Linkable Message Tagging Solving the Key Distribution Problem of Signature Schemes

Felix Günther

Technische Universität Darmstadt Germany Bertram Poettering Ruhr-Universität Bochum Germany

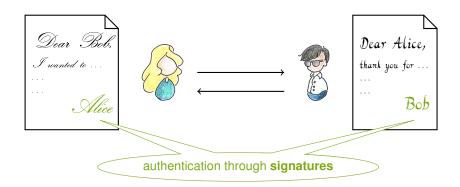
EPSRC

Research Council

Engineering and Physical Sciences

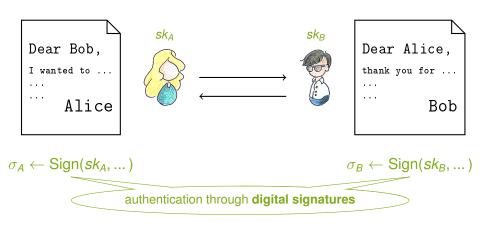
RUHR UNIVERSITÄT BOCHUM RUB

CROSSING



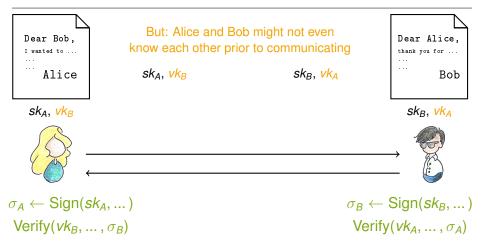
Sending Letters

back in ancient times...



drawings by Giorgia Azzurra Marson

Sending Letters today...



Sending Letters

today...

TECHNISCHE UNIVERSITÄT DARMSTADT

How to authentically distribute keys?

June 30, 2015 | ACISP 2015, Brisbane, Australia | Felix Günther (TU Darmstadt) | 3

Approaches So Far (Selection)

(Hierarchical) PKIs

- (X.509) certificates issued by CAs bind keys to identities
- HTTPS-secured web, S/MIME email encryption/signing
- large number of (trusted) root and intermediate CAs
- ▶ unclear trust relations / CA compromises (DigiNotar, TURKTRUST, ...)
- revocation seems difficult

(Social) PKIs

- web of trust, personally signing keys
- OpenPGP
- scalability, time-consuming/error-prone authentication ('key signing parties')
- privacy issues (reveals social relationships)

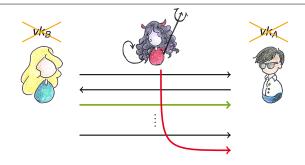
CA

Approaches So Far (More Academic Selection)

Identity-Based Signatures (Shamir 1984)

- public key = identitiy of a user (e.g., vk_A = "Alice")
- inherent key escrow problem (master key which can decrypt everything)

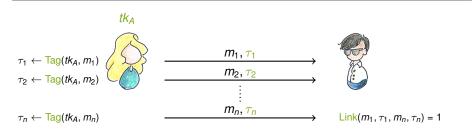
Certificateless Signatures (Al-Riyami, Paterson 2003)


- hybrid between PKI and identity-based
- user obtains partial private key to complete on her own
- still requires some trust in (and existence of) central party

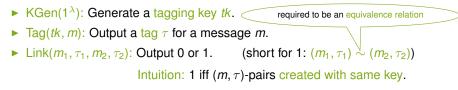
Message Recognition (Weimerskirch, Westhoff 2003)

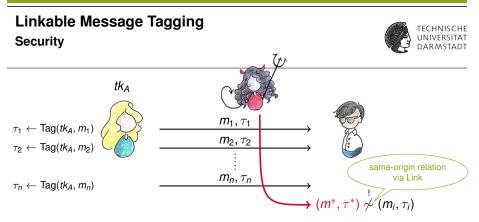
- method to recognize each others' messages as authentic
- requires prior exchange of small amount of authentic data

A Novel Approach: History-Based Message Authentication


Goals

- detect forged messages
- given a single authentically delivered message (unknown which one it is)
- without explicit exchange of verification keys


New tool: Linkable Message Tagging


Linkable Message Tagging Syntax

LMT Scheme

(Existential) Unforgeability

- Adversary seeing tags \u03c6_i for messages m_i of its choice
- ▶ is not able to forge a new tag τ* for an unseen message m*
- such that $(m^*, \tau^*) \sim (m_i, \tau_i)$ for any (m_i, τ_i) .
- strong unforgeability: τ^* can be for a previously seen message m_i

Linkable Message Tagging Envisioned Application

Envisioned application: automated email authentication

- easy-to-use and fully-automated cryptographic authentication of email
- automatically set up tagging keys (on first use)
- automatically tag all outgoing emails
- ► automatically visually group incoming emails (according to relation ~)
- advantages:
 - everything fully automatic (no user interaction required)
 - no exchange of verification keys needed
- unforgeability guarantees: adversarial emails are grouped separately

Linkable Message Tagging A Construction

BLS-LMT scheme

based on BLS signatures (Boneh, Lynn, Shacham 2001)

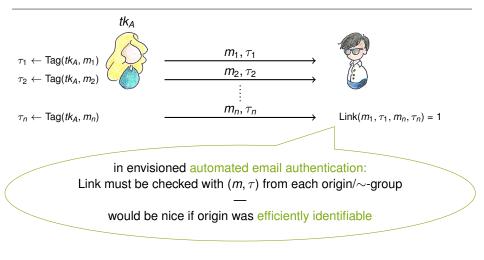
- ► Ingredients:
 - ▶ (symmetric) bilinear group $\mathbb{G} = \langle g \rangle$ (prime order *q*) with map $e \colon \mathbb{G} \times \mathbb{G} \to \mathbb{G}_T$
 - ▶ hash function H: $\{0, 1\}^* \to \mathbb{G} \setminus \{1\}$
- KGen (1^{λ}) : $x \stackrel{*}{\leftarrow} \mathbb{Z}_q$, output tk = x.
- Tag(*tk*, *m*): Output a $\tau = H(m)^{tk} = H(m)^{x}$.
- Link $(m_1, \tau_1, m_2, \tau_2)$: Output 1 if $e(H(m_1), \tau_2) = e(H(m_2), \tau_1)$.
- ► Correctness: (in particular Link establishes equivalence relation) $(m_1, \tau_1) \sim (m_2, \tau_2) \iff e(H(m_1), H(m_2))^{tk_2} = e(H(m_2), H(m_1))^{tk_1} \iff tk_1 = tk_2$
- \blacktriangleright Security: BLS-LMT is strongly unforgeable if CDH is hard in $\mathbb{G},$ in the ROM

(proof via strong unforgeability of BLS signatures)

Linkable Message Tagging Generic Relation with Signatures

- recall: LMT is not a public key primitive!
- natural and efficient transformations between LMT and signature schemes
 - + perhaps surprising, interesting theoretical relation
 - little hope for practical construction from symmetric primitives only

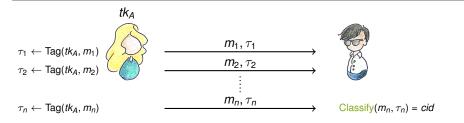
Signature \longrightarrow LMT


- basic idea: use signing key as *tk* and include verification key in tag: $\tau = (\sigma, vk)$
- several design choices for admissible equivalence relations defined by Link
- inherits signature scheme's (existential/strong) unforgeability

$LMT \longrightarrow Signature$

- basic idea: use *tk* as *sk* and distinct tag as verification key: vk = Tag(tk, "0")
- signature verification through Link-ing with verification key
- again preserves (existential/strong) unforgeability

Automated Email Authentication Revisited



June 30, 2015 | ACISP 2015, Brisbane, Australia | Felix Günther (TU Darmstadt) | 12

Classifiable Message Tagging Syntax

CMT Scheme

- KGen (1^{λ}) : Generate a tagging key *tk*.
- Tag(tk, m): Output a tag τ for a message m.
- Classify(m, τ): Output a class identifier *cid*.

Intuition: each tk corresponds with one specific cid_{tk}.

(existential/strong) unforgeability defined as expected

June 30, 2015 | ACISP 2015, Brisbane, Australia | Felix Günther (TU Darmstadt) | 12

Classifiable Message Tagging Generic Relations

CMT schemes are special LMT schemes

- ▶ by defining: Link $(m_1, \tau_1, m_2, \tau_2) = 1 \iff \text{Classify}(m_1, \tau_1) = \text{Classify}(m_2, \tau_2)$
- but not all LMT schemes have CMT analogues
- e.g., BLS-LMT: *cid*_{tk} could be *tk* or g^{tk} , contradicting DLP/CDH

Signature $\longrightarrow CMT$

- again: use signing key as *tk* and include verification key in tag: $\tau = (\sigma, vk)$
- use class identifier cid = vk

$CMT \longrightarrow Signature$

use class identifier as verification key vk = cid_{tk}

Classifiable Message Tagging A Highly Efficient Construction

Schnorr-CMT scheme

based on Schnorr signatures (Schnorr 1990)

- ▶ Key insight: Schnorr vk can be reconstructed from any valid signature
- KGen (1^{λ}) : *tk* = Schnorr signing key
- Tag(tk, m): τ = Schnorr signature
- ► Classify(m, τ): Output *cid* = Schnorr verification key, reconstructed from τ
- Security: Schnorr-CMT is strongly unforgeable if DLP is hard, in the ROM (proof via strong unforgeability of Schnorr signatures)
- ► Efficiency: ≈ 50,000 classifications/sec on a current high-end CPU using elliptic-curve-based Ed25519 (Bernstein et al. 2011)

Summary

History-based message authentication: side-stepping the key distribution problem.

We

- introduce linkable message tagging, authenticating messages without pre-shared verification keys or PKI
 - identify the practical subclass of classifiable message tagging
- explore the generic relation between LMT/CMT and signature schemes
- provide efficient constructions
- In the full version (ePrint 2014/014)
 - CMT scheme without random oracles from Waters signatures
 - on DSA- and ECDSA-based CMT schemes
 - on CMT schemes from Fiat-Shamir transformed signatures
 - do S/MIME and OpenPGP lead to efficient CMT schemes?

Thank You