
A Cryptographic Analysis
of the TLS 1.3 Handshake Protocol Candidates
The main modes, 0-RTT, and replays

Felix Günther
Technische Universität Darmstadt, Germany

joint work with Benjamin Dowling, Marc Fischlin, and Douglas Stebila

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 1

Key Exchange

pkB , skA pkA, skB

KE

K KWe’re @ SKECH!

drawings by Giorgia Azzurra Marson
July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 2

TLS History

The [TLS] protocol allows client/server applications
to communicate in a way that is designed to
prevent eavesdropping, tampering, or message forgery.

TLS 1.2 [RFC 5246]

1995 SSL 2.0
1996 SSL 3.0
1999 TLS 1.0

2006 TLS 1.1

2008 TLS 1.2

201x TLS 1.3

70% of global Internet traffic
expected to be encrypted in 2016

(Sandvine: Internet Traffic Encryption Trends, Feb 2016)

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 3

TLS 1.3

I next TLS version, currently being specified (latest: draft-13, May 2016)

I several substantial cryptographic changes (compared to TLS 1.2), incl.
1. encrypting some handshake messages with intermediate session key
2. signing the entire transcript when authenticating
3. including handshake message hashes in key calculations
4. generating Finished messages with separate key
5. deprecating some crypto algorithms (RC4, SHA-1, key transport, MtEE, etc.)
6. using only AEAD schemes for the record layer encryption
7. switch to HKDF for key derivation
8. providing reduced-latency 0-RTT handshake

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 4

https://tools.ietf.org/html/draft-ietf-tls-tls13-13

TLS Overview

Handshake Protocol

Record ProtocolRecord Protocol

A
le

rt
P

ro
to

co
l

A
pp

.
D

at
a

P
ro

to
co

l

Handshake Protocol
(EC)DHE PSK 0-RTT

Handshake Protocol
(EC)DHE PSK 0-RTT

Handshake Protocol
(EC)DHE PSK 0-RTT

I we analyze the handshake protocol candidates for TLS 1.3

STANDARD UNDER CONSTRUCTION

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 5

TLS 1.3 Full/(EC)DHE Handshake
(simplified)

Client Server
ClientHello
ClientKeyShare

ClientPreSharedKey

ServerHello
ServerKeyShare

ServerPreSharedKey

CertificateRequest∗

ServerCertificate∗

ServerCertificateVerify∗

ServerFinished

ClientCertificate∗

ClientCertificateVerify∗

ClientFinished

tkapp tkapp

application data traffic key

PSK variant

. . . actually, there is more . . .

tkhs tkhs

handshake traffic key

second part of handshake
encrypted with tkhs

RMS RMS

resumption master key
for resuming a session

EMS EMS

exporter master key
for exporting key material

multi-stage
key exchange

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 6

TLS 1.3 Full/(EC)DHE and PSK Handshake
(simplified)

Client Server
ClientHello

ClientKeyShare

ClientPreSharedKey

ServerHello

ServerKeyShare

ServerPreSharedKey

CertificateRequest∗

ServerCertificate∗

ServerCertificateVerify∗

ServerFinished

ClientCertificate∗

ClientCertificateVerify∗

ClientFinished

tkapp tkapp

application data traffic key

PSK variant

. . . actually, there is more . . .

tkhs tkhs

handshake traffic key

second part of handshake
encrypted with tkhs

RMS RMS

resumption master key
for resuming a session

EMS EMS

exporter master key
for exporting key material

multi-stage
key exchange

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 6

TLS 1.3 Full/(EC)DHE and PSK Handshake
(still simplified)

Client Server
ClientHello
ClientKeyShare

ClientPreSharedKey

ServerHello
ServerKeyShare

ServerPreSharedKey

{CertificateRequest∗}
{ServerCertificate∗}

{ServerCertificateVerify∗}
{ServerFinished}

{ClientCertificate∗}
{ClientCertificateVerify∗}
{ClientFinished}

tkapp tkapp

application data traffic key

PSK variant

. . . actually, there is more . . .

tkhs tkhs

handshake traffic key

second part of handshake
encrypted with tkhs

RMS RMS

resumption master key
for resuming a session

EMS EMS

exporter master key
for exporting key material

multi-stage
key exchange

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 6

Multi-Stage Key Exchange (Security)

(Fischlin, Günther @ CCS 2014SKECH 2014
)

pkB , skA pkA, skB

KE

K1 K1

K2 K2. . .

eavesdropping active attacks

corruption key Ki reveal

test Ki
$

???

forward secrecy
after long-term reveal

key independence
in derivation

key independence
in derivation

drawings by Giorgia Azzurra Marson
July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 7

Security of the draft-10 (EC)DHE Handshake

(still simplified)
Client Server

ClientHello: rc ←$ {0, 1}256

ClientKeyShare: X ← gx

ServerHello: rs ←$ {0, 1}256

ServerKeyShare: Y ← gy

H1 ← H(CH‖ ... ‖SKS)
ES← X y

tkhs

{ServerCertificate∗}
H2 ← H(CH‖ ... ‖SCRT∗‖ ...)

{SCertVerify∗}: SignskS
(H2)

{ServerFinished}

{CCert∗},{CCertVerify∗},{CFin}

Hsess ← H(CH‖ ... ‖CCV∗)
tkapp

RMS,EMS

ES

Ext

xES

0

Exp

mES

Ext

MS

SS

Ext

xSS

0

Exp

mSS

Exptkhs

H1

Exptkapp

Hsess

ExpEMS

Hsess

Exp RMS

Hsess

(resum
ption)

sound key separationsound key separation

session hash signing

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 8

Security of the draft-10 (EC)DHE Handshake

We show that the draft-10 full (EC)DHE handshake establishes
I random-looking keys (tkhs, tkapp, RMS, EMS)

with adversary allowed to corrupt other users and reveal other session keys
I forward secrecy for all these keys
I concurrent security of anonymous, unilateral, mutual authentication
I key independence (leakage of traffic/resumption/exporter keys in same

session does not compromise each other’s security)

assuming

standard key exchange security
under standard(-model) assumptions

I collision-resistant hashing
I unforgeable signatures
I HKDF is pseudorandom function
I PRF-ODH assumption holds

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 9

Security of the draft-10 PSK Handshakes

PSK
I random-looking keys

(tkhs, tkapp, EMS)
I mutual authentication (down to RMS)

I key independence
I no forward secrecy

PSK-DHE
I random-looking keys

(tkhs, tkapp, EMS)
I mutual authentication (down to RMS)

I key independence
I forward secrecy for all keys

Under similar standard(-model) assumptions:

I collision-resistant hashing
I HKDF is pseudorandom function

I collision-resistant hashing
I HKDF is pseudorandom function
I HMAC is unforgeable
I PRF-ODH assumption holds

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 10

Zero Round-Trip Time (0-RTT)

KE

KK
CH

1 RTT

KE

CH

KK

0-RTT CH
K0K0

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 11

Zero Round-Trip Time (0-RTT)

KE

KK
CH

1 RTT

KE

CH

KK

0-RTT CH
K0K0

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 11

Diffie–Hellman-based 0-RTT

I à la QUIC, but also TLS 1.3 DH-based 0-RTT mode

earlier full handshake
semi-static

server pk = gs semi-static
server sk = s

gx

K0 = gxsK0 = gxs

0-RTT data

gy

. . .

. . .

K1 = gxyK1 = gxy

gx

0-RTT data
Duplicate n!

7
I what about replays?
I QUIC: remember nonces in “strike register” (restricted by “orbit”+time)
I effectively prevents same key is derived twice

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 12

Diffie–Hellman-based 0-RTT

I à la QUIC, but also TLS 1.3 DH-based 0-RTT mode

earlier full handshake
semi-static

server pk = gs semi-static
server sk = s

n, gx

K0 = gxsK0 = gxs

0-RTT data

gy

. . .

. . .

K1 = gxyK1 = gxy

n, gx

0-RTT data
Duplicate n!

7
I what about replays?
I QUIC: remember nonces in “strike register” (restricted by “orbit”+time)
I effectively prevents same key is derived twice

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 12

Generic Replay Attack on 0-RTT
(by Daniel Kahn Gillmore)

0-RTT KE msg (n, gx)

0-RTT data "/buy-something"

process "/buy-s..
accept 0-RTT, KE response (gy)accept 0-RTT, KE response (gy)
enforce state loss (e.g., reboot)

replay 0-RTT KE msg (n, gx)

replay "/buy-s.. rej. after state loss
for security reasons

reject 0-RTT, KE response msg (gy′
)

complete KE

(resend) "/buy-something" under final key process "/buy-s..
again

simpler in real world:
send to two

distributed servers

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 13

Generic Replay Attack on 0-RTT
What’s going on?

I attack applies to QUIC —vs.— security proofs for QUIC [FG’14, LJBN’15]

I standard answer: “out of model”
I actually sth. beyond KE: it’s conscious replay on application level

“This isn’t that odd, since, as AGL observes, browsers already routinely
retry some HTTP requests that appear to fail even for ordinary TLS [...]
but of course that’s different from having TLS give up those guarantees.”

Eric Rescorla @ TLS mailing list

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 14

QUIC’s Response

“The QUIC crypto protocol is destined to die.”
Langley, Chang / QUIC Crypto, Revision 20150720

I we claim: actually provides some replay protection, just on a different level

I distinguish between replay @ KE level and replay @ application level
(latter fundamentally beyond what KE can protect against)

KE

K

KE

K

KE

CHm
⊥
m

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 15

TLS 1.3’s Response

I can’t protect against replays anyway (on application level) . . .
I . . . so give up any replay protection for 0-RTT

i.e.
I don’t check for duplicate nonces, allow keys to be “replayed”
I don’t retransmit automatically on 0-RTT reject, but let application decide

I in theory: can be okay for some requests? (HTTP GET?)
I in practice: unclear / will have to see. . .

“browsers already routinely retry some HTTP requests”

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 16

Multi-Stage Key Exchange (Security)
with replayable stages/keys

pkB , skA pkA, skB

KE

K1 K1

K2 K2. . .

eavesdropping active attacks

corruption

key Ki reveal

test Ki
$

???

“replayable”
stage/key

K1

3

semi-static
server sk

semi-static reveal

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 17

Security of the draft-12 (EC)DHE 0-RTT Handshake

Client Server(earlier full handshake)
semi-static

server pk = gs semi-static
server sk = s

ClientHello
ClientKeyShare

tkehs tkehs

early handshake key

(ClientFinished0)
tkead tkead

early data traffic key

0-RTT data

ServerHello
ServerKeyShare

...

0-RTT data

I 0-RTT keys tkehs, tkead (& data) can be replayed
I weaker forward secrecy guarantees

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 18

(Still) Not the End of the Story

I TLS WG decided (in April) to only support PSK-based 0-RTT

I . . . but (EC)DHE-based 0-RTT might come back as extension,
esp. for better forward secrecy

I our model can serve as stepping stone for understanding 0-RTT & replays

I . . . and can be applied to PSK-based 0-RTT as well
(we currently look into that, security results appear to be similar)

July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 19

Summary

We
I analyze TLS 1.3 (draft-10)

full (EC)DHE, PSK, and PSK-DHE handshake
in an extended multi-stage key exchange model

Client Server

ClientHello

ClientKeyShare

ServerHello

ServerKeyShare

I for 0-RTT, distinguish replays @ KE level
from (unpreventable) replays @ application level

0-RTT KE msg (n, gx)

0-RTT data "/buy-something"

process "/buy-s..
accept 0-RTT, KE response (gy)
enforce state loss (e.g., reboot)

replay 0-RTT KE msg (n, gx)

replay "/buy-s.. rej. after state loss
for security reasons

reject 0-RTT, KE response msg (gy′
)

complete KE

(resend) "/buy-something" under final key process "/buy-s..
again

I establish TLS 1.3 (draft-12) (EC)DHE 0-RTT handshake is
secure multi-stage KE with replayable 0-RTT keys

I are looking into TLS 1.3 PSK-based 0-RTT handshake Thank You!
July 4, 2016 | Secure Key Exchange and Channel Protocols Workshop (SKECH2), Bertinoro, Italy | Felix Günther (TU Darmstadt) | 20

	Introduction
	TLS 1.3
	Multi-Stage Key Exchange Model
	Security Analysis
	0-RTT
	Summary

