A Cryptographic Perspective on TLS 1.3

Modeling Advanced Security Aspects of Key Exchange and Secure Channel Protocols

UC San Diego

Felix Günther

STM PhD Award Talk

15th International Workshop on Security and Trust Management (STM 2019)

September 26, 2019

Secure Connections

TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.

TLS 1.3 [RFC 8446]

UC San Diego

Handshake Protocol: negotiate security parameters ("cipher suite")

- authenticate peers
- establish key material for data protection

Record Protocol:

protect data using key material from handshake
ensuring confidentiality and integrity

Cryptographic Core

Key Exchange à la Diffie-Hellman (1976)

- key secrecy: given only g^x and g^y , key K remains secret
- ▶ just one building block (no security against MitM, ...) \Rightarrow need full protocol

The SSL/TLS history

The SSL/TLS history ... of attacks

UC San Diego

The road to TLS 1.3 = RFC 8446

https://datatracker.ietf.org/doc/rfc8446/

A new chapter: TLS 1.3

UC San Diego

- **Clean up:** get rid of flawed and unused crypto & features
- Improve latency: for main handshake and repeated connections (while maintaining security)
- Improve privacy: hide as much of the handshake as possible
- Continuity: maintain interoperability with previous versions and support existing important use cases
- Security Assurance (added later): have supporting analyses for changes

UC San Diego

Clean up

removed legacy and broken crypto

▶ ciphers: (3)DES, RC4, ..., MtEE (CBC & generally) — only AEAD remains

quite some resistance from

enterprises doing passive inspection

- hash functions: MD5, SHA1
- ▶ authentication: Kerberos, RSA PKCS#1v1.5 key transport
- custom (EC)DHE groups
- removed broken features
 - compression
 - renegotiation (but added key updates + late client aut)
- removed static RSA/DH: public-key crypto = forward secrecy
- hardened negotiation of version/cipher suite against downgrades

Improve latency

 \blacktriangleright TLS \leq 1.2 is slow: 2 round trips before client can send data

Improve latency

▶ TLS \leq 1.2 is slow: 2 round trips before client can send data

▶ TLS 1.3: full handshake in 1 round trip

- feature reduction \rightarrow we always do (EC)DHE
- client speculatively sends several DH shares in supported groups
- server picks one, replies with its share, and key can be already derived
- **0-RTT handshake** when resuming previous connection
 - client+server keep shared resumption secret (PSK)
 - client derives a key from that and can immediately encrypt data
 - <u>but:</u> 0-RTT sacrifices certain security properties (we'll get to that)

Improve privacy

- TLS \leq 1.2: complete handshake in the clear (incl. certificates, extensions)
- ► TLS 1.3: encrypts almost all handshake messages
 - derive separate key early to protect handshake messages
 - provides security against passive/active attackers (for server/client)

Continuity

- e.g.: remove complex renegotiation, but keep features (key update + client auth)
- ▶ interoperability (idea): let ClientHello look like TLS < 1.3

The TLS 1.3 Handshake Full (EC)DHE Mode

UC San Diego

The TLS 1.3 Handshake Full (EC)DHE Mode

UC San Diego

September 26, 2019 | A Cryptographic Perspective on TLS 1.3 | STM PhD Award Talk, STM 2019

Felix Günther 15

Felix Günther 16

Multi-Stage Key Exchange

0-RTT and Replays

UC San Diego

- allows client to send data without waiting for server reply
- but without server input, how does server know the request is fresh?
- adversary can replay ClientHello together with 0-RTT data
- idea: remember ClientHello identifier and reject duplicates

TLS does not provide inherent replay protection for 0-RTT data.

[Simple duplicates] can be prevented by sharing state to guarantee that the 0-RTT data is accepted at most once.

Servers SHOULD provide that level of replay safety by implementing one of the methods described in this section [...] [RFC 8446, Section 8]

suggested mechanisms

- single-use tickets: allow each RMS to be used only once (simplest)
- ClientHello recording: reject by unique identifier
- freshness checks: reject based on ClientHello time
- "SHOULD" \rightarrow treat 0-RTT keys generally as replayable in MSKE model

The TLS 1.3 Handshake

draft-14 PSK-(EC)DHE 0-RTT

UC San Diego

The TLS 1.3 Handshake

TLS 1.3 Handshake Security draft-14 PSK-(EC)DHE 0-RTT as Multi-Stage KE UC San Diego 鬚 Fischlin, Günther. Replay Attacks on Zero Round-Trip Time [..]. EuroS&P 2017 The TLS 1.3 PSK-(EC)DHE 0-RTT Theorem 7.4. The TLS 1.3 draft-14 PSK-(EC)DHE 0-RTT handshake is Multi-Stagehandshake provides secure in a key-independent and stage-3forward-secret manner with properties (M, AUTH. USE. REPLAY). random-looking secret keys $\mathsf{Adv}^{\mathsf{Multi-Stage},\mathcal{D}}_{\texttt{draft-14-PSK-(EC)DHE-ORTT},\mathcal{A}} \leq 5n_s \cdot \left(\mathsf{Adv}^{\mathsf{COLL}}_{\mathsf{H},\mathcal{B}_1}\right)$ forward secrecy for non-0-RTT keys + $n_p \cdot \left(\mathsf{Adv}_{\mathsf{HKDF}.\mathsf{Expand},\mathcal{B}_2}^{\mathsf{PRF}.\mathsf{sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_3}^{\mathsf{HMAC}(0,\$)-\$} \right)$ + $Adv_{HMAC, B_4}^{PRF-sec}$ + $Adv_{HKDE, Expand, B_F}^{PRF-sec}$ mutual authentication wrt. PSK + $n_s \cdot n_p \cdot \left(\mathsf{Adv}_{\mathsf{HKDF}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC}}^{\mathsf{HMAC}(0,\$)-\$} \right)$ ► key independence $+ \operatorname{Adv}_{\operatorname{HMAC}, \mathcal{B}_8}^{\operatorname{PRF-sec}} + \operatorname{Adv}_{\operatorname{HMAC}, \mathcal{B}_0}^{\operatorname{PRF-sec}}$ + $Adv_{HKDF.Expand, \mathcal{B}_{10}}^{PRF-sec}$ + $Adv_{HMAC, \mathcal{B}_{11}}^{EUF-CMA}$ replayable 0-RTT keys + $n_s \cdot n_p \cdot \left(\mathsf{Adv}_{\mathsf{HKDF}}^{\mathsf{snPRF}-\mathsf{ODH}} + \mathsf{Adv}_{\mathsf{HKAC},\mathcal{B}_{12}}^{\mathsf{PRF}-\mathsf{sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{13}}^{\mathsf{PRF}-\mathsf{sec}} \right)$ $+ \mathsf{Adv}_{\mathsf{HKDF}.\mathsf{Expand},\mathcal{B}_{14}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HKDF}.\mathsf{Expand},\mathcal{B}_{15}}^{\mathsf{PRF-sec}}$ assuming . . . $+ \operatorname{Adv}_{\operatorname{HKDF},\operatorname{Expand},\mathcal{B}_{16}}^{\operatorname{PRF-sec}} \right)$

TLS 1.3 Security Analysis

Many more analyses

UC San Diego

So... what about the Record Protocol?

The TLS 1.3 Record Protocol

UC San Diego

TLS 1.3 Record Protocol Security

- AEAD-based design looks sound...
- but the crypto community hasn't really conclusively ventilated the question: What is a secure channel protocol?

Example: Fragmentation

UC San Diego

5.1 Record Layer The record layer **fragments** information blocks into [...] records carrying data in **chunks of 2¹⁴ bytes or less**. [...] Application Data fragments MAY be **split** across multiple records or **coalesced** into a single record.

TLS 1.3 [RFC 8446]

- common crypto notions assume atomic messages / ciphertexts ... but channels are more than just AEAD
- actual guarantees can be confusing
 example: cookie cutter attack [BDF+14]
 Set-Cookie: SID=xyz; secure
 Cookie: SID=xyz (in the clear)

Example: Fragmentation Stream-based Channels

Fischlin, Günther, Marson, Paterson. Data Is a Stream [...]. CRYPTO 2015

 ... achieves security against chosen ciphertext-fragment attacks (assuming secure AEAD scheme)

September 26, 2019 | A Cryptographic Perspective on TLS 1.3 | STM PhD Award Talk, STM 2019

Example: Multi-Key Channels

🐒 Günther, Mazaheri. A Formal Treatment of Multi-key Channels. CRYPTO 2017

- classically: 1 key
- ▶ TLS 1.3, QUIC, Signal, ...: keys updated during channel operation

A Summary

- sound cryptographic design
 - improving substantially over prior versions
 - yet with possibly "dangerous" 0-RTT mode
- wide-spread deployment after only about 1 year

Conclusions & Where to?

UC San Diego

▶ advanced crypto & security modeling contributes to secure standards

- best to integrate formal analysis into the process
 - Message Layer Security (MLS) for secure messaging
 - Workshop on Secure Messaging @ Eurocrypt 2019
 - QUIC: UDP-based secure transport
 - QUIPS'20: QUIC Privacy and Security Workshop @ NDSS 2020 Submission deadline: December 13, 2019

security standards need you!

WE NEED YOU!

References I

- [BKN02] M. Bellare, T. Kohno, and C. Namprempre. "Authenticated Encryption in SSH: Provably Fixing The SSH Binary Packet Protocol". In: ACM CCS 2002. Ed. by V. Atluri. ACM Press, Nov. 2002, pp. 1–11.
- [BR94] M. Bellare and P. Rogaway. "Entity Authentication and Key Distribution". In: CRYPTO'93. Ed. by D. R. Stinson. Vol. 773. LNCS. Springer, Heidelberg, Aug. 1994, pp. 232–249.
- [BDF+14] K. Bhargavan, A. Delignat-Lavaud, C. Fournet, A. Pironti, and P.-Y. Strub. "Triple Handshakes and Cookie Cutters: Breaking and Fixing Authentication over TLS". In: 2014 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2014, pp. 98–113.
- [BDPS12] A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. "Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation". In: EUROCRYPT 2012. Ed. by D. Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 682–699.
- [BFGJ17] J. Brendel, M. Fischlin, F. Günther, and C. Janson. "PRF-ODH: Relations, Instantiations, and Impossibility Results". In: CRYPTO 2017, Part III. Ed. by J. Katz and H. Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 651–681.
- [DFGS15] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. "A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates". In: ACM CCS 2015. Ed. by I. Ray, N. Li, and C. Kruegel. ACM Press, Oct. 2015, pp. 1197–1210.
- [DFGS16] B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A Cryptographic Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol. Cryptology ePrint Archive, Report 2016/081. http://eprint.iacr.org/2016/081. 2016.

References II

- [FG14] M. Fischlin and F. Günther. "Multi-Stage Key Exchange and the Case of Google's QUIC Protocol". In: ACM CCS 2014. Ed. by G.-J. Ahn, M. Yung, and N. Li. ACM Press, Nov. 2014, pp. 1193–1204.
- [FG17] M. Fischlin and F. Günther. "Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates". In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017. Paris, France: IEEE, 2017, pp. 60–75.
- [FGMP15] M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson. "Data Is a Stream: Security of Stream-Based Channels". In: CRYPTO 2015, Part II. Ed. by R. Gennaro and M. J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 545–564.
- [GM17] F. Günther and S. Mazaheri. "A Formal Treatment of Multi-key Channels". In: CRYPTO 2017, Part III. Ed. by J. Katz and H. Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 587–618.
- [MP17] G. A. Marson and B. Poettering. "Security Notions for Bidirectional Channels". In: IACR Trans. Symm. Cryptol. 2017.1 (2017), pp. 405–426.
- [PRS11] K. G. Paterson, T. Ristenpart, and T. Shrimpton. "Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol". In: ASIACRYPT 2011. Ed. by D. H. Lee and X. Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 372–389.
- [PS18] C. Patton and T. Shrimpton. "Partially Specified Channels: The TLS 1.3 Record Layer without Elision". In: ACM CCS 2018. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM Press, Oct. 2018, pp. 1415–1428.