Data Is a Stream Security of Stream-Based Channels

TECHNISCHE UNIVERSITÄT DARMSTADT

Felix Günther

Technische Universität Darmstadt, Germany

joint work with Marc Fischlin, Giorgia Azzurra Marson, and Kenneth G. Paterson

Secure Communication Needs Secure Channels

drawings by Giorgia Azzurra Marson

On the Origin of Channel Models Authenticated Encryption

(Bellare, Rogaway 2000)

(Naor, Yung 1990), (Rackoff, Simon 1991)

On the Origin of Channel Models Stateful Authenticated Encryption

Stateful Authenticated Encryption

used to analyze SSH and confirm its security

IND-sfCCA

(Bellare, Kohno, Namprempre 2002)

Attack on SSH

Albrecht, Paterson, Watson 2009: plaintext recovery attack against SSH (SSH Binary Packet Protocol with CBC-mode Encode-then-Encrypt&MAC)

- adversary feeds ciphertext in *block-wise* (via TCP fragmentation)
- observable MAC failure can be used to leak plaintext \rightarrow confidentiality break

Wait...

- SSH was proven IND-sfCCA and INT-sfCTXT secure! (BKN 2002)
- ▶ ... but these only allow *atomic* ciphertexts in Dec oracle

On the Origin of Channel Models Symmetric Encryption Supporting Fragmentation

Symmetric Encryption Supporting Fragmentation (Boldyreva, Degabriele, Paterson, Stam 2012)

- general security model for ciphertext fragmentation
- standard Enc algorithm (and left-or-right oracle)
- Dec algorithm obtains ciphertext fragments, reassembles original messages
- security notion: IND-sfCFA (chosen-fragment attack)
- focuses on confidentiality

Are we there yet?

Attack on TLS Cutting Cookies

Bhargavan, Delignat-Lavaud, Fournet, Pironti, Strub 2014: cookie cutter attack

- attacker truncates TLS connection by closing underlying TCP connection
- ▶ forces part of the HTTP header (e.g., cookie) to be cut off
- partial message/header arrives and might be misinterpreted

Wait... deleting message parts within ciphertext-how can this be possible?

Cookie Cutter Attack A Closer Look

- fragmentation in TLS is implementation-specific
- adversary can potentially enforce a split at any point
 - \rightarrow receiver sees arbitrary message fragmentation / no message boundaries

Data Is a Stream!

That behavior is actually okay—and specified:

6.2.1. Fragmentation The record layer fragments information blocks into TLSPlaintext records [...]. Client **message boundaries are not preserved** in the record layer (i.e., multiple client messages of the same ContentType MAY be coalesced into a single TLSPlaintext record, or a single message MAY be fragmented across several records).

RFC 5246 TLS v1.2

- TLS never promised to treat messages atomically!
- indeed, many important channel protocols treat data as a stream
 - TLS
 - SSH tunnel-mode
 - QUIC
- so, there's a gap between what

channel models capture

and channels expose to the application

Stream-Based Channels Intuition

TECHNISCHE UNIVERSITÄT DARMSTADT

Stream-Based Channels Confidentiality

- CPFA case straightforward: left-or-right oracle allowing to control flush flag
- CCFA case more complex:
 - general idea: allow as much decryption as possible, but no trivial attacks
 - ► Bellare-Kohno-Namprempre approach: Recv oracle O_{Recv} can be in/out of sync
 - in sync (original ciphertext stream): no output
 - out of sync (deviation from original stream): Recv output given to adversary
 - ► But where exactly shall O_{Recv} / ciphertext stream be considered out-of-sync?

Stream-Based Channels Confidentiality

- key insight: there is no inherent structure on a stream!
- ► *O*_{Recv} behavior
 - in-sync / already out-of-sync cases as always: output nothing / everything
 - loosing sync: strip longest common prefix with output of genuine ciphertext part

Relations & Composition Result

Classic implications hold:

- confidentiality: IND-CCFA \Rightarrow IND-CPFA
- integrity: INT-CST \Rightarrow INT-PST

(first non-atomic treatment)

Classic composition result: IND-CPA + INT-CTXT \Rightarrow IND-CCA (BN 2000)

- ▶ idea: when A gets any O_{Recv} output, it broke integrity; let B always return \bot
- multi-error setting: need additional "error invariance" property (BDPS 2013)

at most one error with non-negl. probability

- composition in stream-based setting: ERR-PRE + IND-CPFA + INT-CST ⇒ IND-CCFA
 - ▶ inherently "multi-error": Recv output on deviating ciphertext can be ⊥ or empty
 - we require predictability of errors by an efficient algorithm (given sent/received ciphertext stream and next ciphertext fragment)
 - sounds strong, but is achievable by natural constructions

Generic Construction

- secure stream-based channels can be built
 - based on authenticated encryption with associated data (AEAD)
 - achieving strong IND-CCFA confidentiality
 - achieving strong INT-CST integrity

- ► example scheme satisfying error predictability (composition theorem used) unencrypted length field allows to predict when error ⊥ is output
- close to TLS record layer design using AEAD (providing some validation)
 - unsent sequence number as authenticated AD
 - ✓ sent length field, unauthenticated (in TLS 1.3)
 - X TLS additionally includes: version number, content type (sent + authenticated)

Summary

Data is a stream!

We

- formalize stream-based channels
- give adequate security notions and a composition result
- provide an AEAD-based construction close to the TLS record layer design
- shed a formal light on recent attacks

TECHNISCHE UNIVERSITÄT DARMSTADT

Ongoing / Future Work

- explore exact relation between atomic and stream-based notions
- additional properties: length-hiding?, multiplexing
- how to safely encode atomic messages in a stream?

Thank You!

References I

- M. R. Albrecht, K. G. Paterson, and G. J. Watson. Plaintext recovery attacks against SSH. In *IEEE Symposium on Security and Privacy (S&P 2009)*, pages 16–26. IEEE Computer Society, 2009.
 M. Bellare, T. Kohno, and C. Namprempre. Authenticated encryption in SSH: provably fixing the SSH binary packet protocol. In *ACM Conference on Computer and Communications Security, CCS 2002*, pages 1–11. ACM, 2002.
 M. Bellare and C. Namprempre. Authenticated encryption: Relations among notions and analysis of the generic composition paradigm. In *Advances in Cryptology - ASIACRYPT 2000*, pages 531–545. Springer, 2000.
- [4] M. Bellare and P. Rogaway. Encode-then-encipher encryption: How to exploit nonces or redundancy in plaintexts for efficient cryptography. In Advances in Cryptology - ASIACRYPT 2000, pages 317–330. Springer, 2000.
- [5] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P. Strub. Triple handshakes and cookie cutters: Breaking and fixing authentication over TLS. In *IEEE Symposium on Security and Privacy, SP 2014*, pages 98–113. IEEE Computer Society, 2014.
- [6] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. Security of symmetric encryption in the presence of ciphertext fragmentation. In Advances in Cryptology - EUROCRYPT 2012, pages 682–699. Springer, 2012.

References II

- [7] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. On symmetric encryption with distinguishable decryption failures. In *Fast Software Encryption - 20th International Workshop, FSE 2013*, pages 367–390. Springer, 2013.
 [8] C. Brzuska, N. P. Smart, B. Warinschi, and G. J. Watson. An analysis of the EMV channel establishment protocol. In *ACM SIGSAC Conference on Computer and Communications Security, CCS'13*, pages 373–386. ACM, 2013.
- T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard), Aug. 2008.
- [10] S. Goldwasser and S. Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270–299, 1984.
- [11] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks. In ACM Symposium on Theory of Computing, pages 427–437. ACM, 1990.
- [12] K. G. Paterson, T. Ristenpart, and T. Shrimpton. Tag size does matter: Attacks and proofs for the TLS record protocol. In Advances in Cryptology - ASIACRYPT 2011, pages 372–389. Springer, 2011.

References III

- [13] K. G. Paterson and G. J. Watson. Plaintext-dependent decryption: A formal security treatment of SSH-CTR. In Advances in Cryptology - EUROCRYPT 2010, pages 345–361. Springer, 2010.
- [14] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In Advances in Cryptology - CRYPTO '91, pages 433–444. Springer, 1991.
- P. Rogaway.
 Authenticated-encryption with associated-data.
 In ACM Conference on Computer and Communications Security, CCS 2002, pages 98–107. ACM, 2002.
- [16] B. Smyth and A. Pironti. Truncating TLS connections to violate beliefs in web applications. In 7th USENIX Workshop on Offensive Technologies, WOOT '13. USENIX Association, 2013.

Stream-Based Channels Integrity

(first consideration of integrity in non-atomic setting)

INT-PST: plaintext-stream integrity

no adversary can make received message stream deviate from sent stream

INT-CST: ciphertext-stream integrity

no adversary can make message bits being output after point of deviation

stream-based confidentiality/integrity allow (genuine) "partial message" output (would be considered as breaking security in atomic (and BDPS 2012) setting)