

# **Robust Channels**

# Handling Unreliable Networks in the Record Layers of QUIC and DTLS 1.3

Marc Fischlin, Felix Günther, Christian Janson







### **QUIC/DTLS 1.3 within the Network Stack**



# Recap: Secure Channels over TCP ... think: TLS



### Handling Unreliable Transport

QUIC, DTLS, ... over UDP



### Handling Unreliable Transport

Many choices...

# ETHzürich

- Replays / Duplicates
  - prevent them?
  - check how far back?

### QUIC

**DTLS** 1.3

MUST prevent optional e.g., anti-replay window (IPsec)

#### Reordering

- permitted?
- by how far max.?

#### QUIC

#### **DTLS** 1.3

 $\label{eq:constraint} \dots \ \mbox{well, yes} \mbox{--it's UDP} \ \dots \ \mbox{dynamic 1-4B window} \ \ \ \mbox{dynamic 1-2B window}$ 

#### Adversarial interaction

Integrity: reject non-genuine packets

# But how do you (formally) guarantee that replayed / reordered / adversarial packets don't affect others?

January 11, 2021 | Robust Channels | RWC 2021

Felix Günther 5

QUIC DTLS 1.3

rely on AEAD

new notion: Robustness

#### **Generalizing Channel Correctness**

... beyond prior hierarchies [BKN02,KPB03,Boy+16,RZ18]



- parameterize what packet (ciphertext) reordering a channel supports
- ▶ predicate  $supp(C_S, C_R, c) = \checkmark / \checkmark$ 
  - C<sub>S</sub>: sequence of sent ciphertexts
  - ► *C<sub>R</sub>*: sequence of *supported* ciphertexts received prior
  - c: next ciphertext to receive
- correctness (only) requires genuine, supported ctxts be correctly decrypted





### **ETH** zürich

#### "malicious packets cannot disturb expected channel behavior"



### **Defining Robustness (ROB)**

Idea: Compare with the supported, correct sub-trace



### **Defining Robustness (ROB)**

Idea: Compare with the supported, correct sub-trace



### Robust Integrity (ROB-INT)

## **ETH** zürich

► join robustness and integrity for desired property over unreliable transport



#### **A Robust Hierarchy**



### **QUIC Channel**

Correctness for Dynamic Sliding Windows

- header (w/ partial packet no.  $pn_e$ ) + AEAD ciphertext
- *pn<sub>e</sub>* defines |*pn<sub>e</sub>*|-bit dynamic sliding window
- check for replays in w<sub>r</sub>-sized window





### **QUIC Channel**

Robust Confidentiality and Integrity (ROB-INT-IND-CCA)



▶ use hierarchy: IND-CPA + ROB-INT = ROB-INT-IND-CCA

 $\mathsf{Adv}_{\mathsf{QUIC}}^{\mathsf{ROB}\mathsf{-}\mathsf{INT}\mathsf{-}\mathsf{IND}\mathsf{-}\mathsf{CCA}} \leq \mathsf{Adv}_{\mathsf{AEAD}}^{\mathsf{priv}} + q_R \cdot \mathsf{Adv}_{\mathsf{AEAD}}^{\mathsf{auth}}$ 

- important: can make multiple forgery attempts
- ▶ factor  $q_R$  (#received ciphertexts) loss in security reduction



#### Responses

# **ETH** zürich

 IETF WGs updated QUIC / DTLS 1.3 drafts to mandate concrete forgery limits (beyond confidentiality limits [LP17])

The integrity protections ... depend on limiting the number of attempts to forge packets. ... QUIC ignores any packet that cannot be authenticated, allowing multiple forgery attempts.

- Usage Limits on AEAD Algorithms draft-irtf-cfrg-aead-limits
  - new CFRG document draft (w/ Chris Wood, Martin Thomson)
  - aims to provide user guidance on AEAD usage limits
  - confidentiality/integrity, single-/multi-key, AES-GCM/AES-CCM/ChaCha20Poly1305

| Network Working Group                                              | F. Günther         |
|--------------------------------------------------------------------|--------------------|
| Internet-Draft                                                     | ETH Zurich         |
| Intended status: Informational                                     | M. Thomson         |
| Expires: 24 March 2021                                             | Mozilla            |
|                                                                    | C.A. Wood          |
|                                                                    | Cloudflare         |
|                                                                    | 20 September 2020  |
| Usage Limits on AEAD Algorithms<br>draft-irtf-cfrg-aead-limits-01  |                    |
| Abstract                                                           |                    |
| An Authenticated Encryption with Associated Data (AEAD) algorithm  |                    |
| provides confidentiality and integrity. Excessive use of the same  |                    |
| key can give an attacker advantages in breaking these properties.  |                    |
| This document provides simple guidance for users of common AEAD    |                    |
| functions about how to limit the use of keys in order to bound the |                    |
| advantage given to an attacker. It considers limit                 | ts in both single- |
| and multi-user settings.                                           |                    |

#### Summary

# **ETH** zürich

- We introduce robustness as first-class security property "malicious packets cannot disturb expected channel behavior"
- ▶ We analyze QUIC and DTLS 1.3
  - capturing dynamic sliding window & replay-checking
  - confirm both achieve intended robust confidentiality and integrity
  - ... but  $q_R$  loss has to be taken into account
- ► Led to updated QUIC and DTLS 1.3 drafts, mandating forgery limits

full version @ IACR ePrint: https://ia.cr/2020/718





Thank You! mail@felixguenther.info

#### References I

- [BKN02] M. Bellare, T. Kohno, and C. Namprempre. "Authenticated Encryption in SSH: Provably Fixing The SSH Binary Packet Protocol". In: ACM CCS 2002. Ed. by V. Atluri. ACM Press, Nov. 2002, pp. 1–11.
- [Boy+16] C. Boyd, B. Hale, S. F. Mjølsnes, and D. Stebila. "From Stateless to Stateful: Generic Authentication and Authenticated Encryption Constructions with Application to TLS". In: CT-RSA 2016. Ed. by K. Sako. Vol. 9610. LNCS. Springer, Heidelberg, 2016, pp. 55–71.
- [KPB03] T. Kohno, A. Palacio, and J. Black. Building Secure Cryptographic Transforms, or How to Encrypt and MAC. Cryptology ePrint Archive, Report 2003/177. http://eprint.iacr.org/2003/177. 2003.
- [LP17] A. Luykx and K. G. Paterson. Limits on Authenticated Encryption Use in TLS. http://www.isg.rhul.ac.uk/~kp/TLS-AEbounds.pdf. Aug. 2017.
- [RZ18] P. Rogaway and Y. Zhang. "Simplifying Game-Based Definitions Indistinguishability up to Correctness and Its Application to Stateful AE". In: CRYPTO 2018, Part II. Ed. by H. Shacham and A. Boldyreva. Vol. 10992. LNCS. Springer, Heidelberg, Aug. 2018, pp. 3–32.
- [Shr04] T. Shrimpton. A Characterization of Authenticated-Encryption as a Form of Chosen-Ciphertext Security. Cryptology ePrint Archive, Report 2004/272. http://eprint.iacr.org/2004/272. 2004.