Modeling Memory Faults in Signature and Authenticated Encryption Schemes

Felix Günther

joint work with Marc Fischlin (TU Darmstadt)

Postdoctoral Researcher Department of Computer Science, ETH Zurich, Switzerland

RSA Conference 2020 San Francisco February 25, 2020

Memory Faults

FreeImages.com/Chris Woods

What About the Code?

0

<u>e</u>

COLO

REIE

ale

ale

#link

FLIT

151 Ke

11

mulli

an connect

mysq

Ink

-connect

Excep

Freelmages.com/Gabor Heja

The Cryptographic Perspective

Deterministic ECDSA

- <u>Sign</u>_{det-ECDSA}(sk, m)
 - r ← Hash(sk, m)
 - $R \leftarrow f(rG) \mod q$
 - $s \leftarrow (H(m) + sk R)/r \mod q$

return (R, s)

ETH zürich

What about faults?

Signature security (EUF-CMA)

 $\begin{array}{l} \underbrace{\mathsf{Expt}_{\mathcal{S},\mathcal{A}}^{\mathsf{EUF-CMA}}(1^{\lambda}):} \\ 1 \quad (sk,pk) \xleftarrow{\$} \mathsf{KGen}(1^{\lambda}) \\ 2 \quad Q \leftarrow \emptyset \\ 3 \quad (m^*,\sigma^*) \xleftarrow{\$} \mathcal{A}^{\mathcal{O}_{\mathsf{Sign}}}(1^{\lambda},pk) \\ 4 \quad \mathrm{return} \ 1 \quad \mathrm{iff} \ (m^*,*) \notin Q \\ & \text{and} \ \mathsf{Verify}(pk,m^*,\sigma^*) = 1 \end{array}$

 $\frac{\mathcal{O}_{\mathsf{Sign}}(m):}{5 \ \sigma \xleftarrow{\$} \mathsf{Sign}(sk,m)} \\
6 \ Q \leftarrow Q \cup \{(m,\sigma)\} \\
7 \ \text{return } \sigma$

4

Models Matter

- Deterministic ECDSA (& co.) succumb to rowhammer-style faults [PSSLR @ IEEE EuroS&P 2018]
 - $\begin{array}{rcl} (R_0, s_0): & H(m) + sk R_0 = Hash(sk, m)s_0 \\ (R^!, s^!): & H(m) + sk R^! = Hash(sk, m)s^! \\ sk & = H(m) \ / \ ((R_0 R^!)s_0 \ / \ (s_0 s^!) \ \ R_0) \end{array}$

- We know for long that faults can have devastating effects on crypto operations at software level [BDL @ Eurocrypt 1997]
- But how to assess fault *resilience* in provable-security manner?

ETHzürich

Prior Work

- Faults in circuits [IPSW06]
- Tailored provable-security models (e.g., for RSA) [CM09, BDFGTZ14, FGLTZ12]
- Related-key attack (RKA) security [BK04, GLMMR04]
- Hedged randomness in Fiat-Shamir-type signatures under faults [AOTZ19]

A Generic Framework for Fault Resilience in Security Models

Modeling Fault Resilience

return s

ETH zürich

- augmented code, indicating faultable memory variables
- callbacks to adversary: may change values of variable readings

drawing by Giorgia Azzurra Marson

8

Generic Fault Types

Flexible callbacks

Full faults

adversary controls variable completely

Differential faults

adversary can flip w selected bits

- Random faults adversary can flip *N* random bits
- No fault (baseline)

ETH zürich

Forming a hierarchy

Fault Resilience for Signatures

Augmenting Signature Security

frEUF-CMA: Fault-resilience unforgeability

- Sign_{dr}(sk, m)
 - r ← Hash(sk, <m>)
 - $s \leftarrow Sign_r(sk, \langle m \rangle; r)$

return s

ETH zürich

• Essential question:

Which message did the signer sign? = Which (m,s) is trivially learned?

- Answer: the message m (among all appearing in Sign) verifying with s
- If there's two such m → confusion
 → adversary declared successful

De-Randomized Signatures Are Not Fault-Resilient

no faults

- obtain signature s on m
- 2. Query O_{Sign} on m
 - first <m>: do nothing
 - second <m>: flip bit (to m')
 - obtain signature s on m'
- 3. Create new forgery due to re-used randomness r for signatures on m and m'

ETH zürich

Combining Randomization & De-Randomization

$\frac{\text{Sign}_{c}(\text{sk, }\mathbf{m})}{\mathbf{r}^{\prime} \leftarrow_{\$} \{0, 1\}^{\lambda}}$

- r ← Hash(sk, <m>, <r`>)
- $s \leftarrow Sign_r(sk, <m>; <r>)$

return s

ETH zürich

Combining security (provably)

- de-randomization for regular EUF-CMA security under bad randomness
- randomization for fault-resilient EUF-CMA security under differential faults on m, r, r'

Fault Resilience for Authenticated Encryption

A Similar Setting

- good randomness isn't always available
- nonce-based authenticated encryption (AE) to avoid randomness
- nonce-misuse resistance hedging against repeated nonces

• but what about faults?

SIV Mode of Operation: Synthetic IV [RS06]

Nonce-misue resistance ...

ETH zürich

 $\frac{\text{Enc}_{\text{SIV}}((K_1, K_2), N, A, m)}{\text{IV} \leftarrow \text{PRF}(K_1, <N > | <A > | <m >)}$ $c \leftarrow \text{Enc}(K_2, <m >; <\text{IV} >)$ return(IV, c)

... but vulnerable to faults

- 1. Query O_{Enc} on (N=00..0,A,m) - no faults, obtain $c_1 = c$ or \$
- 2. Query O_{Enc} on (N=10..0,A,m)
 - -<N> callback: flip 1st bit
 - obtain c₂ = c or *different* \$
- 3. Distinguish by checking if $c_1 = c_2$

SIV\$: Combining Randomization & De-Randomization

 $\frac{\operatorname{Enc}_{SIV\$}((K_{1}, K_{2}), \mathbf{N}, \mathbf{A}, \mathbf{m})}{\mathbf{r} \leftarrow_{\$} \{0, 1\}^{\lambda}}$ $\mathbf{IV} \leftarrow \operatorname{PRF}(K_{1}, \langle \mathbf{N} \rangle | \langle \mathbf{A} \rangle | \langle \mathbf{m} \rangle | \langle \mathbf{r} \rangle)$ $c \leftarrow \operatorname{Enc}(K_{2}, \langle \mathbf{r} \rangle | \langle \mathbf{m} \rangle; \langle \mathbf{IV} \rangle)$ $\operatorname{return}(\mathbf{IV}, c)$

ETH zürich

Combining security (provably)

- synthetic IV approach for nonce-misuse res. AE security under bad randomness
- augmented randomness for fault-resilient nm-res. AE security under diff. faults on N, A, m, r, IV

- Introduced generic model for understanding fault resilience in computational security proofs
- Signatures
 - confirm fault attacks on de-randomized signatures
 - provable security of combined randomization + de-randomization
- Authenticated encryption
 - fault-attack treatment of SIV mode of operation
 - propose combined SIV\$ mode achieving fault resilience

ETH zürich

Applying the Generic Fault Resilience Model

- Select your favorite crypto primitive
 - fault resilience model is generic
- Revise security definitions towards fault-resilient variant
 - What has to be taken care of when faults might happen in schemes?
- Augment scheme with faulting profile
 - different memory variables / algorithms may be differently vulnerable
- Assess provable fault-resilient security of augmented scheme

- Introduced generic model for understanding fault resilience in computational security proofs
- Signatures
 - confirm fault attacks on de-randomized signatures
 - provable security of combined randomization + de-randomization
- Authenticated encryption
 - fault-attack treatment of SIV mode of operation
 - propose combined SIV\$ mode achieving fault resilience

