
Establishing Secure Connections
A Cryptographer’s Perspective and the Case of TLS 1.3

Felix Günther
Technische Universität Darmstadt, Germany

based on joint work with
Jacqueline Brendel, Benjamin Dowling, Marc Fischlin, Britta Hale, Tibor Jager,
Christian Janson, Sebastian Lauer, Giorgia Azzurra Marson, Sogol Mazaheri,
Kenneth G. Paterson, Benedikt Schmidt, Douglas Stebila, Bogdan Warinschi

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 1

Secure Connections – Everywhere

Security goals:

I confidentiality
I authenticity
I integrity

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 2

Secure Connections – Cryptographically

KE

K K

CHm1

m2

KE

K K

CHm1

m2

KE

K K

CHm1

m2
drawings by Giorgia Azzurra Marson

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 3

Key Exchange à la Diffie–Hellman (1976)

gx

gy

knows x knows y

K = (gy)x = gxy K = (gx)y = gxy

gx′gy′

K ′ = (gy′)x = gxy′ K ′′ = (gx′)y = gx′y

I key secrecy: given only gx , gy , key K = gxy remains secret
I no authentication: susceptible to man-in-the-middle attack

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 4

Key Exchange Security à la Bellare–Rogaway (1993)

pkB , skA pkA, skB

KE

K K

eavesdropping active attacks

corruption key reveal

test
$

???
BR ’93

CK ’01

UC ’01

eCK ’06

. . .

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 5

But what if. . . ?

pkB , skA pkA, skB

KE

K1 K1

K2 K2

. . .

Channel(K1)

Channel(K2)

multi-stage
key exchange

I key exchange establishes more than one key?
I . . . even uses the intermediary keys within the key exchange or channel?
I not covered by classical key exchange models

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 6

Should we care?

QUIC (“Quick UDP Internet Connections”, Google 2013)

I “low-latency transport protocol with security equivalent to TLS”
I Diffie–Hellman-based key exchange
I aims at 0-RTT, i.e., immediately encrypts under intermediate key K1

I later rekeys to forward-secret K2

I intermediate key K1 used to establish K2 (i.e., in KE part)

Fischlin, Günther
Multi-Stage Key Exchange and the Case of Google’s QUIC Protocol
ACM CCS 2014

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 7

Should we care?

TLS 1.3
I next TLS version, currently being specified

I now in IETF Working Group Last Call (WGLC)
I latest: draft-18, Oct 2016

I several substantial cryptographic changes (compared to TLS 1.2), incl.
1. encrypting some handshake messages with intermediate session key
2. using only AEAD schemes for the record layer encryption
3. providing reduced-latency 0-RTT handshake
4. . . .

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 8

https://tools.ietf.org/html/draft-ietf-tls-tls13-18

TLS 1.3 Full Handshake (simplified)
draft-ietf-tls-tls13-10 (Oct 2015)

Client Server
ClientHello
ClientKeyShare

ServerHello
ServerKeyShare

ServerCertificate∗

CertificateRequest∗

ServerCertificateVerify∗

ServerFinished

ClientCertificate∗

ClientCertificateVerify∗

ClientFinished

tkapp tkapp

application data traffic key

. . . actually, there is more . . .

tkhs tkhs

handshake traffic key

second part of handshake
encrypted with tkhs

RMS RMS

resumption master key
for resuming a session

EMS EMS

exporter master key
for exporting key material

multi-stage
key exchange

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 9

TLS 1.3 Full Handshake (still simplified)
draft-ietf-tls-tls13-10 (Oct 2015)

Client Server
ClientHello
ClientKeyShare

ServerHello
ServerKeyShare

{ServerCertificate∗}
{CertificateRequest∗}

{ServerCertificateVerify∗}
{ServerFinished}

{ClientCertificate∗}
{ClientCertificateVerify∗}
{ClientFinished}

tkapp tkapp

application data traffic key

. . . actually, there is more . . .

tkhs tkhs

handshake traffic key

second part of handshake
encrypted with tkhs

RMS RMS

resumption master key
for resuming a session

EMS EMS

exporter master key
for exporting key material

multi-stage
key exchange

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 9

Multi-Stage Key Exchange Analyses
of TLS 1.3 Handshake Protocol Candidates

I full (DH) and preshared-key (resumption) handshakes (draft-10 & earlier)

Dowling, Fischlin, Günther, Stebila
A Cryptographic Analysis of the TLS 1.3 . . . Handshake Protocol . . .
ACM CCS 2015, TRON workshop @ NDSS 2016

I 0-RTT handshake, DH-based (draft-12) & PSK-based (draft-14)

Fischlin, Günther
Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates
IEEE EuroS&P 2017

I analyses of work-in-progress drafts (i.e., not definitive)

STANDARD UNDER CONSTRUCTION

I contribution to and involved in working group discussion
I and part of a great community effort of many people

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 10

. . . and Many More Analyses

(alphabetical order)I Arai, Matsuo [CELLOS] (TLS mailing list 2016): ProVerif Analysis
I Badertscher,Matt,Maurer,Rogaway,Tackmann (ProvSec 2015): Record Layer
I Beurdouche, Bhargavan, Blanchet, Delignat-Lavaud, Fournet, Ishtiaq, Kobeissi,

Kohlweiss, Pan, Protzenko, Rastogi, Swamy, Zanella-Bguelin, Zinzindohoué
[INRIA/Microsoft] (TRON 2016, ePrint 2016, . . .): Verified Implementations of
Handshake and Record Layer

I Bhargavan, Brzuska, Fournet, Green, Kohlweiss, Zanella-Beguellin (S&P 2016):
Downgrade Resilience

I Cremers, Horvat, Scott, van der Merwe (S&P 2016): Tamarin Analysis
I Jager, Schwenk, Somorovsky (CCS 2015): Bleichenbacher‘s Attack
I Kohlweiss, Maurer, Onete, Tackmann, Venturi (ePrint 2015): Constructive Crypto
I Krawczyk, Wee (EuroS&P 2016): OPTLS
I Krawczyk (CCS 2016): Unilateral-to-Mutual Authentication Compiler
I Li, Xu, Zhang, Feng, Hu (S&P 2016): Multi-Handshake Security
I . . .

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 11

Multi-Stage Key Exchange Security
game-based model, “provable security” paradigm

pkB , skA pkA, skB

KE

K1 K1

K2 K2. . .

eavesdropping active attacks

corruption key Ki reveal

test Ki
$

???

forward secrecy
after long-term reveal

key independence
in derivation

key independence
in derivation

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 12

TLS 1.3 Handshake Security
draft-10 Full Handshake

(still simplified)
Client Server

ClientHello: rc ←$ {0, 1}256

ClientKeyShare: X ← gx

ServerHello: rs ←$ {0, 1}256

ServerKeyShare: Y ← gy

H1 ← H(CH‖ ... ‖SKS)
ES← X y

tkhs

{ServerCertificate∗}
H2 ← H(CH‖ ... ‖SCRT∗‖ ...)

{SCertVerify∗}: SignskS
(H2)

{ServerFinished}

{CCert∗},{CCertVerify∗},{CFin}

Hsess ← H(CH‖ ... ‖CCV∗)
tkapp

RMS,EMS

ES

Ext

xES

0

Exp

mES

Ext

MS

SS

Ext

xSS

0

Exp

mSS

Exptkhs

H1

Exptkapp

Hsess

ExpEMS

Hsess

Exp RMS

Hsess

(resum
ption)

sound key separationsound key separation

session hash signing

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 13

TLS 1.3 Handshake Security
draft-10 Full Handshake

We show that the draft-10 full (EC)DHE handshake establishes
I random-looking keys (tkhs, tkapp, RMS, EMS)

tolerating adversary that corrupts other users and reveals other session keys
I forward secrecy for all these keys
I concurrent security of anonymous, unilateral, mutual authentication
I key independence (leakage of traffic/resumption/exporter keys in same

session does not compromise each other’s security)

assuming

standard key exchange security
under standard(-model) assumptions

?
Brendel, Fischlin, Günther, Janson
PRF-ODH: Relations, Instantiations, and Impossibility Results

I collision-resistant hashing
I unforgeable signatures
I HKDF is pseudorandom function
I PRF-ODH assumption holds

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 14

TLS 1.3 Handshake Security
Further Modes & Beyond

I PSK/PSK-DHE handshake (draft-10)
I similar results as for full handshake
I DHE variant enables forward secrecy

I 0-RTT handshake (draft-12/14)
I 0-RTT messages/key can be replayed
I weaker forward secrecy guarantees

I Key confirmation properties (draft-10)
I assurance that communication partner actually holds the shared key

Fischlin, Günther, Schmidt, Warinschi
Key Confirmation in Key Exchange: A Formal Treatment and Implications for TLS 1.3
IEEE S&P 2016

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 15

More Key Exchange Challenges

I TLS 1.3: Post-handshake messages & Early (0.5-RTT) server data
I post-handshake late client authentication, key updates, and more
I early server data before handshake is over
I changing authentication of session key in use
I beyond what classical key exchange models capture

[Krawczyk’16]: can work as
Unilateral-to-Mutual Compiler

I Signal: Ratcheting in Secure Messaging
[Cohn-Gordon CDGS’17]

security proof in MSKE model

I frequent key updates / new session key with every message
I advanced security properties, future/post-compromise security

I Forward-secret 0-RTT key exchange
I in current designs, forward secrecy is sacrificed in 0-RTT modes
I new idea: leverage puncturable forward-secret encryption [Green, Miers’15]
I enables fully forward-secret 0-RTT (generically from any HIBKEM)

Günther, Hale, Jager, Lauer
0-RTT Key Exchange with Full Forward Secrecy
Eurocrypt 2017

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 16

Secure Connections – Cryptographically

KE

K K

CHm1

m2

KE

K K

CHm1

m2

KE

K K

CHm1

m2

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 17

On the Origin of Channel Models
Confidentiality

CHc1

c2

K K

Let’s encrypt!

c1 ← EncK(m1)

m2 ← DecK(c2)

m1 ← DecK(c1)

c2 ← EncK(m2)

???

learn b ∈ {0, 1}
from c∗ ← EncK (mb)

IND-CPA
[Goldwasser, Micali’84]

Enc oracle

IND-CCA
[Naor, Yung’90], [Rackoff, Simon’91]

Dec oracle

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 18

On the Origin of Channel Models
Integrity

Chc1

c2

K K

Is this what you wrote?

c1 ← EncK(m1)

c1 ← EncK(m1)

m2 ← DecK(c2)

m1 ← DecK(c1)

m1 ← DecK(c1)

c2 ← EncK(m2)

come up with valid c∗

(INT-PTXT: for distinct m∗)

Enc oracle Dec oracle

INT-PTXT
[Bellare, Namprempre’00]

INT-CTXT
[Bellare, Rogaway’00]

Authenticated Encryption
IND-CPA + INT-CTXT

(⇒ IND-CCA)

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 19

On the Origin of Channel Models
Stateful Authenticated Encryption

Chc1

c2

c3

K K

Which came first?

c1 ← EncK(m1)

c1 ← EncK(m1)
m2 ← DecK(c2)
m3 ← DecK(c3)

m1 ← DecK(c1)

m1 ← DecK(c1)
c2 ← EncK(m2)
c3 ← EncK(m3)

learn b ∈{0, 1} from c∗←EncK (mb)
or come up with valid/out-of-order c

IND-sfCCA [Bellare, Kohno, Namprempre’02]

Enc oracle Dec oracle

INT-sfCTXT

Stateful Authenticated Encryption
used to analyze SSH

accepted notion for channels
—so we’re done?

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 20

Attack on SSH

[Albrecht, Paterson, Watson’09]: plaintext recovery attack against SSH
(SSH Binary Packet Protocol with CBC-mode Encode-then-Encrypt&MAC)

I adversary feeds ciphertext in block-wise (via TCP fragmentation)
I observable MAC failure can be used to leak plaintext→ confidentiality break

Wait. . .
I SSH was proven IND-sfCCA and INT-sfCTXT secure! [BKN’02]
I . . . but these only allow atomic ciphertexts in Dec oracle

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 21

On the Origin of Channel Models
Symmetric Encryption Supporting Fragmentation

Symmetric Encryption Supporting Fragmentation
[Boldyreva, Degabriele, Paterson, Stam’12]

I general security model for ciphertext fragmentation

I standard Enc algorithm (and left-or-right oracle)
I Dec algorithm obtains ciphertext fragments, reassembles original messages

Are we there yet?

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 22

Attack on TLS
Cutting Cookies

[Bhargavan, Delignat-Lavaud, Fournet, Pironti, Strub’14]: cookie cutter attack
I attacker truncates TLS connection by closing underlying TCP connection
I forces part of the HTTP header (e.g., cookie) to be cut off
I partial message/header arrives and might be misinterpreted

I cookie cutter example:

Enc(Set-Cookie: SID=[AuthenticationToken]; secure)

Cookie: SID=[AuthenticationToken]

Wait. . . deleting message parts within ciphertext—how can this be possible?

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 23

Cookie Cutter Attack
A Closer Look

c

K K

c ← Enc(Set-Cookie: SID=xyz; secure)c ← Enc(HTTP/1.1 200 OK

...

Set-Cookie: SID=xyz; secure)

c ← Enc(HTTP/1.1 200 OK

...

Set-Cookie: SID=xyz; secure)

#include <openssl/ssl.h>

SSL_write("HTTP/1.1 200 OK

...

Set-Cookie: SID=xyz; secure")

c

HTTP/1.1 200 OK...
Set-Cookie: SID=xyz

; secure2 TLS records

HT...SID=xyz ; secure

HTTP/1.1 200 OK

...

Set-Cookie: SID=xyz

I fragmentation in TLS is implementation-specific

I adversary can potentially enforce a split at any point
→ receiver sees arbitrarily fragmented messages / no message boundaries

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 24

An Interface Misunderstanding:
Data Is a Stream!
. . . and TLS is not alone

I That behavior is actually okay—and specified:
6.2.1. Fragmentation
The record layer fragments information blocks into TLSPlaintext records [...]. Client
message boundaries are not preserved in the record layer (i.e., multiple client
messages of the same ContentType MAY be coalesced into a single TLSPlaintext
record, or a single message MAY be fragmented across several records).

RFC 5246 TLS v1.2

I TLS never promised to treat messages atomically!
I indeed, many important channel protocols treat data as a stream

I TLS
I SSH tunnel-mode
I QUIC

I so, there’s a gap between what

channel models capture

AEAD 6= secure channel

and channels expose to the application
January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 25

Stream-Based Channels
Intuition and Security Notions

Fischlin, Günther, Marson, Paterson
Data Is a Stream: Security of Stream-Based Channels
Crypto 2015

Ch

(from application)

m1 m2 m3

Send

allow buffering

c1 c2 c′1 c′2 c′3

(lower-layer TCP-like transmission)

Recv

m′1 m′2 m′3

(to application)

data stream,
no message boundaries

data stream,
no message boundaries

I adapted confidentiality and integrity notions for the stream-based setting

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 26

Stream-Based Channels
Generic Construction

I secure stream-based channels can be built
I based on authenticated encryption with associated data (AEAD)
I achieving strong IND-CCFA confidentiality
I achieving strong INT-CST integrity

I sketch of construction

c1 c2 c3Sendm

seqno

len 2len−1 bits len 2len−1 bits len < 2len−1 bits

AEAD with AD = seqno remaining message on flush

Recv

m

⊥
seqno

on AEAD error

I close to TLS record layer design using AEAD (providing some validation)
3 sequence number authenticated, but not sent
3 sent length field, unauthenticated (in TLS 1.3)
7 TLS additionally includes, e.g., content type (sent authenticated)

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 27

The Journey Continues. . .

Further Properties

I Length-hiding [Paterson, Ristenpart, Shrimpton’11] for streams?
I Multiplexing of data (explicitly in QUIC, implicitly in TLS)

I How to safely encode atomic messages in a stream?
(upcoming extended version)

TLS 1.3 Record Protocol
I employs several traffic keys in the same protocol (for handshake + data)
I key switching requires care to prevent truncation attacks

[miTLS team’16]: verified
TLS 1.3 Record Layer implementation

[miTLS team]

Günther, Mazaheri
A Formal Treatment of Multi-key Channels

January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 28

Conclusions

I basic properties of key exchange and secure channels are well-understood ?
I but advanced properties pose new challenges for security models

I in this talk:

I multi-stage key exchange (QUIC, TLS 1.3)

pkB , skA pkA, skB

KE

K1 K1

K2 K2

. . .

Channel(K1)

Channel(K2)

I stream-based channels (generic, TLS) Ch

(from application)

m1 m2 m3

Send

c1 c2 c′1 c′2 c′3

(lower-layer TCP-like transmission)

Recv

m′1 m′2 m′3

(to application)

I positive: interaction of crypto, formal methods, and engineering communities
in development of TLS 1.3

mail@felixguenther.info Thank You!
January 17, 2017 | Cornell Tech University, New York City, NY, USA | Felix Günther (TU Darmstadt) | 29

http://www.felixguenther.info

	Introduction
	Key Exchange
	TLS 1.3 Result Overview
	Multi-Stage Key Exchange Model
	Full Handshake Security
	Further Modes and Challenges

	Secure Channels
	Classical Notions
	Fragmentation Attacks
	Stream-Based Channels

	Conclusions

