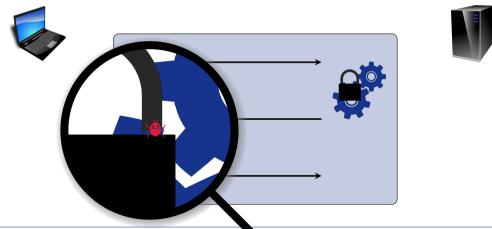
Verifiable Verification in Cryptographic Protocols

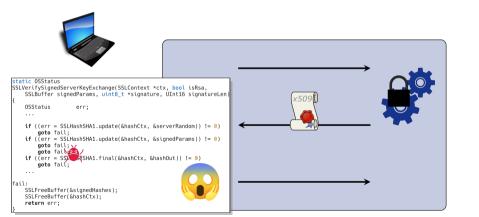
Felix Günther IBM Research Europe – Zurich

joint work with Marc Fischlin (TU Darmstadt)



When Locks Fail...

When Crypto Locks Fail...



Felix Günther 3

November 29, 2023 | Verifiable Verification in Cryptographic Protocols | ACM CCS 2023

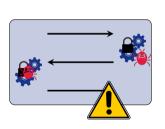
When Crypto Locks Fail...

... in Practice

Apple goto fail;

November 29, 2023 | Verifiable Verification in Cryptographic Protocols | ACM CCS 2023

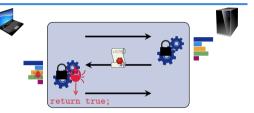
(Why) Does Cryptography Have to Be So Brittle?


 Verification validating signatures validating MACs validating curve parameters 	× ? ×	Apple goto fail;, GnuTLS, curl OpenSSH generic-EtM small subgroup attacks, Bluetooth fixed coordinate
 Randomness bad RNGs bad randomness 	× ×	Debian OpenSSL, Android SecureRandom Sony Playstation 3, bitcore
 Encryption when talking to others when talking to yourself 	√ ×	AWS zero-key encryption of TLS session tickets

Tying Security to Functionality

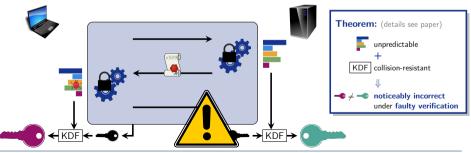
Our goal: tie security to basic functionality

[Heninger @ WAC2, 2019]

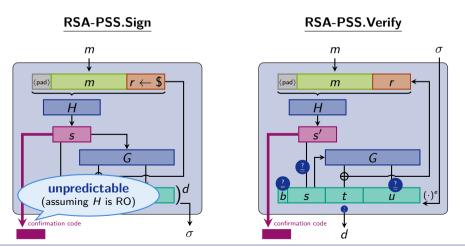

- ► What if...
 - ... we can make crypto bugs
 - surface through functional errors?
- We want to catch accidental implementation errors
 - ▶ ... by making them detectable in interop tests
 - (we cannot prevent malicious implementations and don't intend to)

Introducing Confirmation Codes

What if instead of a decision bit, we'd output a description of essential steps carried out?



- verification steps: compute & compare intermediate values
- collect relevant intermediate values in a "confirmation code"
- ▶ bugs (like skipping, misinterpreting, input error) → change in confirmation code
- choose confirmation codes carefully:
 - meaningful: careful notion of unpredictability (details see paper)
 - Iow overhead
 - sender (e.g., signer) also able to compute them


Making Cryptographic Protocols Fail Noticeably

- We get: sender + receiver agree on confirmation code \Rightarrow verification followed necessary steps
- \blacktriangleright ... so let's have both check they agree? \rightarrow yet another verification step...
- ▶ Better: use confirmation codes in overall protocol here: secure connection establishment

Adding Confirmation Codes to Crypto Schemes

Example: RSA-PSS Signatures [PKCS #1v2.1, NIST FIPS 186-5]

November 29, 2023 | Verifiable Verification in Cryptographic Protocols | ACM CCS 2023

Adding Confirmation Codes to Crypto Schemes

Verification, made verifiable

validating signatures validating MACs validating curve parameters validating curve parameters RSA-PSS HMAC validity and subgroup checks for elliptic curve points

► for each, we prove

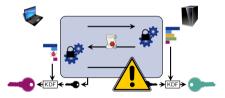
confirmation code unpredictability

the ingredient to make them noticed in protocols (e.g., failing connections)

confirmation codes don't hurt regular security

easy for asymmetric and public verification, but secret-keyed primitives (HMAC) require care

Summary


We

- introduce confirmation codes for verification to tie security to basic functionality
- present intuitive (and provably secure) confirmation codes for RSA-PSS, HMAC, curve point validation
- exemplify their usage in key exchange protocols to make secure connections fail noticeably
- think the basic idea is applicable more broadly, in primitives, protocols, and beyond verification

full version @ IACR ePrint: https://ia.cr/2023/1214

November 29, 2023 | Verifiable Verification in Cryptographic Protocols | ACM CCS 2023

Thank You! mail@felixguenther.info