
Multi-Stage Key Exchange
When one key is not enough. . .

Marc Fischlin and Felix Günther
Technische Universität Darmstadt

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 1



Key Exchange
so far. . .

pkB , skA pkA, skB

KE

K K

CH

BR ’93

?
$

CK ’01 UC ’01

eCK ’06

. . .

BFWW ’11

composition:
“(BR) KE + CH is secure”

Thanks to Giorgia Azzurra Marson for the drawings.
June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 2



But what if. . . ?

pkB , skA pkA, skB

KE

K1 K1

K2 K2

. . .

CH(K1)

CH(K2)

“multi-stage KE”

I key exchange establishes more than one key?
I . . . even uses the intermediary keys within the key exchange or channel?

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 3



Should we care?

I QUIC (“Quick UDP Internet Connections”, Google 2013)
I “low-latency transport protocol with security equivalent to TLS”
I Diffie–Hellman-based key agreement
I aims at 0-RTT, i.e., immediately encrypts under intermediate key K1
I later rekeys to forward-secure K2
I intermediate key K1 used to establish K2 (i.e., in KE part)

Client C Server S
knows server’s pkS skS

ephemeral eskC , epkC
K1 = DH(eskC , pkS )

K1 = DH(epkC , skS )
ephemeral eskS , epkS
K2 = DH(epkC , eskS )

K2 = DH(eskC , epkS )

epkC
{data}K1

{epkS}K1

{data}K2

Stage 1

Stage 2

I TLS with session resumption

I client and server already established session and hold master key
I client resumes session later
I new session key is derived using (old) master key and fresh nonces
I can also be though of as a multi-stage key exchange (keeps state)

I related: TLS renegotiation considered as phases (GKS @ CCS’13)
but renegotiation is new key exchange, not reusing the master key

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 4



Should we care?

I QUIC (“Quick UDP Internet Connections”, Google 2013)
I “low-latency transport protocol with security equivalent to TLS”
I Diffie–Hellman-based key agreement
I aims at 0-RTT, i.e., immediately encrypts under intermediate key K1
I later rekeys to forward-secure K2
I intermediate key K1 used to establish K2 (i.e., in KE part)

Client C Server S
knows server’s pkS skS

ephemeral eskC , epkC
K1 = DH(eskC , pkS )

K1 = DH(epkC , skS )
ephemeral eskS , epkS
K2 = DH(epkC , eskS )

K2 = DH(eskC , epkS )

epkC
{data}K1

{epkS}K1

{data}K2

Stage 1

Stage 2

I TLS with session resumption
I client and server already established session and hold master key
I client resumes session later
I new session key is derived using (old) master key and fresh nonces
I can also be though of as a multi-stage key exchange (keeps state)

I related: TLS renegotiation considered as phases (GKS @ CCS’13)
but renegotiation is new key exchange, not reusing the master key

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 4



Outline

I A Model for Multi-Stage Key Exchange

I What about Composition?

I A quick look at QUIC

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 5



Model for Multi-Stage Key Exchange

inspired by BFWW @ CCS’11, BR-like, with composition in mind. . . (see later)

Adversary Model / Queries
active adversary A interacts through queries

NewSession: Create new session for two participants.

Send: Send message to a session.

Reveal: Reveal session key (of stage i ).

Corrupt: Corrupt participant (i.e., reveal skU ).

Test: Test session for real-or-random key.

NewTempKey: Create new (QUIC-motivated) “temporary keys”.
(QUIC uses server ephemeral keys for ~60sec in multiple sessions)

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 6



Model for Multi-Stage Key Exchange

Security Aspects to consider
I (Session-)Key Dependence

I multi-stage⇒ derived keys might build upon each other
I we have to disallow trivial Reveal queries

ex: QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS ) K1 = DH(epkC , skS )

ephemeral eskS , epkS
K2 = DH(eskC , epkS ) K2 = DH(epkC , eskS )

epkC

{epkS}K1

disclosure of K1 compromises K2

I key-dependent KE: disclosure of Ki before acceptance of Ki+1 compromises Ki+1
I key-independent KE: disclosure of Ki before acceptance of Ki+1 without harm

I Note: revealing Ki after acceptance of Ki+1 is okay (even with Test on Ki+1)

Wait a second. . .
I key independence says: keys can be revealed at any time
I . . . so Ki can’t contribute to Ki+1

I doesn’t this mean we run a KE from scratch for each Ki ?

No. see TLS: Ki+1 depends on master key, not Ki ⇒ (session-)key independent

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 7



Model for Multi-Stage Key Exchange

Security Aspects to consider
I (Session-)Key Dependence

I multi-stage⇒ derived keys might build upon each other
I we have to disallow trivial Reveal queries

ex: QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS ) K1 = DH(epkC , skS )

ephemeral eskS , epkS
K2 = DH(eskC , epkS ) K2 = DH(epkC , eskS )

epkC

{epkS}K1

disclosure of K1 compromises K2

I key-dependent KE: disclosure of Ki before acceptance of Ki+1 compromises Ki+1
I key-independent KE: disclosure of Ki before acceptance of Ki+1 without harm

I Note: revealing Ki after acceptance of Ki+1 is okay (even with Test on Ki+1)

Wait a second. . .
I key independence says: keys can be revealed at any time
I . . . so Ki can’t contribute to Ki+1

I doesn’t this mean we run a KE from scratch for each Ki ?

No. see TLS: Ki+1 depends on master key, not Ki ⇒ (session-)key independent
June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 7



Model for Multi-Stage Key Exchange

Adversarial Queries, refined
I Reveal

I so far: (accepted) partnered session key gets revealed as well
I key dependence: future keys are compromised, too, on reveal of Ki in stage = i

I reveal all Kj for j > i in this session
I reveal all Kj for j > i in partnered session with Ki accepted

Example: (K2s just accepted)

state of execution

K1 K1

K2 K2

K3 K3

Reveal

key dependence key dependence

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 8



Model for Multi-Stage Key Exchange

Security Aspects to consider (cont’d)
I Forward Security

I multi-stage⇒ forward security might kick in only at some stage j
I has to be considered in case of corruptions

I non-forward-secure KE: all session keys compromised on Corrupt
I stage-j-forward-secure KE: accepted keys at stages i ≥ j remain secure

ex: QUIC aims at stage-2 forward security

I Unilateral Authentication
I (independent of multi-stage setting)
I distinguish one side authenticated vs. both sides authenticated

I unilateral authentication: only one side authenticated (here: responder)
I mutual authentication

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 9



Model for Multi-Stage Key Exchange

Adversarial Queries, refined (cont’d)
I Corrupt

I non–forward security: all session keys get revealed
I stage-j forward security: accepted keys Ki at stages i ≥ j remain secure

I key dependence: future keys get revealed as well (as for Reveal queries)

I Test
I multi-stage⇒ keys get tested and protocol continues
I use tested (genuine or random) key in subsequent steps to prevent trivial attacks

I unilateral (responder-only) authentication: test on responder side only allowed if it
talks with genuine partner

responder

TestX
responder

Test

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 10



Model for Multi-Stage Key Exchange

Adversarial Queries, refined (cont’d)
I Send

I multi-stage⇒ keys get accepted and protocol continues
I reply after acceptance of Ki might already use Ki

I ex: QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS ) K1 = DH(epkC , skS )

ephemeral eskS , epkS
K2 = DH(eskC , epkS ) K2 = DH(epkC , eskS )

epkC

{epkS}K1

Send(epkC): accept K1, return {... }K1

I Problem: A cannot Test such keys (as state acceptedi is too volatile)
I Solution: suspend KE execution on acceptance, A gets special Send(continue)

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 11



Model for Multi-Stage Key Exchange

Let’s talk about security. . .
For clarity we define two notions: Match- and Multi-Stage-security (as BFWW’11)

Match-security
I ensures that session identifiers sid effectively match the partnered sessions

I sessions with same identifier (for some stage i ) hold the same key (at i )
I sessions are partnered with the intended (authenticated) participant

unilateral case here: responder-only authentication
I at most two sessions share a session identifier at any stage

I queries: NewSession, Send, Reveal, Corrupt

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 12



Model for Multi-Stage Key Exchange

Multi-Stage-security

I Bellare–Rogaway-like key secrecy in the multi-stage setting
I A has to guess bit btest (btest = 0⇐⇒ Test returns random key)
I A must not reveal and test same key (in single or partnered sessions)
I queries: NewSession, Send, Reveal, Corrupt, Test
I to be Multi-Stage-secure, KE must also be Match-secure

I Flavors

key-dependent or key-independent
+ non-forward-secure or stage-j-forward-secure
+ unilateral authentication or mutual authentication

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 13



Model for Multi-Stage Key Exchange

Multi-Stage-security flavors

I key dependence, forward security, unilateral authentication are orthogonal
I in principle one can think of any combination

I combinations form an ordered hierarchy

KI,1-FS,U

KD,1-FS,U

KI,2-FS,U

KD,2-FS,U

KI,M-FS,U

KD,M-FS,U

KI,NFS,U

KD,NFS,U

KI,1-FS,M

KD,1-FS,M

KI,2-FS,M

KD,2-FS,M

KI,M-FS,M

KD,M-FS,M

KI,NFS,M

KD,NFS,M

key-dependent (KD), stage-2-forward-secure (2-FS), unilateral authentication (U)

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 14



Composition

recap: BR-secure KE + symmetric-key protocol = secure composition BFWW’11

can we have the same for multi-stage key exchange?

Goal
I secure multi-stage key exchange KE (with some properties. . . )
I + (arbitrary) symmetric-key protocol Π
I = secure composition KE;Π

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 15



Composition

What’s a secure composition? (BFWW’11)

I combine games GKE (for KE) and GΠ (for Π) to composed game GKE;Π

I GKE;Π: for every K← GKE, spawn Π with K
I A’s task: break Π security in subgame GΠ

I queries for both subgames, except for
Reveal: session key compromise captured (if at all) in GΠ

Test: only administrative for GKE

Multi-stage composition

I KEi ;Π spawns Π from stage-i keys
I all other keys unused⇒ Reveal allowed for stages i ′ 6= i in GKEi ;Π

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 16



Composition

Our Composition Result
Take

I multi-stage key exchange protocol KE
I key-independent
I stage-j-forward-secure
I mutual authentication
I efficient session matching (BFWW’11)

session partnering deducible
from A ↔ GKE;Π communication

I symmetric-key protocol Π
I secure w.r.t. some GΠ

I Then composition KEi ;Π is secure for forward-secure stages (i ≥ j)

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 17



Composition

Proof idea (similar to BR-secure composition)

1. random key replacement
I gradually replace session keys Ki by random values (hybrid)
I A distinguishes⇒ we break Multi-Stage security

Π1($)

Π2($)

. . .

Πλ($)

Πλ+1(K)

. . .2. reduction to Π-security
I all keys random⇒ independent of KE
I breaking is equivalent to breaking Π directly

GKEi ;Π GΠ

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 18



Composition

Hybrid ingredients
I key independence

I guarantees that Reveal of Ki′ (i ′ 6= i) does not affect stage-i keys
I otherwise, replacement of Ki with random could be detected

I forward security of stage i
I guarantees that simulation of Π accepted Ki s is sound
I otherwise, replacement of Ki with random could be detected

I session matching
I allows the reduction to handle partnered sessions consistently

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 19



Composition

Hybrid ingredients (cont’d)
I mutual authentication

I guarantees that Test queries are allowed for each accepted Ki

I recall: unilateral authentication forbids test on responder without genuine partner

responder

TestX
responder

Test

I composition cannot provide protection in these cases
(reduction can’t replace keys here with random ones)

extension to the unilateral authentication case however is possible:
restrict composition s.t. Π not spawned when unpartnered responder accepts

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 20



A quick look at QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS ) K1 = DH(epkC , skS )

ephemeral eskS , epkS
K2 = DH(eskC , epkS ) K2 = DH(epkC , eskS )

epkC

{epkS}K1

Our (Multi-Stage) Security Result for QUIC 0-RTT
I key-dependent
I stage-2-forward-secure
I (responder-authenticated) unilateral

assuming
I Gap-Diffie-Hellman
I authenticated channel for 2nd message {epkS}K1
I key derivation function (HKDF): extraction = ROM, expansion = PRG

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 21



A quick look at QUIC

What about Composition?
I requirements:

I key independence

7

I stage-j forward security

3

I mutual authentication

(3)

I but QUIC can be easily turned into a key-independent variant QUICi :
I TLS-like idea: keep some (master) secret not exposed in Reveals
I let intermediate KDF (extraction) value of stage 1 enter KDF in stage 2

I QUICi + composition result⇒ (forward-)secure channels from stage 2

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 22



A quick look at QUIC

What about Composition?
I what QUIC achieves:

I key independence 7
I stage-2 forward security 3
I unilateral authentication (3)

I but QUIC can be easily turned into a key-independent variant QUICi :
I TLS-like idea: keep some (master) secret not exposed in Reveals
I let intermediate KDF (extraction) value of stage 1 enter KDF in stage 2

I QUICi + composition result⇒ (forward-)secure channels from stage 2

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 22



Summary

in practice, protocols apparently sometimes want to establish more than one key

We
I propose a model for multi-stage key exchange

K1 K1

K2 K2

K3 K3

Reveal

I give composition results under certain conditions
(key independence, forward security, . . . ) Gns

KEi ;Π GΠ

I analyze the multi-stage security of Google’s QUIC
(key-dependent, stage-2-forward-secure, unilateral)

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS ) K1 = DH(epkC , skS )

ephemeral eskS , epkS
K2 = DH(eskC , epkS ) K2 = DH(epkC , eskS )

epkC

{epkS}K1

Thank You!
June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 23



Appendix: QUIC’s 0-RTT Handshake
Expanded Description

Client C Server S
server’s static public key pkS skS

generate ephemeral keys eskC , epkC
generate nonceC

[generate nonceS ]
D1 = DH(eskC , pkS ) D1 = DH(epkC , skS )

PRK1 = H(D1, nonceC , [nonceS ]) PRK1 = H(D1, nonceC , [nonceS ])
K1 = PRG(PRK1, info1) K1 = PRG(PRK1, info1)

use temporary keys tskS , tpkS

D2 = DH(eskC , tpkS ) D2 = DH(epkC , tskS )
PRK2 = H(D2, nonceC , [nonceS ]) PRK2 = H(D2, nonceC , [nonceS ])

K2 = PRG(PRK2, info2) K2 = PRG(PRK2, info2)

nonceC , auxC , epkC

{[nonceS ], auxS , tpkS}K1

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 24



Appendix: Composition
Proof Details

Hybrid argument

I reduction B plays against Multi-Stage game
I simulates GΠ on its own

I forwards KE-queries NewSession, Reveal (for i ′ 6= i), Corrupt, Send
I handles Send queries resulting in acceptedi as follows:

I partnered session already accepted? use same key in GΠ

I counter < λ? sample Ki at random (counter = #accepted sessions)
I counter = λ? set Ki ← Test (if btest = 0 random, else real)
I counter > λ? set Ki ← Reveal

btest = 0⇒ B simulates Gλ
KEi ;Π

btest = 1⇒ B simulates Gλ−1
KEi ;Π

 A’s distinguishing probability
bounded by Multi-Stage security

June 4th, 2014 | SKECH Workshop, Bertinoro, Italy | Felix Günther (TU Darmstadt) | 25


	Motivation
	Model
	Composition
	QUIC
	Summary
	Appendix

