integrity notions, i.e., IND-kATK and INT-kATK (for both
k ∈ {mk, sk} and variants ATK ∈ {CPA,CCA}, resp. ATK ∈ {PTXT,CTXT}) in our framework
as well as the stateful-encryption notions IND-sfCPA, resp. IND-sfCCA, and INT-sfPTXT, resp.
INT-sfCTXT (cf. Section 9.3.1).

Indeed, our single-key security notions which allow an adversary to access a multi-key channel
only in its initial phase are equivalent in strength to the corresponding stateful-encryption
notions, beyond syntactical differences. For this, the following natural and generic transforms
for constructing a multi-key channel Chsf from any stateful encryption scheme sfAE and,
conversely, a stateful encryption scheme sfAEsk from any multi-key channel with single-entry
error space E = {⊥}.

• Chsf(Initsf , Sendsf ,Recvsf ,Updatesf).
For initialization, derive (K, stS , stR) $←− Init(1λ) and set msk0 = K0 = K, stS,0 = stS , and
stR,0 = stR. For sending and receiving, use Enc and Dec as direct replacements. Finally,
the Update algorithm does nothing; i.e., StateUp, MasterKeyUp, and KeyDerive are defined
to be the identity function.

• sfAEsk(Initsk,Encsk,Decsk).
For key generation, derive (msk0,K0, stS,0, stR,0) $←− Init(1λ) and set K = msk0, stS = stS,0,
and stR = stR,0. Encryption and decryption is directly replaced by Send resp. Recv.

Careful inspection of the single-key (k = sk) notions in our framework and those defined
for stateful authenticated encryption (cf. Section 9.3.1) readily establishes that satisfaction of
each two corresponding notions (i.e., IND-sfATK and IND-skATK, where ATK ∈ {CPA,CCA},
resp. INT-sfATK and INT-skATK, where ATK ∈ {PTXT,CTXT}) is preserved by the generic
transforms given above. That is, if the underlying stateful encryption scheme sfAE achieves,
e.g., IND-sfCCA security then the transformed multi-key channel Chsf satisfies the corresponding
IND-skCCA notion, and vice versa.

Finally, and perhaps surprisingly at first glance, our generic transform Chsf of a stateful
encryption scheme into a multi-key channel also achieves (plain) multi-key IND-mkCPA security
if the stateful encryption scheme satisfies IND-sfCPA security. The reason for this is that the
degenerate Update algorithm does not alter the key which hence also makes the OSend oracle not
alter its behavior across different phases, thus corresponding directly to the IND-sfCPA setting.
In contrast, the message vector M, resp. ciphertext vector C, in the ORecv oracle can be easily
set out-of-sync by invoking Update at different positions in the ciphertext sequence on the sender
and receiver side. As a result, an adversary can make challenge ciphertexts to be considered as
valid forgery in a “different” phase (in the multi-key integrity game) or force challenge messages
to be output by ORecv (in the IND-mkCCA game). Hence, Chsf achieves neither IND-mkCCA nor
INT-mkPTXT or INT-mkCTXT security.

12.3.4 Generic Composition

We round up the discussion of our framework of multi-key security notions by lifting the classical
composition theorem by Bellare and Namprempre [BN00] for symmetric encryption, namely that

206

12.3. Security of Multi-key Channels

Expts-kERR-PRE
Ch,Pred,A (1λ):

1 (msk0,K0, stS , stR) $←− Init(1λ)
2 tS ← 0, tR ← 0
3 i0 ← 0, j0 ← 0
4 AOSend,ORecv,[OUpdate]k=mk,[OReveal]s∈{ki,fski},[OCorrupt]s∈{fs,fski}(1λ)
5 return win

OSend(m):
6 itS ← itS + 1
7 (stS ,CS [tS][itS]) $←− Send(stS ,KtS ,m)
8 return CS [tS][itS]

ORecv(c):
9 jtR ← jtR + 1

10 (stR,m)← Recv(stR,KtR , c)
11 if m ∈ E and m 6= Pred(CS ,CR, c) then
12 win← 1
13 CR[tR][jtR]← c
14 return m

OUpdate(role):
15 (msktrole+1,Ktrole+1, strole)← Update(msktrole , strole)
16 trole ← trole + 1
17 stbegin

role,trole
← strole

OReveal(t, role):
18 if t > trole then
19 return
20 return (stbegin

role,t,Kt)

OCorrupt(role):
21 return (stbegin

role,trole
,msktrole)

Figure 12.5: Security experiment for error predictability (s-kERR-PRE) of multi-key channels. The
brackets [OX]c indicate that the adversary has access to the OX oracle only if the condition c is satisfied.

IND-CPA and INT-CTXT security imply IND-CCA security, to the setting of multi-key channels.
As noted by Boldyreva et al. [BDPS14], this result is not directly applicable in settings where
the decryption algorithm may output multiple, distinguishable errors, an observation that also
applies to our setting. Boldyreva et al. re-establish composition in the multiple-error setting
by requiring that with overwhelming probability an adversary is only able to produce a single
error (a notion they call error invariance). Here, we instead make use of the more versatile
approach introduced earlier in Section 10.3.3 as error predictability in the context of our model
for stream-based channels (cf. Definition 10.9 on page 161). To recap, error predictability roughly
requires that there exists an efficient predictor algorithm Pred that, given the ciphertexts sent
and received so far, can with overwhelming probability predict the error message caused by
receiving a certain next ciphertext (if that ciphertext produces at all an error).

We translate the notion of error predictability to the multi-key setting, parameterized
as s-kERR-PRE with forward security and phase-key insulation, and in a single- and multi-
key variant. This enables us to show the following composition result: for any advanced
security property s ∈ {ε, fs, ki, fski} and key setting k ∈ {sk,mk}, if a multi-key channel provides
the according notion of ciphertext integrity (s-INT-kCTXT), chosen-plaintext confidentiality
(s-IND-kCPA), and error predictability (s-kERR-PRE), then it also provides chosen-ciphertext
confidentiality (s-IND-kCCA).

We formalize the parameterized multi-key version of error predictability, s-kERR-PRE, in
Definition 12.6 below through the experiment Expts-kERR-PRE

Ch,A in Figure 12.5. An adversary wins
in this experiment if it can ever cause the Recv algorithm to output an error message that differs
from the output of the predictor algorithm. Meanwhile, when forward security or phase-key
insulation is demanded, the adversary is also allowed to corrupt the master secret key, resp. to
reveal phase keys.

Definition 12.6 (Multi-key error predictability (s-kERR-PRE)). Let Ch = (Init,Send,Recv,
Update) be a multi-key channel with error space E, advanced security aspects s ∈ {ε, fs, ki, fski}

207

Chapter 12. Multi-key Channels

and key setting k ∈ {sk,mk}, and let Pred be an efficient probabilistic algorithm. We say that Ch
provides (multi-key) error predictability (s-kERR-PRE) with respect to Pred if for every PPT
adversary A playing in the experiment s-kERR-PRE defined in Figure 12.5 against channel Ch,
the following advantage function is negligible:

Advs-kERR-PRE
Ch,Pred,A (λ) := Pr

[
Expts-kERR-PRE

Ch,Pred,A (1λ) = 1
]
.

We are now ready to state our generic composition theorem for the setting of multi-key
channels.

Theorem 12.7 (s-INT-kCTXT∧s-IND-kCPA∧s-kERR-PRE =⇒ s-IND-kCCA). Let Ch = (Init,
Send,Recv,Update) be a (correct) multi-key channel. If Ch provides integrity of ciphertexts
(s-INT-kCTXT), indistinguishability under chosen-plaintext attacks (s-IND-kCPA), and error
predictability with respect to some predictor Pred (s-kERR-PRE) with advanced security as-
pects s ∈ {ε, fs, ki, fski} for a key setting k ∈ {sk,mk}, then it also provides indistinguishabil-
ity under chosen-ciphertext attacks for s and k (s-IND-kCCA). Formally, for every efficient
s-IND-kCCA adversary A there exist an efficient s-INT-kCTXT adversary B, s-kERR-PRE ad-
versary C, and s-IND-kCPA adversary D such that

Advs-IND-kCCA
Ch,A ≤ Advs-INT-kCTXT

Ch,B + Advs-kERR-PRE
Ch,Pred,C + Advs-IND-kCPA

Ch,D .

Proof. By means of intermediate games E0
A, E1

A, and E2
A we make a transition from the

s-IND-kCCA experiment to the s-IND-kCPA experiment in three steps, while bounding the
probability differences between each two games with the advantage of a specific adversary.

Let E0
A be the experiment s-IND-kCCA defined in Figure 12.2 against adversary A. Let badI

be the event that ORecv on input a ciphertext outputs a valid message m /∈ E while the receiving
phase is neither revealed nor affected by corruption, i.e., tR /∈ Rev and tR < tcorr . We define
a new experiment E1

A which differs from E0
A in that, within ORecv, it checks for the bad event

before Line 24 and, if badI is triggered, replaces m with the output of Pred(CS ,CR, c) where
CS = C and CR are the vectors of messages sent, resp. received, prior to the oracle call. By
definition, E1

A and E0
A behave equally from A’s perspective, unless badI occurs. Using, e.g.,

Pr[E0
A] as a shorthand notation for Pr[E0

A(1λ) = 1], we have:

Advs-IND-kCCA
Ch,A = Pr[E0

A]− 1
2 = Pr[E0

A]− Pr[E1
A] + Pr[E1

A]− 1
2 ≤ Pr[badI] + Pr[E1

A]− 1
2 .

We next show how to build from any adversary A that triggers badI an adversary B that
breaks the s-INT-kCTXT security of Ch. Adversary B keeps an index i initialized to 0 and picks
a bit b0 uniformly at random. It then simulates the s-IND-kCCA experiment for A, answering its
queries as follows. If A queries equal-length messages (m0,m1) to OLoR then B queries mbi to its
oracle OSend and forwards the answer to A. Similarly B forwards every receiving query c to its
oracle OCTXT

Recv and obtains a response m. Depending on the sync flag, B either forwards m to A
if sync = 0 or responds with if sync = 1. If A queries S to OUpdate, the adversary B invokes
its own OUpdate oracle on S and additionally increases i by one and chooses a bit bi uniformly
at random. Finally, if A queries R to OUpdate, or queries the oracles OReveal or OCorrupt, then
B simply relays the queries to its own corresponding oracles and forwards their answer to A.
When A halts, so does B.

Observe that, by definition of the experiments, the sync flag in the simulated s-IND-kCCA
experiment for A and in B’s s-INT-kCTXT experiment coincide. Moreover, if the event badI in
Line 24 is triggered, i.e., if sync = 0 and m 6∈ E in an uncompromised phase, then the winning
flag is set in the s-INT-kCTXT for B. Hence, the probability of badI being triggered is upper
bounded by B’s advantage:

Advs-INT-kCTXT
Ch,B ≥ Pr[badI].

208

12.4. Generic Construction of Multi-key Channels from AEAD and PRFs

So far we can bound the advantage of A in the s-IND-kCCA experiment as follows:

Advs-IND-kCCA
Ch,A ≤ Pr[badI] + Pr[E1

A]− 1
2 ≤ Advs-INT-kCTXT

Ch,B + Pr[E1
A]− 1

2 .

Observe that in game E1
A, the adversary in case of the badI event only obtains the error

predictoroutput’s output, but no actual messages anymore. We now consider a game E2
A by

modifying E1
A as follows. If the receiving oracle of E2

A is in a non-compromised phase, it
always uses a predictor Pred instead of Recv to produce the outputs (i.e., also if m ∈ E). More
precisely, we modify ORecv by replacing the check for badI before Line 24 with a check only for
tR 6∈ Rev∧ tR ≥ tcorr , again followed by a line m← Pred(CS ,CR, c). Let badE be the event that
the output of Pred differs from an error output of Recv in game E1

A in such a non-compromised
phase. Then E1

A and E2
A behave equally as long as badE does not occur. Hence we obtain a new

bound
∣∣Pr[E1

A]− Pr[E2
A]
∣∣ ≤ Pr[badE].

We now show how to build from an adversary A that triggers badE an adversary C that
breaks the s-kERR-PRE property of Ch (wrt. error predictor Pred). Adversary C keeps an index i
initialized to 0 and picks a bit b0 uniformly at random. It then simulates the game E2

A for
A by answering A’s queries using its oracles, analogous to the above adversary B. When A
triggers badE in E1

A, by definition of badE it will be due to a deviation of an error output by Recv
from the output of the Pred algorithm, thus leading to C winning in the s-kERR-PRE experiment.
Hence we obtain Advs-kERR-PRE

Ch,C ≥ Pr[badE], which allows us to bound the advantage of A as
follows:

Pr[E1
A] = Pr[E1

A]− Pr[E2
A] + Pr[E2

A] ≤ Advs-kERR-PRE
Ch,Pred,C + Pr[E2

A].

In the last step we show that with the events badI and badE being excluded in E2
A, an

adversary D as defined in Figure 12.6 against the game s-IND-kCPA can simulate the game E2
A

for A by answering queries to ORecv on its own. To this end, it invokes the predictor Pred
whenever the receiving phase is uncompromised and returns its output. Otherwise, for a revealed
or corrupted phase, it uses the genuine phase key to compute the output of Recv itself. Observe
that invocations of the OReveal or OCorrupt query that led to a phase being compromised are
relayed through D. Hence, D in particular knows the phase key of revealed phases and can
compute those following a corruption using the obtained compromised master secret key to
derive the according phase key via invoking MasterKeyUp and KeyDerive. Furthermore, these
queries yield the initial state of compromised phases, allowing D to proceed the Recv algorithm
to any position in the received ciphertext sequence in that phase. All other queries of A to OLoR,
OUpdate, OReveal, and OCorrupt are relayed by D to its corresponding oracles in the s-IND-kCPA
experiment. When A stops and outputs a guess (t, b), D stops outputting the same guess.

We observe that D provides a correct simulation of E2
A for A. Moreover, a valid guess of A

also makes D win in the s-IND-kCPA experiment. Therefore we obtain the following bound
for D’s advantage:

Pr[E2
A]− 1

2 ≤ Advs-IND-kCPA
Ch,D .

This concludes the proof; combining the intermediate advantage bounds yields the overall
bound stated in the theorem.

12.4 Generic Construction of Multi-key Channels from AEAD
and PRFs

In this section we construct a generic (deterministic) multi-key channel ChAEAD-PRF from on a
nonce-based AEAD scheme (cf. Section 9.2) and a pseudorandom function (cf. Section 2.2.1). We
then prove that our construction provides the strongest security notions for both confidentiality
and integrity in our model, namely indistinguishability under multi-key chosen-ciphertext attacks

209

Chapter 12. Multi-key Channels

DA,OLoR,[OUpdate]k=mk,[OReveal]s∈{ki,fski},[OCorrupt]s∈{fs,fski}(1λ):
1 (stS , stR)← StateGen(1λ)
2 tS ← 0, tR ← 0, i0 ← 0, j0 ← 0
3 sync← 1
4 tcorr ← +∞, Rev ← ∅
5 (t, b) $←− AO

∗
LoR,O

∗
Recv,[O

∗
Update]k=mk,[O∗Reveal]s∈{ki,fski},[O

∗
Corrupt]s∈{fs,fski}(1λ)

6 if t > max(tS , tR) then
7 return 0
8 return ((bt = b) ∧ (t 6∈ Rev) ∧ (t < tcorr))

If A queries O∗LoR(m0,m1):
9 if |m0| 6= |m1| then

10 return to A
11 itS ← itS + 1
12 CS [tS][itS]← OLoR(m0,m1)
13 if tR > tS and tS /∈ Rev then
14 sync← 0
15 return CS [tS][itS] to A

If A queries O∗Update(role):
16 OUpdate(role)
17 if role = R and tS ≥ tR and jtR < itR

and tR /∈ Rev then
18 sync← 0
19 trole ← trole + 1

If A queries O∗Reveal(t, role):
20 if t ≤ trole
21 Rev ← Rev ∪ {t}
22 return OReveal(t, role) to A

If A queries O∗Corrupt(role):
23 if tcorr = +∞ then
24 tcorr ← trole
25 return OCorrupt(role) to A

If A queries O∗Recv(c):
26 jtR ← jtR + 1
27 if (tR > tS or jtR > itR or c 6= CS [tR][jtR])

and tR /∈ Rev then
28 sync← 0
29 if sync = 0 then
30 if tR 6∈ Rev and tR < tcorr then
31 e← Pred(CS ,CR, c)
32 CR[tR][jtR]← c
33 return e to A
34 else if tR ∈ Rev then
35 (stbegin

R,tR
,KtR)← OReveal(tR, R)

36 else
37 (stbegin

R,tR
,msktR)← OCorrupt(R)

38 KtR ← KeyDerive(msktR)
39 (st′R,m)← Recv(stbegin

R,tR
,KtR ,CR[tR])

40 (st′′R,m)← Recv(st′R,KtR , c)
41 CR[tR][jtR]← c
42 return m to A
43 else
44 return to A

Figure 12.6: Simulation of E2
A by the s-IND-kCPA adversary D in the proof of Theorem 12.7.

and multi-key integrity of ciphertexts, both with forward security and phase-key insulation
(fski-IND-mkCCA and fski-INT-mkCTXT).

Our generic construction ChAEAD-PRF = (Init,Send,Recv,Update) is defined via the algorithms
given in Figure 12.7. It uses a nonce-based AEAD scheme AEAD = (Enc,Dec) with key
space K = {0, 1}λ, message and ciphertext space {0, 1}∗, nonce space {0, 1}n, associated data
space {0, 1}∗, and an error symbol ⊥. Furthermore, our construction employs a pseudorandom
function f : {0, 1}λ × {0, 1} → {0, 1}λ.

Our construction supports a maximum number of maxmsg = 2n messages per phase, where
n is the AEAD nonce length. The master-secret-key and phase-key space in our construction are
equal to the AEAD and PRF key space,MSK = K = {0, 1}λ. The error space {⊥,⊥′} consists
of the error symbol ⊥ of the AEAD scheme and a second symbol ⊥′ indicating exceedance
of maxmsg. The sending and receiving state space is SS = SR = N× N∗ × {0, 1}, encoding a
message sequence number, a list of the message counts in all previous phases, and a failure flag
indicating a previously occurred error.

210

12.4. Generic Construction of Multi-key Channels from AEAD and PRFs

Init(1λ):
1 (stS,0, stR,0)← StateGen(1λ)
2 msk0

$←− MasterKeyGen(1λ)
3 K0 ← KeyDerive(msk0)
4 return (msk0,K0, stS,0, stR,0)

Send(stS ,K,m):
5 parse stS as (seqno, prevnos, fail)
6 if seqno = maxmsg or fail = 1 then
7 fail← 1
8 stS ← (seqno, prevnos, fail)
9 return (stS ,⊥′)

10 seqno← seqno + 1
11 c← EncK(seqno, prevnos,m)
12 stS ← (seqno, prevnos)
13 return (stS , c)

Recv(stR,K, c):
14 parse stR as (seqno, prevnos, fail)
15 if fail = 1 then
16 return (stR,⊥)
17 seqno← seqno + 1
18 m← DecK(seqno, prevnos, c)
19 if m = ⊥ then
20 fail← 1
21 stR ← (seqno, prevnos, fail)
22 return (stR,m)

StateGen(1λ):
23 stS,0 = (0, (), 0)
24 stR,0 = (0, (), 0)
25 return (stS,0, stR,0)

MasterKeyGen(1λ):
26 msk0

$←− {0, 1}λ
27 return msk0

KeyDerive(msk):
28 return f(msk, 1)

Update(msk, st):
29 msk← MasterKeyUp(msk)
30 K← KeyDerive(msk)
31 st← StateUp(st)
32 return (msk,K, st)

StateUp(st):
33 parse st as (seqno, prevnos, fail)
34 st← (0, (prevnos, seqno), fail)
35 return st

MasterKeyUp(msk):
36 return f(msk, 0)

Figure 12.7: Our generic construction of a deterministic multi-key channel ChAEAD-PRF = (Init, Send,
Recv,Update) based on a nonce-based authenticated encryption with associated data scheme AEAD =
(Enc,Dec) and a pseudorandom function f : {0, 1}λ × {0, 1} → {0, 1}λ.

On a high level, ChAEAD-PRF derives master secret and phase keys via the (domain-separated)
PRF f , following the TLS 1.3 key schedule design and employing an established technique to
ensure forward security and separation of the keys derived; see, e.g., [BY03]. For encryption, it
ensures reorder protection via a sequence number used as nonce. It further authenticates the
number of messages seen in previous phases via the associated data field, borrowing established
concepts from distributed computing to ensure causality [Lam78].65

Construction 12.8 (AEAD- and PRF-based construction ChAEAD-PRF). Consider a nonce-
based AEAD scheme AEAD = (Enc,Dec) with key space K = {0, 1}λ, nonce space {0, 1}n,
associated data space {0, 1}∗, and error symbol ⊥, and a pseudorandom function f : {0, 1}λ ×
{0, 1} → {0, 1}λ. We define ChAEAD-PRF = (Init, Send,Recv,Update) to be the multi-key channel
algorithmically specified in Figure 12.7 and described in detail below.

• The Init algorithm uses StateGen to initialize the sending and receiving states as tuples
containing a message sequence number seqno = 0, a list of the number of messages sent in
all previous phases prevnos = (), and a failure flag fail = 0. Via MasterKeyGen, the Init

65Note that, for a more efficient construction, one can get similar authenticity guarantees by storing a chained
hash value of the number of messages received in previous phases using a collision-resistant hash function. For
the sake of simplicity we omit this hash-chain optimization here and focus on demonstrating the feasibility of our
security notions.

211

Chapter 12. Multi-key Channels

algorithm then samples an initial master secret key msk0
$←− {0, 1}λ uniformly at random.

Finally it derives the initial phase key K0 ← f(msk0, 1) via KeyDerive as the output of the
PRF f keyed with the initial master secret key and on input 1.

• The Send algorithm immediately outputs the error symbol ⊥′ in case the maximum
number maxmsg = 2n of messages has been reached in this or a prior call (indicated by
fail = 1). Otherwise, it increases the message sequence number in its state by one. It then
invokes the deterministic AEAD encryption algorithm on the message m to obtain the
ciphertext c. Here, the sequence number is used as the nonce N = seqno and the previous
phases’ message count is authenticated through the associated data field ad = prevnos.
The output of Send is the new state and the ciphertext c.

• The Recv algorithm immediately outputs an error ⊥ in case the failure flag has been set
(fail = 1) in an earlier invocation, indicating that a previous AEAD decryption algorithm
has failed. Otherwise it increases the message sequence number contained in the receiving
state by one. It then uses the nonce N = seqno and associated data prevnos in the AEAD
decryption algorithm on the ciphertext c to obtain m. In case the decryption fails and
m = ⊥, the failure flag is set to 1. The output of Recv is the new state and the message
(or error) m.

• The Update algorithm uses StateUp to reset the new message sequence number to 0, and
appends the previous message sequence number to the list of previous phases’ message
counts, i.e., prevnos ← (prevnos, seqno). Then it invokes MasterKeyUp to derive a new
master secret key as the output of f keyed with the previous master secret key and on
input 0. Finally, it uses KeyDerive to compute a new phase key from the new master secret
key.

Correctness. Correctness of our ChAEAD-PRF construction follows immediately from correct-
ness of the underlying AEAD scheme. In particular, observe that both receiver and sender
compute their master secret and phase keys via the same, deterministic key schedule. Moreover,
whenever both sides process the same number—not exceeding maxmsg—of messages per phase
(as is a precondition in the correctness definition), they will also use the same associated data
values for encryption and decryption, thus rendering the receiver to derive the correct messages
as required.
Remark 12.9. At first glance, it might seem counter-intuitive that the sequence number in our
ChAEAD-PRF construction is reset to 0 at the start of a new phase. Would it not be more natural
to have the sequence number running over all phases in order to ensure at the start of a phase
that all messages of the previous phase were received, and to prevent reordering of messages
across phases?

As surfaced by Fournet and the miTLS [miT] team in the discussion around TLS 1.3 [Fou15],
this approach would however enable truncation attacks if the leakage of phase keys is considered
in the security definition, as we do for phase-key insulation.66 If sequence numbers are continued,
an adversary holding the key of some phase t can truncate a prefix of the messages (with
sequence numbers i, . . . , i+ j) in phase t+ 1 by providing the receiver with j + 1 self-generated
messages at the end of t. Dropping the first j + 1 messages in phase t + 1, the receiver’s
sequence number matches again the one of the sender (for message i+ j + 1), so the truncation
would go unnoticed. Resetting the sequence numbers to 0 when switching phases prevents this
attack, though additional care needs to be taken to prevent suffix truncation at the end of a

66In our framework, the weakest integrity property broken through this attack is phase-key–insulated integrity
of plaintexts (ki-INT-mkPTXT).

212

12.4. Generic Construction of Multi-key Channels from AEAD and PRFs

phase. In our construction, we ensure the latter through authenticating the number of messages
sent in all previous phases. We note that this mechanism would even allow to not reset the
sequence number, but we decided to keep the reset in order to stay closer to the channel design
of TLS 1.3 [Res18] (cf. the discussion in Section 12.4.2).

12.4.1 Security Analysis

We now show that our generic ChAEAD-PRF construction achieves the strongest multi-key secu-
rity notions for confidentiality and integrity, namely forward-secure and phase-key–insulated
indistinguishability under multi-key chosen-ciphertext attacks (fski-IND-mkCCA) and integrity
of ciphertexts (fski-INT-mkCTXT). For proving the former notion we proceed via first showing
the corresponding CPA confidentiality variant as well as that our construction provides error
predictability (for multiple keys and with forward security and phase-key insulation), and then
leverage our generic composition theorem (Theorem 12.7). Our results hold under the assump-
tion that the underlying nonce-based AEAD scheme AEAD provides IND-CPA confidentiality and
INT-CTXT integrity (cf. Section 9.2.1), as well as that the employed pseudorandom function f
meets the standard notion of PRF security (cf. Section 2.2.1).

We begin with the proof of multi-key chosen-plaintext confidentiality with forward security
and phase-key insulation.

Theorem 12.10 (fski-IND-mkCPA security of ChAEAD-PRF). The multi-key channel ChAEAD-PRF
from Construction 12.8 provides forward-secure and phase-key–insulated indistinguishability
under multi-key chosen-plaintext attacks (fski-IND-mkCPA) if the employed authenticated en-
cryption with associated data scheme AEAD provides indistinguishability under chosen-plaintext
attacks (IND-CPA) and the employed pseudorandom function f is PRF-secure.

Formally, for every efficient fski-IND-mkCPA adversary A against ChAEAD-PRF there exists
an efficient PRF-sec adversary B against f and IND-CPA adversary C against AEAD such that

Advfski-IND-mkCPA
ChAEAD-PRF,A (λ) ≤ nt ·

(
nt · AdvPRF-sec

f,B (λ) + AdvIND-CPA
AEAD,C (λ)

)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the fski-IND-mkCPA
experiment (plus one).

Proof. Our proof proceeds in three steps. First, we guess the phase t that the adversary A will
pick as its challenge phase (out of the at most nt active phases in the experiment). Aborting in
case of a wrong guess induces a loss in the advantage of A by at most a factor of nt. Denoting
with Efski-IND-mkCPA,t

A the resulting experiment we hence have that

Advfski-IND-mkCPA
ChAEAD-PRF,A (λ) ≤ nt · Advfski-IND-mkCPA,t

ChAEAD-PRF,A (λ).

From now on, we can assume that A will issue its guess for the challenge phase t which we
furthermore know in advance.

In the second step, we gradually replace all derived master secret keys up to (including)
mskt+1 of phase t + 1 as well as the phase keys derived up to (including) Kt of phase t with
independent random values. Let Efski-IND-mkCPA,t,$i

A denote the Efski-IND-mkCPA,t
A experiment with

the modification that the master secret keys in phases 0 to i as well as the phase keys in phases
0 to i − 1 are chosen independently at random as msk0, . . . ,mski,K0, . . . ,Ki−1

$←− {0, 1}λ. In
particular, the Efski-IND-mkCPA,t,$0

A experiment equals Efski-IND-mkCPA,t
A where only the initial master

secret key msk0 is randomly chosen (as defined by ChAEAD-PRF). Furthermore, Efski-IND-mkCPA,t,$t+1
A

denotes an experiment where all master secret keys up to (including) mskt+1 (of phase t+ 1)

213

Chapter 12. Multi-key Channels

and all phase keys up to (including) Kt (of phase t) are chosen uniformly at random; i.e., in
particular the key Kt of the challenge phase t picked by A.

We now bound the difference in advantage between two games Efski-IND-mkCPA,t,$i
A and

Efski-IND-mkCPA,t,$i+1
A (for some i ∈ {0, . . . , t}) by the advantage of an algorithm B against

the PRF security of f . When simulating the fski-IND-mkCPA experiment for A, algorithm B
picks an index i ∈ {0, . . . , t} at random and follows the experiment and construction descrip-
tion, but samples all master secret keys mskj for j ≤ i and all phase keys Kj for j ≤ i − 1
uniformly at random from {0, 1}λ. In the moment B is supposed to derive mski+1 ← f(mski, 1)
or Ki ← f(mski, 0), it queries the values 1 resp. 0 to its PRF oracle. For all following master
secret and phase keys, B follows the ChAEAD-PRF and derives them via f as specified. Recall
that the PRF keys used for these derivations are independent of the implicit PRF key mski
used in the PRF oracle. Furthermore, B never has to provide the implicit PRF key mski to A
through an OCorrupt call, as i ≤ t < tcorr . When A stops and outputs its guess b, B also stops
and outputs 1 if the guess was correct (i.e., b = bt) and 0 otherwise. Denote by Bi the reduction
B picking index i. Observe that Bi correctly simulates experiment Efski-IND-mkCPA,t,$i

A for A in
case its PRF oracle computes the real PRF f ; otherwise it simulates Efski-IND-mkCPA,t,$i+1

A as
the (random-function) PRF oracle outputs two independent random values on inputs 1 and 0.
Furthermore, any difference in A’s output behavior between the two experiments translates into
a difference in Bi’s output in the PRF security game. Hence, we can bound the former as∣∣∣Advfski-IND-mkCPA,t,$i

ChAEAD-PRF,A (λ)− Advfski-IND-mkCPA,t,$i+1
ChAEAD-PRF,A (λ)

∣∣∣ ≤ AdvPRF-sec
f,Bi (λ).

Via a hybrid argument, we can therefore infer that the advantage difference introduced when
switching from Efski-IND-mkCPA,t

A = Efski-IND-mkCPA,t,$0
A to Efski-IND-mkCPA,t,$t+1

A is bounded as follows
(keeping in mind that t+ 1 ≤ nt):

Advfski-IND-mkCPA,t
ChAEAD-PRF,A (λ) ≤ nt · AdvPRF-sec

f,B (λ) + Advfski-IND-mkCPA,t,$t+1
ChAEAD-PRF,A (λ).

In the third and last step, we argue that the advantage of A in game Efski-IND-mkCPA,t,$t+1
A can

be bounded by the IND-CPA security of the employed AEAD scheme. Consider the following
reduction C. To simulate Efski-IND-mkCPA,t,$t+1

A for A, algorithm C carries out all steps in the
experiment and construction algorithms on its own, except for parts of the operations in the
sending oracle OSend in phase t. (Recall that, as we are proving CPA security, there is no
receiving oracle available to A.) Particularly, C picks all challenge bits bi except for i = t
on its own at random. In phase t (that is, starting from the t-th call and up to the t +
1-th call of the OUpdate oracle on input role = S), C does not pick bt and also does not
perform the EncKt operation within the Send algorithm of ChAEAD-PRF on its own. Instead of
computing c← EncKt(seqno, prevnos,mbt) itself, it queries the encryption oracle of its IND-CPA
game on N = seqno and ad = prevnos together with m0 and m1 (as provided by A to OSend)
and uses the result as ciphertext value c. Note that C never exceeds the nonce space of the
AEAD scheme as Send ensures that seqno ≤ maxmsg. Finally, when the adversary A outputs
its guess b for phase t, C also outputs b as its own guess.

Observe first of all that C correctly simulates Efski-IND-mkCPA,t,$t+1
A for A. For simulating the

sending oracle OSend, C holds the keys Kt′ for all phases t′ 6= t itself and can hence execute the
Send algorithm as specified. In the OUpdate oracle, C simply derives master secret and phase keys
as specified for Efski-IND-mkCPA,t,$t+1

A , i.e., it chooses them independently at random up to mskt+1,
resp. Kt, and derives all further keys through f . As t is the challenge phase for which A outputs
its guess, we furthermore know that (a successful adversary) A will neither issue an OReveal
query on t nor an OCorrupt query such that tcorr < t+ 1. In particular, the phase keys Kt′ (for
t 6= t′) as well as a potentially corrupted master secret key mskt′ (for t′ > t) that A obtains

214

12.4. Generic Construction of Multi-key Channels from AEAD and PRFs

in this way are completely independent of the phase key in phase t. It is hence sound that C
does not employ a self-chosen random key Kt in this challenge phase but implicitly sets Kt to
the random key chosen in the IND-CPA game for the AEAD scheme. Moreover, by invoking its
IND-CPA encryption oracle within the representation of the Send algorithm in phase t, C also
implicitly sets the challenge bit bt in that phase to the one in the IND-CPA game. Outputting
the same bit as A thus makes C correctly determine the IND-CPA challenge bit if A correctly
guesses bt and hence

Advfski-IND-mkCPA,t,$t+1
ChAEAD-PRF,A (λ) ≤ AdvIND-CPA

AEAD,C (λ).

This concludes the proof. Combining the intermediate advantage bounds yields the overall
bound.

We now turn to the multi-key integrity of ciphertexts with forward security and phase-key
insulation of ChAEAD-PRF.

Theorem 12.11 (fski-INT-mkCTXT security of ChAEAD-PRF). The multi-key channel ChAEAD-PRF
from Construction 12.8 provides forward-secure and phase-key–insulated multi-key integrity of
ciphertexts (fski-INT-mkCTXT) if the employed authenticated encryption with associated data
scheme AEAD provides integrity of ciphertexts (INT-CTXT) and the employed pseudorandom
function f is PRF-secure.

Formally, for every efficient fski-INT-mkCTXT adversary A against ChAEAD-PRF there exists
an efficient PRF-sec adversary B against f and INT-CTXT adversary C against AEAD such that

Advfski-INT-mkCTXT
ChAEAD-PRF,A (λ) ≤ nt ·

(
nt · AdvPRF-sec

f,B (λ) + AdvINT-CTXT
AEAD,C (λ)

)
,

where nt = max(tS , tR) + 1 is the maximum number of phases active in the fski-INT-mkCTXT
experiment (plus one).

Proof. The first two steps of this proof follow closely those of the proof of fski-IND-mkCPA
security of ChAEAD-PRF (cf. Theorem 12.10). We first guess a “challenge” phase t (among
the total nt number of phases) and abort on an incorrect guess. Recall that in the integrity
experiment (cf. Figure 12.3) the adversary A provides no output; in particular it does not have
to commit on a challenge phase like in the confidentiality experiment. Nevertheless, in this
proof we define the challenge phase t for the experiment to be the value tR in the moment when,
in the ORecv oracle, within the condition check in Line 22 of the experiment for the first time
the conditions sync = 0, tR /∈ Rev, and tR < tcorr all evaluate to true. In the following, we
refer to this moment as the “challenge moment,” to the corresponding ORecv oracle call as the
“challenge oracle call,” and to the input ciphertext c in this call as the “challenge ciphertext.”

Second, we follow the same hybrid step as in the proof of Theorem 12.10 to replace the
master secret and phase keys up to mskt+1 and Kt with independent random values. Combined
with the first step and using the same notation as in the confidentiality proof, this yields the
following bound:

Advfski-INT-mkCTXT
ChAEAD-PRF,A (λ) ≤ nt ·

(
nt · AdvPRF-sec

f,B (λ) + Advfski-INT-mkCTXT,t,$t+1
ChAEAD-PRF,A (λ)

)
.

For the final step, it remains to show that A’s advantage in the modified experiment
Efski-INT-mkCTXT,t,$t+1
A can be bounded by the advantage of a reduction C to the INT-CTXT

security of AEAD. To this end, first of all observe that the construction ChAEAD-PRF (cf.
Figure 12.7) will reject (and output ⊥ on) any further ciphertext received after, within Recv,
the AEAD decryption algorithm Dec output the error symbol ⊥ for the first time. Hence in
particular if the adversary A does not make the winning flag win set to 1 in the challenge
moment, it cannot win the game anymore later. We can therefore deduce that a successful

215

Chapter 12. Multi-key Channels

adversary will win in the challenge moment, i.e., the fourth condition in Line 22, m /∈ E also
evaluates to true, i.e., m 6= ⊥.

Our reduction C to the integrity (INT-CTXT) of the AEAD scheme proceeds as follows. In
the beginning, C picks all phase keys up to including Kt−1 as well as the master secret key mskt+1
uniformly at random on its own. Algorithm C then simulates the Efski-INT-mkCTXT,t,$t+1

A for A
by performing operations for all phases except phase t itself using the chosen keys. In the
challenge phase t, C, instead of computing EncKt and DecKt on its own, it uses its encryption
and decryption oracles in the INT-CTXT game to perform these operations during sending and
receiving. Note that, due to the definition of the challenge phase t, t /∈ Rev and t < tcorr .
Hence, A does not ask Reveal(t, role) nor does it corrupt a master secret key for a phase t′ ≤ t.
Therefore, C also does not have to be able to respond to those queries. At last, C follows the
OUpdate specification to, if necessary, derive master secret key mskt+2 and following as well as
phase keys Kt+1 and following. In the moment C would set the winning flag win← 1 during an
oracle call ORecv(c) of A for some ciphertext c in its simulation, it stops and outputs c along with
the nonce N and associated data ad as used in the ORecv oracle as its forgery in the INT-CTXT
game. Overall, C provides a sound simulation of Efski-INT-mkCTXT,t,$t+1

A for A.
We finally have to argue that C wins in the INT-CTXT game if A does in Efski-INT-mkCTXT,t,$t+1

A .
For this purpose, we separately consider the case that synchronization was lost (sync← 0) in
the same ORecv call that leads to the challenge moment, and the case that it was lost earlier. In
the first case, synchronization loss requires one of the following conditions to be true in Line 21:

• tR > tS (the receiver’s phase tR is ahead of the sender’s phase tS in the challenge moment).
In this case, we are ensured that the challenge ciphertext c cannot have been the output of
the INT-CTXT encryption oracle, as no such call was made yet (recall that the encryption
oracle is only invoked for sending in phase tR = t). Hence, (N, ad, c) output by C is a
valid forgery and makes C win as m 6= ⊥.

• jtR > itR (the receiver obtained more ciphertexts in phase tR as have been sent).
In this case, the INT-CTXT encryption oracle was not called on sequence number seqno =
jtR (i.e., the output nonce N = seqno is fresh), so again (N, ad, c) is a valid forgery
making C win.

• c 6= C[tR][jtR] (the received and sent ciphertexts mismatch).
Due to the ciphertext mismatch, the output of the INT-CTXT encryption oracle for
sequence number seqno = jtR (as nonce N) must have been different from c. The latter
hence again is a valid forgery that qualifies C for winning.

We now treat the case that synchronization was lost before the challenge oracle call to ORecv.
There are three positions in the integrity experiment where synchronization can be lost (cf.
Figure 12.3) which we consider separately:

• Line 11 in OSend: As tR > tS , we know that through this OSend call the sending counter
will stay ahead of the receiving counter for the current sender’s phase tS throughout the
experiment (i.e., itS > jtS). Otherwise, we would have received at least one additional
ciphertext c beyond the sent ciphertexts in phase tS . As tS /∈ Rev and tS < tcorr , this
would have triggered synchronization to be lost in the according ORecv call processing this
ciphertext c (and hence the current call would not be the one where synchronization is
lost).
As the send counter itS of phase tS is accumulated within prevnos used as associated
data ad, the ad value in the ORecv oracle when processing the challenge ciphertext will
necessarily contain a different ciphertext count for tS as the one used when encrypting

216

12.4. Generic Construction of Multi-key Channels from AEAD and PRFs

the corresponding ciphertext on the sender’s side. The associated data used in ORecv was
hence never sent to the INT-CTXT encryption oracle and hence (N, ad, c) output by C
constitutes a valid forgery.

• Line 21 in ORecv: If synchronization is lost in Line 21 without this oracle call being
the challenge call, the condition in Line 20 must evaluate to true while the condition in
Line 22 for this call must evaluate to false. Careful inspection shows that this necessitates
that m ∈ E , i.e., m = ⊥ in this call. As discussed above, the construction ChAEAD-PRF will
only output further error messages ⊥ after the first error is output, leaving A with no
chance to win from this point on. Hence, we can deduce that, for a successful adversary,
synchronization is not lost in Line 21 of an ORecv call earlier than the challenge one.

• Line 27 in OUpdate: A synchronization loss in this line means the receiver cannot have
obtained all sent ciphertexts in phase tR. Note moreover that ORecv cannot be called
in phase tR anymore, as the receiver’s phase is increased immediately after Line 27 in
the OUpdate call. It will hence use a different ciphertext count for this phase within
the accumulated prevnos value contained in the associated data field for all follow-up
received ciphertexts. As in the argument for Line 11, there will in particular be no
INT-CTXT encryption oracle call made with the associated data used to encrypt the
challenge ciphertext c, making the output (N, ad, c) of C a valid forgery.

In summary, if A wins in Line 22 in the challenge moment (which is the only moment it
can win at all), the corresponding challenge ciphertext c along with the nonce and associated
data field used in the challenge oracle ORecv constitutes a valid forgery in the INT-CTXT game,
which C outputs. Hence,

Advfski-INT-mkCTXT,t,$t+1
ChAEAD-PRF,A (λ) ≤ AdvINT-CTXT

AEAD,C (λ),

concluding the proof.

Finally, we show that our ChAEAD-PRF construction provides multi-key error predictability
with forward security and phase-key insulation (fski-mkERR-PRE).

Theorem 12.12 (fski-mkERR-PRE security of ChAEAD-PRF). The multi-key channel ChAEAD-PRF
from Construction 12.8 provides forward-secure and phase-key–insulated multi-key error pre-
dictability (fski-mkERR-PRE) with respect to the error predictor Pred given in the proof of the
theorem.

Formally, for every efficient fski-mkERR-PRE adversary A against ChAEAD-PRF,

Advfski-mkERR-PRE
ChAEAD-PRF,Pred,A(λ) = 0.

Proof. Consider the error predictor Pred which always output the AEAD error symbol ⊥.
In order for A to win the error predictability experiment fski-mkERR-PRE (cf. Figure 12.5,

Line 11), it must make the Recv algorithm output an error message (m ∈ E) which differs from
the predictor’s output (m 6= Pred(CS ,CR, c)). However, by construction the only error symbol
ChAEAD-PRF ever outputs in Recv is ⊥, hence the given predictor will never differ from error
messages of ChAEAD-PRF and hence A cannot win.

As ChAEAD-PRF provides security in the senses of fski-IND-mkCPA, fski-INT-mkCTXT, and
fski-mkERR-PRE, we can finally leverage our generic composition result from Theorem 12.7 to
conclude that it also achieves strong confidentiality in the sense of fski-IND-mkCCA.

217

Chapter 12. Multi-key Channels

Corollary 12.13 (fski-IND-mkCCA security of ChAEAD-PRF). The multi-key channel ChAEAD-PRF
from Construction 12.8 provides forward-secure and phase-key–insulated indistinguishability
under multi-key chosen-ciphertext attacks (fski-IND-mkCCA) if the employed authenticated en-
cryption with associated data scheme AEAD provides indistinguishability under chosen-plaintext
attacks (IND-CPA) as well as integrity of ciphertexts (INT-CTXT) and the employed pseudoran-
dom function f is PRF-secure.

12.4.2 Comparison to the TLS 1.3 Record Protocol

Our notion of multi-key channels is particularly inspired by the ongoing developments of the
upcoming Transport Layer Security (TLS) protocol version 1.3 [Res18]. It is hence insightful to
compare our generic construction with the design of the TLS 1.3 record protocol (cf. [Res18,
Section 5]).

First of all note that, in contrast to previous TLS versions, TLS 1.3 mandates the use
of AEAD schemes as encryption and authentication mechanisms for the record protocol. It
follows the basic secure-channel design principle to include a sequence number for protecting
against reordering attacks; as in our construction. Both in TLS 1.3 and our construction,
the sequence number enters the AEAD’s nonce field and is reset to 0 at the start of each
new phase. Also identically to our construction, the TLS 1.3 record protocol keys are derived
via a deterministic key schedule in which, starting from an initial master secret key (denoted
client/server_application_traffic_secret_0 in TLS 1.3) the current phase’s key as well as
the next phase’s master secret key are derived via independent applications of a pseudorandom
function (TLS 1.3 uses HMAC [BCK96, KBC97] for this purpose). Beyond enabling key
switches to allow secure encryption of large amounts of data, the TLS 1.3 design in particular
names forward security (combined with insulation of phase keys) as a security goal [Res18,
Appendix E.2]. In this sense, our generic ChAEAD-PRF construction is comparatively close to the
internal channel design of the TLS 1.3 record protocol in both techniques and security goals.

Still, there are some notable differences between the two designs, both in technical details as
well as in the practically achieved security and its underlying assumptions. On the technical
side, the TLS 1.3 record protocol additionally includes a content-type field in ciphertexts to
enable multiplexing of messages from multiple sources. It also provides a streaming interface
to applications, as discussed in Chapter 10, while our model and construction focuses on the
simpler setting with an atomic-message interface. Furthermore, TLS 1.3 does not explicitly
authenticate the numbers of seen ciphertexts in previous phases (as our construction does via
the prevnos field), but instead relies on the authenticated transmission of key update messages.
To be precise, key update messages are encoded as a specific control (“post-handshake”) message
and sent within the data channel. Thereby associated with a sequence number, they serve as an
authenticated “end-of-phase indicator” that allows the record protocol to infer in unrevealed
phases that all messages in a phase have been correctly received when the key update message
arrives.

In contrast, our model does not rely on the authenticity of key updates (an approach worth
augmenting our model with in a future work step), but captures settings where key update
notifications may be send out-of-band and without being authenticated. Our construction hence
cannot rely on key updates as indicators that a phase was gracefully completed, but instead
needs to leverage the next uncompromised phase to detect truncations in an earlier phase;
Nevertheless, our generic ChAEAD-PRF scheme serves as proof-of-concept construction that strong
confidentiality and integrity can be achieved in the multi-key setting with forward security and
phase-key insulation even with unauthenticated, out-of-band key updates.

218

Chapter 13
Conclusion

The basic cryptographic security of key exchange and secure channel protocols is considered to
be well-understood. In this thesis, we studied how advanced security aspects of both protocol
types can be formally captured in terms of enhanced cryptographic security models. We treated
well-known but more specific properties that have not been captured formally yet, protocol
behavior that has not been accurately reflected by the established security notions so far, and
recent protocol designs (specifically QUIC [QUI] and TLS 1.3 [Res18]) introducing novel features
that go beyond what security models could capture until now.

In Part I, we considered advanced aspects of key exchange protocols. Our main focus has
been on novel key exchange designs, specifically QUIC and TLS 1.3, that do not establish a
single shared key, as classically considered in key exchange models, but multiple keys with
potentially differing security properties. We captured such protocols in our novel security model
for multi-stage key exchange (MSKE) protocols extending the classical security notions for key
exchange in the style of Bellare and Rogaway [BR94]. Our model allowed us to capture multiple
keys being derived in a single key exchange protocol execution including, e.g., their possible
interdependency and resulting affects on their security, or different security and authentication
levels. We applied our model to assess and confirm the (multi-stage) key exchange security of
both the QUIC protocol as well as several draft versions and handshake modes of the TLS 1.3
protocol, gaining insights into the cryptographic structure of both protocol designs and providing
valuable feedback into their design processes. Upon completion of the IETF standardization
process, our model will enable a comprehensive analysis of the final TLS 1.3 handshake design.

Another particularly interesting feature of both QUIC and TLS 1.3 is that both protocols
introduce a low-latency, zero round-trip time (0-RTT) handshake mode. This mode comes
with substantial performance benefits, but also inherent drawbacks in security. We considered
the specific issue that 0-RTT data can potentially be replayed by an active adversary and
augmented our MSKE security model to capture such replays, enabling a comparison of the
0-RTT techniques deployed in different draft versions of TLS 1.3 as well as in QUIC.

Our last contribution in the realm of key exchange was concerned with a property often and
for a long time mentioned in practical protocol designs, but never comprehensively formalized:
key confirmation, providing assurance that a communication partner accepts the same key. We
introduced a formal treatment of key confirmation, establishing two flavors as the communication
partners necessarily obtain (slightly) different guarantees depending on which of them terminates
first. We then used our formalization to establish key confirmation guarantees for the TLS 1.3
handshake draft. Along the way, our analysis uncovered that key confirmation can not only be
obtained from exchanged message authentication codes (as commonly understood), but also
already through online signatures.

219

Chapter 13. Conclusion

In Part II, we turned towards secure channel protocols. All cryptographic security models
for secure channels so far consider the messages to be send as atomic, undividable units, and
likewise the resulting ciphertexts (with [BDPS12] being an exception on the latter). In practice,
secure channels however provide applications with a streaming interface and fragment messages.
Mis-interpreting the resulting security guarantees has led to severe attacks in the past, e.g.,
on SSH [YL06a] and TLS [DR08]. In order to study the practical security of channels more
accurately, we introduced notions (in syntax and security) for stream-based channels. We saw
that, along with the inherent complexity of such channels, the security notions turned out to
be more complex, too, specifically those considering active attacks. Yet, we were able to lift
the generic composition theorem to the stream-based setting, allowing to deduce confidentiality
against active attackers from the conceptually simpler and easier to prove notions of passive
confidentiality and integrity of ciphertexts. We confirmed that our notions are achievable in a
natural construction based on authenticated encryption with associated data (AEAD) which,
moreover, is similar to the TLS record protocol and hence enables a validation of that design.

We then turned towards such applications running atop of a streaming channel, yet actually
sending atomic messages and hence needing to ensure that original messages are carefully
re-assembled to avoid vulnerabilities. We analyzed the common approach in practice to encode
atomic messages into the stream of data to be send. To this end, we extended the formalism for
channels sending atomic messages over a fragmenting network and established that, under natural
conditions, the described “encode-then-stream” approach indeed achieves strong confidentiality
and integrity in this setting. Seeing security-critical misuses of streaming interfaces, this raises
the practical question if channels should provide both streaming and atomic-message interfaces.

Finally, we studied the novel concept introduced in the TLS 1.3 design to update keys during
the lifetime of a channel to enhance its security. Introducing the notion of multi-key channels, we
provided formalizations of advanced security properties under partial compromise of the channel
keys, as aimed at by TLS 1.3. Our security notions for multi-key channels span a hierarchy that
naturally connects to the classical notions for single-key channels. Furthermore, we confirmed
that a generic construction from AEAD and pseudorandom functions being comparatively close
to the TLS 1.3 channel can indeed achieve the strongest security in our setting. Approaching
the TLS 1.3 design even further, a treatment of key update authentication within the channel
protocol as well as of multi-key channels in the streaming setting emerge as potential extensions.

Overall, the designs of practical key exchange and secure channel protocols seem to become
more and more involved, aiming at further and novel security aspects over the last years and in
the foreseeable future. This raises the question to which extent established cryptographic models,
e.g., those from this thesis, can be applied (and possibly extended) to capture further established
or emerging protocols without introducing too much additional complexity. Secure messaging
protocols like Signal [Sig] constitute particularly challenging examples due to the novel security
goals (like post-compromise security [CGCG16]) they aim at, resulting in accordingly elaborate
designs and key schedules. Our multi-stage key exchange and multi-key channel models may
be particularly suited for these settings, capturing potential dependencies and varying security
strengths of the derived keys and their sequential usage to encrypt messages. Indeed, the MSKE
model has already been applied by others working in that direction [CGCD+17, CGCG+17].

In the end, work in applied cryptography and provable security is striving for better and
more accurate security models, in turn pushing the boundaries of practical protocols that can
be designed on solid, provably-secure grounds. I hope this thesis can contribute a small share to
that big and growing task.

220

Bibliography

[AB00] Michel Abdalla and Mihir Bellare. Increasing the lifetime of a key: a comparative
analysis of the security of re-keying techniques. In Tatsuaki Okamoto, editor,
Advances in Cryptology – ASIACRYPT 2000, volume 1976 of Lecture Notes in
Computer Science, pages 546–559, Kyoto, Japan, December 3–7, 2000. Springer,
Heidelberg, Germany.

[ABD+15] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J. Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, Benjamin VanderSloot, Eric Wustrow, Santiago Zanella
Béguelin, and Paul Zimmermann. Imperfect forward secrecy: How Diffie-Hellman
fails in practice. In Indrajit Ray, Ninghui Li, and Christopher Kruegel:, editors,
ACM CCS 15: 22nd Conference on Computer and Communications Security,
pages 5–17, Denver, CO, USA, October 12–16, 2015. ACM Press.

[ABP+13] Nadhem AlFardan, Daniel J. Bernstein, Kenneth G. Paterson, Bertram Poettering,
and Jacob C. N. Schuldt. On the security of RC4 in TLS. In Samuel T. King,
editor, Proceedings of the 22th USENIX Security Symposium, pages 305–320,
Washington, DC, USA, August 14–16, 2013. USENIX Association.

[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman
assumptions and an analysis of DHIES. In David Naccache, editor, Topics in
Cryptology – CT-RSA 2001, volume 2020 of Lecture Notes in Computer Science,
pages 143–158, San Francisco, CA, USA, April 8–12, 2001. Springer, Heidelberg,
Germany.

[ADHP16] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G.
Paterson. A surfeit of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16:
23rd Conference on Computer and Communications Security, pages 1480–1491,
Vienna, Austria, October 24–28, 2016. ACM Press.

[AP13] Nadhem J. AlFardan and Kenneth G. Paterson. Lucky thirteen: Breaking the
TLS and DTLS record protocols. In 2013 IEEE Symposium on Security and
Privacy, pages 526–540, Berkeley, CA, USA, May 19–22, 2013. IEEE Computer
Society Press.

[APW09] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext
recovery attacks against SSH. In 2009 IEEE Symposium on Security and Privacy,
pages 16–26, Oakland, CA, USA, May 17–20, 2009. IEEE Computer Society Press.

[AR02] Martín Abadi and Phillip Rogaway. Reconciling two views of cryptography (the
computational soundness of formal encryption). Journal of Cryptology, 15(2):103–
127, 2002.

221

Bibliography

[BBD+15] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the composite state machines
of TLS. In 2015 IEEE Symposium on Security and Privacy, pages 535–552, San
Jose, CA, USA, May 17–21, 2015. IEEE Computer Society Press.

[BBF+16] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green,
Markulf Kohlweiss, and Santiago Zanella Béguelin. Downgrade resilience in key-
exchange protocols. In 2016 IEEE Symposium on Security and Privacy, pages
506–525, San Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

[BBK17] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. Verified models
and reference implementations for the TLS 1.3 standard candidate. In 2017
IEEE Symposium on Security and Privacy, pages 483–502, San Jose, CA, USA,
May 22–26, 2017. IEEE Computer Society Press.

[BCF+13] Colin Boyd, Cas Cremers, Michele Feltz, Kenneth G. Paterson, Bertram Poettering,
and Douglas Stebila. ASICS: Authenticated key exchange security incorporating
certification systems. In Jason Crampton, Sushil Jajodia, and Keith Mayes, editors,
ESORICS 2013: 18th European Symposium on Research in Computer Security,
volume 8134 of Lecture Notes in Computer Science, pages 381–399, Egham, UK,
September 9–13, 2013. Springer, Heidelberg, Germany.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for
message authentication. In Neal Koblitz, editor, Advances in Cryptology –
CRYPTO’96, volume 1109 of Lecture Notes in Computer Science, pages 1–15,
Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg, Germany.

[BCRS09] Elaine Barker, Lily Chen, Andrew Regenscheid, and Miles Smid. SP 800-56B.
Recommendation for Pair-Wise Key Establishment Schemes Using Integer Factor-
ization Cryptography. NIST Special Publication, National Institute of Standards
& Technology, August 2009.

[BCRS13] Elaine Barker, Lily Chen, Allen Roginsky, and Miles Smid. SP 800-56A r2. Recom-
mendation for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography. NIST Special Publication, National Institute of Standards &
Technology, May 2013.

[BDF+14] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre-Yves Strub. Triple handshakes and cookie cutters: Breaking
and fixing authentication over TLS. In 2014 IEEE Symposium on Security and
Privacy, pages 98–113, Berkeley, CA, USA, May 18–21, 2014. IEEE Computer
Society Press.

[BDPS12] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. Security of symmetric encryption in the presence of ciphertext fragmentation.
In David Pointcheval and Thomas Johansson, editors, Advances in Cryptology –
EUROCRYPT 2012, volume 7237 of Lecture Notes in Computer Science, pages
682–699, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg, Germany.

[BDPS14] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn
Stam. On symmetric encryption with distinguishable decryption failures. In
Shiho Moriai, editor, Fast Software Encryption – FSE 2013, volume 8424 of

222

Bibliography

Lecture Notes in Computer Science, pages 367–390, Singapore, March 11–13, 2014.
Springer, Heidelberg, Germany.

[BF17] Jacqueline Brendel and Marc Fischlin. Zero round-trip time for the extended
access control protocol. In Simon N. Foley, Dieter Gollmann, and Einar Snekkenes,
editors, ESORICS 2017: 22nd European Symposium on Research in Computer
Security, Part I, volume 10492 of Lecture Notes in Computer Science, pages
297–314, Oslo, Norway, September 11–15, 2017. Springer, Heidelberg, Germany.

[BFGJ17] Jacqueline Brendel, Marc Fischlin, Felix Günther, and Christian Janson. PRF-
ODH: Relations, instantiations, and impossibility results. In Jonathan Katz
and Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, Part III,
volume 10403 of Lecture Notes in Computer Science, pages 651–681, Santa Barbara,
CA, USA, August 20–24, 2017. Springer, Heidelberg, Germany.

[BFK+13] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti, and
Pierre-Yves Strub. Implementing TLS with verified cryptographic security. In
2013 IEEE Symposium on Security and Privacy, pages 445–459, Berkeley, CA,
USA, May 19–22, 2013. IEEE Computer Society Press.

[BFK+14] Karthikeyan Bhargavan, Cédric Fournet, Markulf Kohlweiss, Alfredo Pironti,
Pierre-Yves Strub, and Santiago Zanella Béguelin. Proving the TLS handshake
secure (as it is). In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part II, volume 8617 of Lecture Notes in Computer
Science, pages 235–255, Santa Barbara, CA, USA, August 17–21, 2014. Springer,
Heidelberg, Germany.

[BFPW07] Alexandra Boldyreva, Marc Fischlin, Adriana Palacio, and Bogdan Warinschi. A
closer look at PKI: Security and efficiency. In Tatsuaki Okamoto and Xiaoyun
Wang, editors, PKC 2007: 10th International Conference on Theory and Practice
of Public Key Cryptography, volume 4450 of Lecture Notes in Computer Science,
pages 458–475, Beijing, China, April 16–20, 2007. Springer, Heidelberg, Germany.

[BFS+13] Christina Brzuska, Marc Fischlin, Nigel P. Smart, Bogdan Warinschi, and
Stephen C. Williams. Less is more: relaxed yet composable security notions
for key exchange. Int. J. Inf. Sec., 12(4):267–297, 2013.

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams.
Composability of Bellare-Rogaway key exchange protocols. In Yan Chen, George
Danezis, and Vitaly Shmatikov, editors, ACM CCS 11: 18th Conference on
Computer and Communications Security, pages 51–62, Chicago, Illinois, USA,
October 17–21, 2011. ACM Press.

[BH17] Colin Boyd and Britta Hale. Secure channels and termination: The last word
on tls. In Progress in Cryptology - LATINCRYPT 2017: 5th International
Conference on Cryptology and Information Security in Latin America, Habana,
Cuba, September 20–22, 2017. Springer, Heidelberg, Germany.

[BHMS16] Colin Boyd, Britta Hale, Stig Frode Mjølsnes, and Douglas Stebila. From stateless
to stateful: Generic authentication and authenticated encryption constructions
with application to TLS. In Kazue Sako, editor, Topics in Cryptology – CT-
RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages 55–71, San
Francisco, CA, USA, February 29 – March 4, 2016. Springer, Heidelberg, Germany.

223

Bibliography

[BJS16] Christina Brzuska, Håkon Jacobsen, and Douglas Stebila. Safely exporting keys
from secure channels: On the security of EAP-TLS and TLS key exporters.
In Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer Science,
pages 670–698, Vienna, Austria, May 8–12, 2016. Springer, Heidelberg, Germany.

[BKN02] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Authenticated en-
cryption in SSH: Provably fixing the SSH binary packet protocol. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications
Security, pages 1–11, Washington D.C., USA, November 18–22, 2002. ACM Press.

[BKN04] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and
provably repairing the SSH authenticated encryption scheme: A case study of the
encode-then-encrypt-and-MAC paradigm. ACM Transactions on Information and
System Security, 7(2):206–241, 2004.

[BL16a] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-)security of
64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers,
and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer and
Communications Security, pages 456–467, Vienna, Austria, October 24–28, 2016.
ACM Press.

[BL16b] Karthikeyan Bhargavan and Gaëtan Leurent. Transcript collision attacks: Break-
ing authentication in TLS, IKE and SSH. In ISOC Network and Distributed
System Security Symposium – NDSS 2016, San Diego, CA, USA, February 21–24,
2016. The Internet Society.

[Bla16] Bruno Blanchet. Modeling and verifying security protocols with the applied pi
calculus and proverif. Foundations and Trends in Privacy and Security, 1(1-2):1–
135, 2016.

[BM97] Simon Blake-Wilson and Alfred Menezes. Entity authentication and authenticated
key transport protocols employing asymmetric techniques. In Bruce Christianson,
Bruno Crispo, T. Mark A. Lomas, and Michael Roe, editors, Security Protocols,
5th International Workshop, volume 1361 of Lecture Notes in Computer Science,
pages 137–158, Paris, France, April 7–9, 1997. Springer.

[BMM+15] Christian Badertscher, Christian Matt, Ueli Maurer, Phillip Rogaway, and Björn
Tackmann. Augmented secure channels and the goal of the TLS 1.3 record layer.
In Man Ho Au and Atsuko Miyaji, editors, ProvSec 2015: 9th International Con-
ference on Provable Security, volume 9451 of Lecture Notes in Computer Science,
pages 85–104, Kanazawa, Japan, November 24–26, 2015. Springer, Heidelberg,
Germany.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 531–545, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[Bon98] Dan Boneh. The decision Diffie-Hellman problem. In Third Algorithmic Number
Theory Symposium (ANTS), volume 1423 of Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 1998. Invited paper.

224

Bibliography

[BPR00] Mihir Bellare, David Pointcheval, and Phillip Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Bart Preneel, editor, Advances in
Cryptology – EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer
Science, pages 139–155, Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg,
Germany.

[BPS15] Guy Barwell, Daniel Page, and Martijn Stam. Rogue decryption failures: Recon-
ciling AE robustness notions. In Jens Groth, editor, 15th IMA International Con-
ference on Cryptography and Coding, volume 9496 of Lecture Notes in Computer
Science, pages 94–111, Oxford, UK, December 15–17, 2015. Springer, Heidelberg,
Germany.

[BR93] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for
designing efficient protocols. In V. Ashby, editor, ACM CCS 93: 1st Conference
on Computer and Communications Security, pages 62–73, Fairfax, Virginia, USA,
November 3–5, 1993. ACM Press.

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution.
In Douglas R. Stinson, editor, Advances in Cryptology – CRYPTO’93, volume
773 of Lecture Notes in Computer Science, pages 232–249, Santa Barbara, CA,
USA, August 22–26, 1994. Springer, Heidelberg, Germany.

[BR95] Mihir Bellare and Phillip Rogaway. Provably secure session key distribution: The
three party case. In Frank Thomson Leighton and Allan Borodin, editors, 27th
Annual ACM Symposium on Theory of Computing, pages 57–66, Las Vegas, NV,
USA, May 29 – June 1, 1995. ACM Press.

[BR00] Mihir Bellare and Phillip Rogaway. Encode-then-encipher encryption: How to
exploit nonces or redundancy in plaintexts for efficient cryptography. In Tatsuaki
Okamoto, editor, Advances in Cryptology – ASIACRYPT 2000, volume 1976 of
Lecture Notes in Computer Science, pages 317–330, Kyoto, Japan, December 3–7,
2000. Springer, Heidelberg, Germany.

[BR06] Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances
in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture Notes in Computer
Science, pages 409–426, St. Petersburg, Russia, May 28 – June 1, 2006. Springer,
Heidelberg, Germany.

[Brz13] Christina Brzuska. On the Foundations of Key Exchange. PhD thesis, Technis-
che Universität Darmstadt, Darmstadt, Germany, 2013. http://tuprints.ulb.
tu-darmstadt.de/3414/.

[BSJ+17] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors
Stepanovs. Ratcheted encryption and key exchange: The security of messag-
ing. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Sci-
ence, pages 619–650, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[BSWW13] Christina Brzuska, Nigel P. Smart, Bogdan Warinschi, and Gaven J. Watson. An
analysis of the EMV channel establishment protocol. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on

225

http://tuprints.ulb.tu-darmstadt.de/3414/
http://tuprints.ulb.tu-darmstadt.de/3414/

Bibliography

Computer and Communications Security, pages 373–386, Berlin, Germany, Novem-
ber 4–8, 2013. ACM Press.

[BSY17] Hanno Böck, Juraj Somorovsky, and Craig Young. Return of bleichenbacher’s
oracle threat. https://robotattack.org, December 2017.

[BWJM97] Simon Blake-Wilson, Don Johnson, and Alfred Menezes. Key agreement protocols
and their security analysis. In Michael Darnell, editor, 6th IMA International
Conference on Cryptography and Coding, volume 1355 of Lecture Notes in Com-
puter Science, pages 30–45, Cirencester, UK, December 17–19, 1997. Springer,
Heidelberg, Germany.

[BWM99a] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key
agreement protocols (invited talk). In Stafford E. Tavares and Henk Meijer,
editors, SAC 1998: 5th Annual International Workshop on Selected Areas in
Cryptography, volume 1556 of Lecture Notes in Computer Science, pages 339–361,
Kingston, Ontario, Canada, August 17–18, 1999. Springer, Heidelberg, Germany.

[BWM99b] Simon Blake-Wilson and Alfred Menezes. Unknown key-share attacks on the
station-to-station (STS) protocol. In Hideki Imai and Yuliang Zheng, editors,
PKC’99: 2nd International Workshop on Theory and Practice in Public Key
Cryptography, volume 1560 of Lecture Notes in Computer Science, pages 154–170,
Kamakura, Japan, March 1–3, 1999. Springer, Heidelberg, Germany.

[BY03] Mihir Bellare and Bennet S. Yee. Forward-security in private-key cryptography. In
Marc Joye, editor, Topics in Cryptology – CT-RSA 2003, volume 2612 of Lecture
Notes in Computer Science, pages 1–18, San Francisco, CA, USA, April 13–17,
2003. Springer, Heidelberg, Germany.

[Can00] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. Cryptology ePrint Archive, Report 2000/067, 2000. http://eprint.
iacr.org/2000/067.

[CF12] Cas J. F. Cremers and Michele Feltz. Beyond eCK: Perfect forward secrecy under
actor compromise and ephemeral-key reveal. In Sara Foresti, Moti Yung, and
Fabio Martinelli, editors, ESORICS 2012: 17th European Symposium on Research
in Computer Security, volume 7459 of Lecture Notes in Computer Science, pages
734–751, Pisa, Italy, September 10–12, 2012. Springer, Heidelberg, Germany.

[CGCD+17] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. A formal security analysis of the Signal messaging protocol. In 2017 IEEE
European Symposium on Security and Privacy, EuroS&P 2017, pages 451–466,
Paris, France, April 26–28, 2017. IEEE.

[CGCG16] Katriel Cohn-Gordon, Cas Cremers, and Luke Garratt. On post-compromise
security. In IEEE 29th Computer Security Foundations Symposium, CSF 2016,
pages 164–178, Lisbon, Portugal, June 27 – July 1, 2016. IEEE Computer Society.

[CGCG+17] Katriel Cohn-Gordon, Cas Cremers, Luke Garratt, Jon Millican, and Kevin
Milner. On ends-to-ends encryption: Asynchronous group messaging with strong
security guarantees. Cryptology ePrint Archive, Report 2017/666, 2017. http:
//eprint.iacr.org/2017/666.

226

https://robotattack.org
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2000/067
http://eprint.iacr.org/2017/666
http://eprint.iacr.org/2017/666

Bibliography

[CGH98] Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited (preliminary version). In Jeffrey Scott Vitter, editor, 30th Annual ACM
Symposium on Theory of Computing, pages 209–218, Dallas, TX, USA, May 23–26,
1998. ACM Press.

[Che11] Lily Chen. Recommendation for Key Derivation through Extraction-then-
Expansion. National Institute of Standards and Technology, November 2011.

[CHH+17] Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, and Thyla van der
Merwe. A comprehensive symbolic analysis of TLS 1.3. In Bhavani M. Thurais-
ingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 17: 24th
Conference on Computer and Communications Security, pages 1773–1788, Dallas,
TX, USA, October 31 – November 2, 2017. ACM Press.

[CHSvdM16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated
analysis and verification of TLS 1.3: 0-RTT, resumption and delayed authenti-
cation. In 2016 IEEE Symposium on Security and Privacy, pages 470–485, San
Jose, CA, USA, May 22–26, 2016. IEEE Computer Society Press.

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use
for building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology
– EUROCRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages
453–474, Innsbruck, Austria, May 6–10, 2001. Springer, Heidelberg, Germany.

[CK02a] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-
exchange protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002,
volume 2442 of Lecture Notes in Computer Science, pages 143–161, Santa Barbara,
CA, USA, August 18–22, 2002. Springer, Heidelberg, Germany. http://eprint.
iacr.org/2002/120/.

[CK02b] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange
and secure channels. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 337–
351, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg,
Germany.

[CKN03] Ran Canetti, Hugo Krawczyk, and Jesper Buus Nielsen. Relaxing chosen-ciphertext
security. In Dan Boneh, editor, Advances in Cryptology – CRYPTO 2003, volume
2729 of Lecture Notes in Computer Science, pages 565–582, Santa Barbara, CA,
USA, August 17–21, 2003. Springer, Heidelberg, Germany.

[Cod14] Codenomicon. The Heartbleed bug. http://heartbleed.com, April 2014.

[DA99] Tim Dierks and Christopher Allen. The TLS Protocol Version 1.0. RFC 2246
(Proposed Standard), January 1999. Obsoleted by RFC 4346, updated by RFCs
3546, 5746, 6176, 7465, 7507, 7919.

[Deg16] Jean Paul Degabriele. Personal communication, May 2016.

[DF11] Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access
control protocol for machine readable travel documents. In Mike Burmester, Gene
Tsudik, Spyros S. Magliveras, and Ivana Ilic, editors, ISC 2010: 13th International
Conference on Information Security, volume 6531 of Lecture Notes in Computer

227

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2002/120/
http://heartbleed.com

Bibliography

Science, pages 54–68, Boca Raton, FL, USA, October 25–28, 2011. Springer,
Heidelberg, Germany.

[DFGS15a] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-
graphic analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference
on Computer and Communications Security, pages 1197–1210, Denver, CO, USA,
October 12–16, 2015. ACM Press.

[DFGS15b] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A crypto-
graphic analysis of the TLS 1.3 handshake protocol candidates. Cryptology ePrint
Archive, Report 2015/914, 2015. http://eprint.iacr.org/2015/914.

[DFGS16] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A
cryptographic analysis of the TLS 1.3 draft-10 full and pre-shared key hand-
shake protocol. Cryptology ePrint Archive, Report 2016/081, 2016. http:
//eprint.iacr.org/2016/081.

[DH76] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DKXY02] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Key-insulated
public key cryptosystems. In Lars R. Knudsen, editor, Advances in Cryptology –
EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages
65–82, Amsterdam, The Netherlands, April 28 – May 2, 2002. Springer, Heidelberg,
Germany.

[DKXY03] Yevgeniy Dodis, Jonathan Katz, Shouhuai Xu, and Moti Yung. Strong key-
insulated signature schemes. In Yvo Desmedt, editor, PKC 2003: 6th International
Workshop on Theory and Practice in Public Key Cryptography, volume 2567 of
Lecture Notes in Computer Science, pages 130–144, Miami, FL, USA, January 6–8,
2003. Springer, Heidelberg, Germany.

[DLFK+17] Antoine Delignat-Lavaud, Cédric Fournet, Markulf Kohlweiss, Jonathan Protzenko,
Aseem Rastogi, Nikhil Swamy, Santiago Zanella Béguelin, Karthikeyan Bhargavan,
Jianyang Pan, and Jean Karim Zinzindohoue. Implementing and proving the
TLS 1.3 record layer. In 2017 IEEE Symposium on Security and Privacy, pages
463–482, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

[DLXY12] Yevgeniy Dodis, Weiliang Luo, Shouhuai Xu, and Moti Yung. Key-insulated
symmetric key cryptography and mitigating attacks against cryptographic cloud
software. In Heung Youl Youm and Yoojae Won, editors, ASIACCS 12: 7th
ACM Symposium on Information, Computer and Communications Security, pages
57–58, Seoul, Korea, May 2–4, 2012. ACM Press.

[DP10] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec
in MAC-then-encrypt configurations. In Ehab Al-Shaer, Angelos D. Keromytis,
and Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on Computer and
Communications Security, pages 493–504, Chicago, Illinois, USA, October 4–8,
2010. ACM Press.

[DR06] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.1. RFC 4346 (Proposed Standard), April 2006. Obsoleted by RFC 5246,
updated by RFCs 4366, 4680, 4681, 5746, 6176, 7465, 7507, 7919.

228

http://eprint.iacr.org/2015/914
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2016/081

Bibliography

[DR08] Tim Dierks and Eric Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs
5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.

[DS15] Benjamin Dowling and Douglas Stebila. Modelling ciphersuite and version negoti-
ation in the TLS protocol. In Ernest Foo and Douglas Stebila, editors, ACISP
15: 20th Australasian Conference on Information Security and Privacy, volume
9144 of Lecture Notes in Computer Science, pages 270–288, Wollongong, NSW,
Australia, June 29 – July 1, 2015. Springer, Heidelberg, Germany.

[Duo11] Thai Duong. BEAST. http://vnhacker.blogspot.com.au/2011/09/beast.
html, September 2011.

[DVOW92] Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication
and authenticated key exchanges. Designs, Codes and Cryptography, 2(2):107–125,
1992.

[Dwo07] Morris Dworkin. SP 800-38D. Recommendation for Block Cipher Modes of
Operation: Galois/Counter Mode (GCM) and GMAC. NIST Special Publication,
National Institute of Standards & Technology, November 2007.

[DY83] Danny Dolev and Andrew Chi-Chih Yao. On the security of public key protocols.
IEEE Trans. Information Theory, 29(2):198–207, 1983.

[EMV12] EMVCo LLC. EMV ECC key establishment protocols. http://legacy.emvco.
com/specifications.aspx?id=243, 2012.

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of
Google’s QUIC protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors,
ACM CCS 14: 21st Conference on Computer and Communications Security, pages
1193–1204, Scottsdale, AZ, USA, November 3–7, 2014. ACM Press.

[FG17] Marc Fischlin and Felix Günther. Replay attacks on zero round-trip time: The
case of the TLS 1.3 handshake candidates. In 2017 IEEE European Symposium
on Security and Privacy, EuroS&P 2017, pages 60–75, Paris, France, April 26–28,
2017. IEEE.

[FGM+97] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk, and Tim Berners-
Lee. Hypertext Transfer Protocol – HTTP/1.1. RFC 2068 (Proposed Standard),
January 1997. Obsoleted by RFC 2616.

[FGMP15] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson.
Data is a stream: Security of stream-based channels. In Rosario Gennaro and
Matthew J. B. Robshaw, editors, Advances in Cryptology – CRYPTO 2015,
Part II, volume 9216 of Lecture Notes in Computer Science, pages 545–564, Santa
Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[FGMP17] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson.
Data Is a Stream: Security of Stream-Based Channels. Cryptology ePrint Archive,
Report 2017/1191, 2017. https://eprint.iacr.org/2017/1191.

[FGSW16] Marc Fischlin, Felix Günther, Benedikt Schmidt, and Bogdan Warinschi. Key
confirmation in key exchange: A formal treatment and implications for TLS 1.3.
In 2016 IEEE Symposium on Security and Privacy, pages 452–469, San Jose, CA,
USA, May 22–26, 2016. IEEE Computer Society Press.

229

http://vnhacker.blogspot.com.au/2011/09/beast.html
http://vnhacker.blogspot.com.au/2011/09/beast.html
http://legacy.emvco.com/specifications.aspx?id=243
http://legacy.emvco.com/specifications.aspx?id=243
https://eprint.iacr.org/2017/1191

Bibliography

[FKK11] Alan O. Freier, Philip Karlton, and Paul C. Kocher. The Secure Sockets Layer
(SSL) Protocol Version 3.0. RFC 6101 (Historic), August 2011.

[Fou15] Cédric Fournet. [IETF TLS mailing list] resetting the sequence number to zero
for each record key. (#379). https://mailarchive.ietf.org/arch/msg/tls/
extoO9ETJLnEm3MRDTO23x70DFM, December 2015.

[FR14] Roy T. Fielding and Julian F. Reschke. Hypertext Transfer Protocol (HTTP/1.1):
Message Syntax and Routing. RFC 7230 (Proposed Standard), June 2014.

[FW09] Pooya Farshim and Bogdan Warinschi. Certified encryption revisited. In Bart
Preneel, editor, AFRICACRYPT 09: 2nd International Conference on Cryptology
in Africa, volume 5580 of Lecture Notes in Computer Science, pages 179–197,
Gammarth, Tunisia, June 21–25, 2009. Springer, Heidelberg, Germany.

[GHJL17] Felix Günther, Britta Hale, Tibor Jager, and Sebastian Lauer. 0-RTT key exchange
with full forward secrecy. In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Advances in Cryptology – EUROCRYPT 2017, Part II, volume 10211
of Lecture Notes in Computer Science, pages 519–548, Paris, France, May 8–12,
2017. Springer, Heidelberg, Germany.

[GKS13] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS
renegotiation. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors,
ACM CCS 13: 20th Conference on Computer and Communications Security, pages
387–398, Berlin, Germany, November 4–8, 2013. ACM Press.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of Computer
and System Sciences, 28(2):270–299, 1984.

[GM17] Felix Günther and Sogol Mazaheri. A formal treatment of multi-key chan-
nels. In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology
– CRYPTO 2017, Part III, volume 10403 of Lecture Notes in Computer Sci-
ence, pages 587–618, Santa Barbara, CA, USA, August 20–24, 2017. Springer,
Heidelberg, Germany.

[GMP+08] Sebastian Gajek, Mark Manulis, Olivier Pereira, Ahmad-Reza Sadeghi, and Jörg
Schwenk. Universally composable security analysis of TLS. In Joonsang Baek,
Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec 2008: 2nd International
Conference on Provable Security, volume 5324 of Lecture Notes in Computer
Science, pages 313–327, Shanghai, China, October 31 – November 1, 2008. Springer,
Heidelberg, Germany.

[GMSS08] Sebastian Gajek, Mark Manulis, Ahmad-Reza Sadeghi, and Jörg Schwenk. Prov-
ably secure browser-based user-aware mutual authentication over TLS. In
Masayuki Abe and Virgil Gligor, editors, ASIACCS 08: 3rd ACM Symposium
on Information, Computer and Communications Security, pages 300–311, Tokyo,
Japan, March 18–20, 2008. ACM Press.

[Gün90] Christoph G. Günther. An identity-based key-exchange protocol. In Jean-Jacques
Quisquater and Joos Vandewalle, editors, Advances in Cryptology – EURO-
CRYPT’89, volume 434 of Lecture Notes in Computer Science, pages 29–37,
Houthalen, Belgium, April 10–13, 1990. Springer, Heidelberg, Germany.

230

https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM
https://mailarchive.ietf.org/arch/msg/tls/extoO9ETJLnEm3MRDTO23x70DFM

Bibliography

[Gün15] Felix Günther. [IETF TLS mailing list] A Cryptographic Analysis of the TLS 1.3
Handshake Protocol Candidates. https://mailarchive.ietf.org/arch/msg/
tls/cgc7cqEYvZJjw56WSr8_xP9gDIM, September 2015.

[HC09] Katrin Hoeper and Lily Chen. SP 800-120. Recommendation for EAP Methods
Used in Wireless Network Access Authentication. NIST Special Publication,
National Institute of Standards & Technology, September 2009.

[HJLS17] Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk. Simple security
definitions for and constructions of 0-RTT key exchange. In Dieter Gollmann,
Atsuko Miyaji, and Hiroaki Kikuchi, editors, ACNS 17: 15th International Con-
ference on Applied Cryptography and Network Security, volume 10355 of Lecture
Notes in Computer Science, pages 20–38, Kanazawa, Japan, July 10–12, 2017.
Springer, Heidelberg, Germany.

[Int15] International Civil Aviation Organization (ICAO). Machine Readable Travel
Documents, Part 11, Security Mechanisms for MRTDs. Doc 9303, 2015. Seventh
Edition.

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security
of TLS-DHE in the standard model. In Reihaneh Safavi-Naini and Ran Canetti,
editors, Advances in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes
in Computer Science, pages 273–293, Santa Barbara, CA, USA, August 19–23,
2012. Springer, Heidelberg, Germany.

[JP02] Markus Jakobsson and David Pointcheval. Mutual authentication for low-power
mobile devices. In Paul F. Syverson, editor, FC 2001: 5th International Con-
ference on Financial Cryptography, volume 2339 of Lecture Notes in Computer
Science, pages 178–195, Grand Cayman, British West Indies, February 19–22,
2002. Springer, Heidelberg, Germany.

[JSS15] Tibor Jager, Jörg Schwenk, and Juraj Somorovsky. On the security of TLS 1.3
and QUIC against weaknesses in PKCS#1 v1.5 encryption. In Indrajit Ray,
Ninghui Li, and Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference
on Computer and Communications Security, pages 1185–1196, Denver, CO, USA,
October 12–16, 2015. ACM Press.

[Kah96] David Kahn. The Code-Breakers: The Comprehensive History of Secret Commu-
nication from Ancient Times to the Internet. Scribner, 1996.

[Kal98] Burt Kaliski. PKCS #1: RSA Encryption Version 1.5. RFC 2313 (Informational),
March 1998. Obsoleted by RFC 2437.

[Kat10] Jonathan Katz. Digital Signatures. Springer, Heidelberg, Germany, 2010.

[KBC97] Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for
Message Authentication. RFC 2104 (Informational), February 1997. Updated by
RFC 6151.

[KE10] Hugo Krawczyk and Pasi Eronen. HMAC-based Extract-and-Expand Key Deriva-
tion Function (HKDF). RFC 5869 (Informational), May 2010.

[KL08] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chap-
man & Hall/CRC, 2008.

231

https://mailarchive.ietf.org/arch/msg/tls/cgc7cqEYvZJjw56WSr8_xP9gDIM
https://mailarchive.ietf.org/arch/msg/tls/cgc7cqEYvZJjw56WSr8_xP9gDIM

Bibliography

[KMO+14] Markulf Kohlweiss, Ueli Maurer, Cristina Onete, Bjoern Tackmann, and Daniele
Venturi. (De-)constructing TLS. Cryptology ePrint Archive, Report 2014/020,
2014. http://eprint.iacr.org/2014/020.

[KP05] Caroline Kudla and Kenneth G. Paterson. Modular security proofs for key
agreement protocols. In Bimal K. Roy, editor, Advances in Cryptology – ASI-
ACRYPT 2005, volume 3788 of Lecture Notes in Computer Science, pages 549–565,
Chennai, India, December 4–8, 2005. Springer, Heidelberg, Germany.

[KPB03] Tadayoshi Kohno, Adriana Palacio, and John Black. Building secure cryptographic
transforms, or how to encrypt and MAC. Cryptology ePrint Archive, Report
2003/177, 2003. http://eprint.iacr.org/2003/177.

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the
TLS protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors,
Advances in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 429–448, Santa Barbara, CA, USA, August 18–22,
2013. Springer, Heidelberg, Germany.

[KR17] Ralf Küsters and Daniel Rausch. A framework for universally composable Diffie-
Hellman key exchange. In 2017 IEEE Symposium on Security and Privacy, pages
881–900, San Jose, CA, USA, May 22–26, 2017. IEEE Computer Society Press.

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In
Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of
Lecture Notes in Computer Science, pages 546–566, Santa Barbara, CA, USA,
August 14–18, 2005. Springer, Heidelberg, Germany.

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme.
In Tal Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of
Lecture Notes in Computer Science, pages 631–648, Santa Barbara, CA, USA,
August 15–19, 2010. Springer, Heidelberg, Germany.

[Kra16a] Hugo Krawczyk. [IETF TLS mailing list] Re: Call for consensus: Re-
moving DHE-based 0-RTT. https://mailarchive.ietf.org/arch/msg/tls/
xmnvrKEQkEbD-u8HTeQkyitmclY, March 2016.

[Kra16b] Hugo Krawczyk. A unilateral-to-mutual authentication compiler for key exchange
(with applications to client authentication in TLS 1.3). In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 16: 23rd Conference on Computer and Communications Security,
pages 1438–1450, Vienna, Austria, October 24–28, 2016. ACM Press.

[KS05] Stephen Kent and Karen Seo. Security Architecture for the Internet Protocol.
RFC 4301 (Proposed Standard), December 2005. Updated by RFCs 6040, 7619.

[KSS13] Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DH and
TLS-RSA in the standard model. Cryptology ePrint Archive, Report 2013/367,
2013. http://eprint.iacr.org/2013/367.

[KT11] Ralf Küsters and Max Tuengerthal. Composition theorems without pre-established
session identifiers. In Yan Chen, George Danezis, and Vitaly Shmatikov, editors,
ACM CCS 11: 18th Conference on Computer and Communications Security, pages
41–50, Chicago, Illinois, USA, October 17–21, 2011. ACM Press.

232

http://eprint.iacr.org/2014/020
http://eprint.iacr.org/2003/177
https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
http://eprint.iacr.org/2013/367

Bibliography

[KW15] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. Cryptology
ePrint Archive, Report 2015/978, 2015. http://eprint.iacr.org/2015/978.

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016
IEEE European Symposium on Security and Privacy, EuroS&P 2016, pages 81–96,
Saarbrücken, Germany, March 21–24, 2016. IEEE.

[Lad14] Watson Ladd. [IETF TLS mailing list] Kill Finished (and other tricks for hard-
ware). https://www.ietf.org/mail-archive/web/tls/current/msg12162.
html, April 2014.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, 21(7):558–565, 1978.

[Lan14] Adam Langley. Comment at the Real World Crypto (RWC) Workshop 2014, New
York, NY, USA, January 13–15, 2014.

[LC13] Adam Langley and Wan-Teh Chang. QUIC Crypto, June 2013. Revision 20130620.

[LC16] Adam Langley and Wan-Teh Chang. QUIC Crypto. https://docs.google.
com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/, Decem-
ber 2016. Revision 20161206.

[LJBN15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru.
How secure and quick is QUIC? Provable security and performance analyses. In
2015 IEEE Symposium on Security and Privacy, pages 214–231, San Jose, CA,
USA, May 17–21, 2015. IEEE Computer Society Press.

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security
of authenticated key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu,
editors, ProvSec 2007: 1st International Conference on Provable Security, volume
4784 of Lecture Notes in Computer Science, pages 1–16, Wollongong, Australia,
November 1–2, 2007. Springer, Heidelberg, Germany.

[LM06] Kristin Lauter and Anton Mityagin. Security analysis of KEA authenticated key
exchange protocol. In Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal
Malkin, editors, PKC 2006: 9th International Conference on Theory and Practice
of Public Key Cryptography, volume 3958 of Lecture Notes in Computer Science,
pages 378–394, New York, NY, USA, April 24–26, 2006. Springer, Heidelberg,
Germany.

[LP16] Atul Luykx and Kenneth G. Paterson. Limits on authenticated encryption use in
TLS. http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf, 2016.

[LRW+17] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, Jeff Bailey,
Jeremy Dorfman, Jim Roskind, Joanna Kulik, Patrik Westin, Raman Tenneti,
Robbie Shade, Ryan Hamilton, Victor Vasiliev, Wan-Teh Chang, and Zhongyi
Shi. The QUIC transport protocol: Design and internet-scale deployment. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM 2017, pages 183–196, Los Angeles, CA, USA, August 21–25,
2017. ACM.

233

http://eprint.iacr.org/2015/978
https://www.ietf.org/mail-archive/web/tls/current/msg12162.html
https://www.ietf.org/mail-archive/web/tls/current/msg12162.html
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf

Bibliography

[LSY+14] Yong Li, Sven Schäge, Zheng Yang, Florian Kohlar, and Jörg Schwenk. On the
security of the pre-shared key ciphersuites of TLS. In Hugo Krawczyk, editor,
PKC 2014: 17th International Conference on Theory and Practice of Public Key
Cryptography, volume 8383 of Lecture Notes in Computer Science, pages 669–684,
Buenos Aires, Argentina, March 26–28, 2014. Springer, Heidelberg, Germany.

[LXZ+16] Xinyu Li, Jing Xu, Zhenfeng Zhang, Dengguo Feng, and Honggang Hu. Multiple
handshakes security of TLS 1.3 candidates. In 2016 IEEE Symposium on Security
and Privacy, pages 486–505, San Jose, CA, USA, May 22–26, 2016. IEEE Computer
Society Press.

[Mac17] Colm MacCárthaigh. [IETF TLS mailing list] Security review of TLS1.3 0-RTT.
https://mailarchive.ietf.org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_
KBpA, May 2017.

[Mat16] Shin’ichiro Matsuo. [IETF TLS mailing list] Formal Verification of TLS 1.3 Full
Handshake Protocol Using ProVerif (Draft-11). https://mailarchive.ietf.
org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI, February 2016.

[MDK14] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. This POODLE bites: Exploit-
ing the SSL 3.0 fallback. https://www.openssl.org/~bodo/ssl-poodle.pdf,
September 2014.

[miT] miTLS: A Verified Reference Implementation of TLS. http://mitls.org/.

[MP17a] Giorgia Azzurra Marson and Bertram Poettering. Security notions for bidirectional
channels. IACR Transactions on Symmetric Cryptology, 2017(1):405–426, 2017.

[MP17b] Giorgia Azzurra Marson and Bertram Poettering. With one it is easy, with many
it gets complicated: Understanding channel security for groups. Cryptology ePrint
Archive, Report 2017/786, 2017. http://eprint.iacr.org/2017/786.

[MR11] Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle,
editor, ICS 2011: 2nd Innovations in Computer Science, pages 1–21, Tsinghua
University, Beijing, China, January 7–9, 2011. Tsinghua University Press.

[MSW08] Paul Morrissey, Nigel P. Smart, and Bogdan Warinschi. A modular security
analysis of the TLS handshake protocol. In Josef Pieprzyk, editor, Advances
in Cryptology – ASIACRYPT 2008, volume 5350 of Lecture Notes in Computer
Science, pages 55–73, Melbourne, Australia, December 7–11, 2008. Springer,
Heidelberg, Germany.

[MT10] Ueli Maurer and Björn Tackmann. On the soundness of authenticate-then-encrypt:
formalizing the malleability of symmetric encryption. In Ehab Al-Shaer, Angelos D.
Keromytis, and Vitaly Shmatikov, editors, ACM CCS 10: 17th Conference on
Computer and Communications Security, pages 505–515, Chicago, Illinois, USA,
October 4–8, 2010. ACM Press.

[MVO96] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. CRC Press, 1996.

[Nam02] Chanathip Namprempre. Secure channels based on authenticated encryption
schemes: A simple characterization. In Yuliang Zheng, editor, Advances in
Cryptology – ASIACRYPT 2002, volume 2501 of Lecture Notes in Computer

234

https://mailarchive.ietf.org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_KBpA
https://mailarchive.ietf.org/arch/msg/tls/mHxi-O3du9OQHkc6CBWBpc_KBpA
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://mailarchive.ietf.org/arch/msg/tls/NXGYUUXCD2b9WwBRWbvrccjjdyI
https://www.openssl.org/~bodo/ssl-poodle.pdf
http://mitls.org/
http://eprint.iacr.org/2017/786

Bibliography

Science, pages 515–532, Queenstown, New Zealand, December 1–5, 2002. Springer,
Heidelberg, Germany.

[NRS14] Chanathip Namprempre, Phillip Rogaway, and Thomas Shrimpton. Reconsidering
generic composition. In Phong Q. Nguyen and Elisabeth Oswald, editors, Advances
in Cryptology – EUROCRYPT 2014, volume 8441 of Lecture Notes in Computer
Science, pages 257–274, Copenhagen, Denmark, May 11–15, 2014. Springer,
Heidelberg, Germany.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against
chosen ciphertext attacks. In Harriet Ortiz, editor, 22nd Annual ACM Symposium
on Theory of Computing, pages 427–437, Baltimore, MD, USA, May 14–16, 1990.
ACM Press.

[OP01] Tatsuaki Okamoto and David Pointcheval. The gap-problems: A new class of
problems for the security of cryptographic schemes. In Kwangjo Kim, editor,
PKC 2001: 4th International Workshop on Theory and Practice in Public Key
Cryptography, volume 1992 of Lecture Notes in Computer Science, pages 104–118,
Cheju Island, South Korea, February 13–15, 2001. Springer, Heidelberg, Germany.

[Ope] The OpenSSL Project. https://www.openssl.org.

[Orm17] Tavis Ormandy. cloudflare: Cloudflare reverse proxies are dumping uninitialized
memory. https://bugs.chromium.org/p/project-zero/issues/detail?id=
1139, February 2017.

[Poe16] Bertram Poettering. Personal communication, July 2016.

[Pos80] Jon Postel. User Datagram Protocol. RFC 768 (Internet Standard), August 1980.

[Pos81a] Jon Postel. Internet Protocol. RFC 791 (Internet Standard), September 1981.
Updated by RFCs 1349, 2474, 6864.

[Pos81b] Jon Postel. Transmission Control Protocol. RFC 793 (Internet Standard), Septem-
ber 1981. Updated by RFCs 1122, 3168, 6093, 6528.

[Pro] Proverif: Cryptographic protocol verifier in the formal model. http://prosecco.
gforge.inria.fr/personal/bblanche/proverif/.

[PRS11] Kenneth G. Paterson, Thomas Ristenpart, and Thomas Shrimpton. Tag size does
matter: Attacks and proofs for the TLS record protocol. In Dong Hoon Lee and
Xiaoyun Wang, editors, Advances in Cryptology – ASIACRYPT 2011, volume
7073 of Lecture Notes in Computer Science, pages 372–389, Seoul, South Korea,
December 4–8, 2011. Springer, Heidelberg, Germany.

[PvdM16] Kenneth G. Paterson and Thyla van der Merwe. Reactive and proactive standard-
isation of TLS. In Lidong Chen, David A. McGrew, and Chris J. Mitchell, editors,
Security Standardisation Research: Third International Conference (SSR 2016),
volume 10074 of Lecture Notes in Computer Science, pages 160–186, Gaithersburg,
MD, USA, December 5–6, 2016. Springer.

[PW10] Kenneth G. Paterson and Gaven J. Watson. Plaintext-dependent decryption: A
formal security treatment of SSH-CTR. In Henri Gilbert, editor, Advances in

235

https://www.openssl.org
https://bugs.chromium.org/p/project-zero/issues/detail?id=1139
https://bugs.chromium.org/p/project-zero/issues/detail?id=1139
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/
http://prosecco.gforge.inria.fr/personal/bblanche/proverif/

Bibliography

Cryptology – EUROCRYPT 2010, volume 6110 of Lecture Notes in Computer Sci-
ence, pages 345–361, French Riviera, May 30 – June 3, 2010. Springer, Heidelberg,
Germany.

[PZS+13] W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein, and Tanja
Lange. MinimaLT: minimal-latency networking through better security. In Ahmad-
Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th
Conference on Computer and Communications Security, pages 425–438, Berlin,
Germany, November 4–8, 2013. ACM Press.

[QUI] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/
quic.

[QWG] IETF QUIC working group. https://datatracker.ietf.org/wg/quic/about/.

[Res15a] Eric Rescorla. [IETF TLS mailing list] 0-RTT and Anti-Replay. https://www.
ietf.org/mail-archive/web/tls/current/msg15594.html, March 2015.

[Res15b] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-05. https://tools.ietf.org/html/draft-ietf-tls-tls13-05,
March 2015.

[Res15c] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-07. https://tools.ietf.org/html/draft-ietf-tls-tls13-07, July
2015.

[Res15d] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-08. https://tools.ietf.org/html/draft-ietf-tls-tls13-08, Au-
gust 2015.

[Res15e] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-10. https://tools.ietf.org/html/draft-ietf-tls-tls13-10, Octo-
ber 2015.

[Res15f] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-11. https://tools.ietf.org/html/draft-ietf-tls-tls13-11, De-
cember 2015.

[Res15g] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-dh-based. https://github.com/ekr/tls13-spec/blob/ietf92_
materials/draft-ietf-tls-tls13-dh-based.txt, March 2015.

[Res16a] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-12. https://tools.ietf.org/html/draft-ietf-tls-tls13-12,
March 2016.

[Res16b] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-13. https://tools.ietf.org/html/draft-ietf-tls-tls13-13, May
2016.

[Res16c] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-14. https://tools.ietf.org/html/draft-ietf-tls-tls13-14, July
2016.

236

https://www.chromium.org/quic
https://www.chromium.org/quic
https://datatracker.ietf.org/wg/quic/about/
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://tools.ietf.org/html/draft-ietf-tls-tls13-05
https://tools.ietf.org/html/draft-ietf-tls-tls13-07
https://tools.ietf.org/html/draft-ietf-tls-tls13-08
https://tools.ietf.org/html/draft-ietf-tls-tls13-10
https://tools.ietf.org/html/draft-ietf-tls-tls13-11
https://github.com/ekr/tls13-spec/blob/ietf92_materials/draft-ietf-tls-tls13-dh-based.txt
https://github.com/ekr/tls13-spec/blob/ietf92_materials/draft-ietf-tls-tls13-dh-based.txt
https://tools.ietf.org/html/draft-ietf-tls-tls13-12
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://tools.ietf.org/html/draft-ietf-tls-tls13-14

Bibliography

[Res16d] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-
tls-tls13-18. https://tools.ietf.org/html/draft-ietf-tls-tls13-18, Octo-
ber 2016.

[Res16e] Eric Rescorla. TLS 1.3 — draft-ietf-tls-tls13-12 (presentation at ietf 95 meet-
ing). https://www.ietf.org/proceedings/95/slides/slides-95-tls-2.pdf,
April 2016.

[Res18] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-
ietf-tls-tls13-24. https://tools.ietf.org/html/draft-ietf-tls-tls13-24,
February 2018.

[Rog02] Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalakshmi
Atluri, editor, ACM CCS 02: 9th Conference on Computer and Communications
Security, pages 98–107, Washington D.C., USA, November 18–22, 2002. ACM
Press.

[Rog06] Phillip Rogaway. Formalizing human ignorance. In Phong Q. Nguyen, editor,
Progress in Cryptology - VIETCRYPT 06: 1st International Conference on Cryp-
tology in Vietnam, volume 4341 of Lecture Notes in Computer Science, pages
211–228, Hanoi, Vietnam, September 25–28, 2006. Springer, Heidelberg, Germany.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Joan Feigenbaum, editor, Advances in
Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
433–444, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg,
Germany.

[Sho99] Victor Shoup. On formal models for secure key exchange. Cryptology ePrint
Archive, Report 1999/012, 1999. http://eprint.iacr.org/1999/012.

[Sho06] Victor Shoup. Sequences of games: a tool for taming complexity in security proofs,
2006. Manuscript.

[Sig] Signal protocol: Technical documentation. https://whispersystems.org/
docs/.

[SMCB12] Benedikt Schmidt, Simon Meier, Cas Cremers, and David Basin. Automated
analysis of Diffie-Hellman protocols and advanced security properties. In IEEE 25th
Computer Security Foundations Symposium, CSF 2012, pages 78–94, Cambridge,
MA, USA, June 25–27, 2012. IEEE Computer Society.

[SP13] Ben Smyth and Alfredo Pironti. Truncating TLS connections to violate beliefs in
web applications. In 7th USENIX Workshop on Offensive Technologies, WOOT ’13,
Washington, D.C., USA, August 13, 2013. USENIX Association. (first appeared
at Black Hat USA 2013).

[SYHY16] Hideki Sakurada, Kazuki Yoneyama, Yoshikazu Hanatani, and Maki Yoshida.
Analyzing and fixing the QACCE security of QUIC. In Lidong Chen, David A.
McGrew, and Chris J. Mitchell, editors, Security Standardisation Research: Third
International Conference (SSR 2016), volume 10074 of Lecture Notes in Computer
Science, pages 1–31, Gaithersburg, MD, USA, December 5–6, 2016. Springer.

237

https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://www.ietf.org/proceedings/95/slides/slides-95-tls-2.pdf
https://tools.ietf.org/html/draft-ietf-tls-tls13-24
http://eprint.iacr.org/1999/012
https://whispersystems.org/docs/
https://whispersystems.org/docs/

Bibliography

[TLS17] TLS:DIV (TLS 1.3: Design, Implementation & Verification) Workshop at IEEE
EuroS&P / EUROCRYPT 2017. https://www.mitls.org/tls:div/, April 2017.

[TRO16a] TRON (TLS1.3 – Ready or Not?) Workshop at NDSS 2016. https://www.
ndss-symposium.org/ndss2016/tron-workshop-programme/, February 2016.

[TRO16b] IEEE Security & Privacy 2016 TLS 1.3 Meetup. https://www.mitls.org/tron2/,
May 2016.

[TT17] Martin Thomson and Sean Turner. Using Transport Layer Security (TLS)
to Secure QUIC – draft-ietf-quic-tls-06. https://tools.ietf.org/html/
draft-ietf-quic-tls-06, September 2017.

[WTSB16] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. Privacy, discovery, and
authentication for the internet of things. In Ioannis G. Askoxylakis, Sotiris Ioan-
nidis, Sokratis K. Katsikas, and Catherine A. Meadows, editors, ESORICS 2016:
21st European Symposium on Research in Computer Security, Part II, volume
9879 of Lecture Notes in Computer Science, pages 301–319, Heraklion, Greece,
September 26–30, 2016. Springer, Heidelberg, Germany.

[YL06a] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Protocol Architecture.
RFC 4251 (Proposed Standard), January 2006.

[YL06b] Tatu Ylonen and Chris Lonvick. The Secure Shell (SSH) Transport Layer Protocol.
RFC 4253 (Proposed Standard), January 2006. Updated by RFC 6668.

238

https://www.mitls.org/tls:div/
https://www.ndss-symposium.org/ndss2016/tron-workshop-programme/
https://www.ndss-symposium.org/ndss2016/tron-workshop-programme/
https://www.mitls.org/tron2/
https://tools.ietf.org/html/draft-ietf-quic-tls-06
https://tools.ietf.org/html/draft-ietf-quic-tls-06

	Abstract
	Zusammenfassung
	Contents
	Introduction
	Key Exchange
	Secure Channels
	Related Work

	Preliminaries
	Notation
	Cryptographic Building Blocks and Assumptions

	Key Exchange
	Key Exchange Preliminaries
	The Bellare–Rogaway Model
	Cryptographic Assumptions for Key Exchange

	Multi-Stage Key Exchange
	Introduction
	Overview
	Preliminaries
	Adversary Model
	Security of Multi-Stage Key Exchange Protocols
	Composition
	Further Work Extending the Model

	The QUIC Protocol
	Introduction
	A QUIC Tour
	Security of QUIC

	The TLS 1.3 Protocol: Diffie–Hellman and Pre-shared Keys
	Introduction
	The TLS 1.3 draft-10 Full (EC)DHE Handshake Protocol
	Security of the TLS 1.3 draft-10 Full (EC)DHE Handshake
	The TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake Protocol
	Security of the TLS 1.3 draft-10 PSK/PSK-(EC)DHE Handshake
	Composition
	Comments on the TLS 1.3 Handshake Design

	The TLS 1.3 Protocol: Zero Round-Trip Time and Replays
	Introduction
	The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake Protocols
	Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes
	The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol
	Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake
	Comparing the QUIC and TLS 1.3 0-RTT Handshakes

	The TLS 1.3 Protocol: A Formal Model for Key Confirmation
	Introduction
	A Formal Model for Key Confirmation
	Key Confirmation in TLS 1.3

	Secure Channels
	Secure Channel Preliminaries
	Symmetric Encryption
	Authenticated Encryption (with Associated Data)
	Stateful Authenticated Encryption
	Notation and Terminology

	Stream-Based Channels
	Introduction
	Syntax and Functionality of Stream-Based Channels
	Security of Stream-Based Channels
	Generic Construction of Stream-Based Channels from AEAD

	Atomic-Message Channels Supporting Fragmentation
	Introduction
	Syntax and Functionality of Atomic-Message Channels Supporting Fragmentation
	Security of Atomic-Message Channels Supporting Fragmentation
	Generic Construction of Atomic-Message Channels from Stream-Based Channels
	Security of the Encode-then-Stream Construction

	Multi-key Channels
	Introduction
	Syntax and Functionality of Multi-key Channels
	Security of Multi-key Channels
	Generic Construction of Multi-key Channels from AEAD and PRFs

	Conclusion
	Bibliography

